Archiv für den Monat: Oktober 2012

Der Ursprung und die Evolution des Lebens auf der Erde. Leben als ein kosmischer Imperativ. Reflexionen zum Buch von Christian de Duve. Teil 3

Christian de Duve, VITAL DUST. Life as a Cosmic Imperative, New York: Basic Books, 1995

Beginn: 25.Okt.2012, 23:30h
Letzte Änderung: 10.Nov. 2012, 10:30h

Für Teil2 siehe HIER

  1. [ANMERKUNG: Obwohl Duve den Begriff der Information im Text immer wieder verwendet, wird der Begriff bislang nicht definiert. Selbst an der Stelle, an der er vom Ende der chemischen Evolution spricht, die dann mit Hilfe von DNA/ RNA in die informationsgeleitete Entwicklung übergeht, findet man keine weitere Erklärung. Der einzige greifbare Anhaltspunkt ist der Bezug zur DNA/ RNA, wobei offen bleibt, warum die DNA der RNA vorgeschaltet wurde.]
  2. Duve beschreibt den Kernsachverhalt so, dass wir ein Abhängigkeitsverhältnis haben von der DNA (die zur Replikation fähig ist) über eine Transkription zur RNA (die in speziellen Fällen, Viren, auch zur Replikation fähig ist) mittels Translation (Übersetzung) zu den Proteinen (vgl. S.55f) ; von den Proteinen gäbe es keinen Weg zurück zur RNA (vgl. S.56f). Die RNA hat dabei auch eine enzymatisch-katalytische Rolle.
  3. [ANMERKUNG: Für einen Interpretationsversuch zur möglichen Bedeutung des Begriffs ‚Information‘ in diesem Kontext bietet sich vor allem der Sachverhalt an, dass die ‚Konstruktion‘ eines DNA-Moleküls bzgl. der Anordnung der einzelnen Aminosäurebausteinen nicht deterministisch festgelegt ist. Ist erst einmal ein DNA-Molekül ‚zustande gekommen‘, dann kann es innerhalb des Replikationsmechanismus (kopieren, mischen und mutieren) so verändert werden, dass es nach der Replikation ‚anders‘ aussieht. Diese nicht-deterministischen Veränderungsprozesse sind völlig unabhängig von ihrer möglichen ‚Bedeutung‘! Es ist etwa so, wie ein kleines Kind, das mit einem Haufen von Buchstaben spielen würde, allerdings mit der kleinen Vorgabe, dass es eine fertige ‚Kette‘ von Buchstaben bekommen würde, die es zerschneiden darf, neu zusammenfügen, und gelegentlich einzelne Stellen austauschen darf.
  4. Die Übersetzung dieser DNA-Ketten in Proteine erfolgt dann über den RNA-gesteuerten Mechanismus. Diese Übersetzung folgt ‚in sich‘ festen Regeln, ist von daher im Prinzip deterministisch. Dies bedeutet, dass ohne die DNA-Ketten zwar deterministische Prozesse möglich sind, allerdings ohne die ‚freie Kombinierbarkeit‘ wie im Falle der DNA-Ketten (was aber, siehe Viren, im Prinzp auch gehen könnte). Die standardmäßige Trennung von Replikation und Translation deutet indirekt daraufhin, dass mit dieser Trennung irgendwelche ‚Vorteile‘ einher zugehen scheinen.
  5. Der Clou scheint also darin zu liegen, dass durch die Entkopplung von chemisch fixierten (deterministischen) Übersetzungsmechanismen von den freien erinnerungs- und zufallsgesteuerten Generierungen von DNA-Ketten überhaupt erst die Voraussetzung geschaffen wurde, dass sich das ‚Zeichenmaterial‘ von dem ‚Bedeutungsmaterial‘ trennen konnte. Damit wiederum wurde überhaupt erst die Voraussetzung für die Entstehung von ‚Zeichen‘ im semiotischen Sinne geschaffen (zu ‚Zeichen‘ und ’semiotisch‘ siehe Noeth (2000)). Denn nur dann, wenn die Zuordnung zwischen dem ‚Zeichenmaterial‘ und dem möglichen ‚Bedeutungsmaterial‘ nicht fixiert ist, kann man von einem Zeichen im semiotischen Sinne sprechen. Wir haben es also hier mit der Geburt des Zeichens zu tun (und damit, wenn man dies unbedingt will, von den ersten unübersehbaren Anzeichen von Geist!!!).
  6. Die Rede von der Information ist in diesem Kontext daher mindestens missverständlich, wenn nicht gar schlichtweg falsch. Bislang gibt es überhaupt keine allgemeine Definition von Information. Der Shannonsche Informationsbegriff (siehe Shannon und Weaver (1948)) bezieht sich ausschließlich auf Verteilungseigenschaften von Elementen einer endlichen Menge von Elementen, die als Zeichenmaterial (Alphabet) in einem technischen Übermittlungsprozeß benutzt werden, völlig unabhängig von ihrer möglichen Bedeutung. Mit Zeichen im semiotischen Sinne haben diese Alphabetelemente nichts zu tun. Daher kann Shannon in seiner Theorie sagen, dass ein Element umso ‚wichtiger‘ ist, je seltener es ist.  Hier von ‚Information‘ zu sprechen ist technisch möglich, wenn man weiß, was man definiert; diese Art von Information hat aber mit der ‚Bedeutung‘ von Zeichen bzw. der ‚Bedeutung‘ im Kontext von DNA-Ketten nichts zu tun. Die Shannonsche Information gab und gibt es auch unabhängig von der Konstellation DNA – RNA – Proteine.
  7. Auch der Informationsbegriff von Chaitin (1987, 2001) bezieht sich ausschließlich auf Verteilungseigenschaften von Zeichenketten. Je weniger ‚Zufall‘ bei der Bildung solcher Ketten eine Rolle spielt, also je mehr ‚regelhafte Wiederholungen (Muster, Pattern)‘ auftreten, um so eher kann man diese Ketten komprimieren. Benutzt man dann dazu das Shannonsche Konzept, dass der ‚Informationsgehalt‘ (wohlgemerkt ‚Gehalt‘ hier nicht im Sinne von ‚Bedeutung‘ sondern im Sinne von ‚Seltenheit‘!) umso größer sei, je ’seltener‘ ein Element auftritt, dann nimmt der Informationsgehalt von Zeichenketten mit der Zunahme von Wiederholungen ab. Insofern Zeichenketten bei Chaitin Algorithmen repräsentieren können, also mögliche Anweisungen für eine rechnende Maschine, dann hätten nach dieser Terminologie jene Algorithmen den höchsten ‚Informationsgehalt (im Sinne von Shannon)‘, die die wenigsten ‚Wiederholungen‘ aufwiesen; das wären genau jene, die durch eine ‚zufällige Bildung‘ zustande kommen.
  8. Lassen wir den weiteren Aspekt mit der Verarbeitung durch eine rechnende Maschine hier momentan mal außer Betracht (sollte wir später aber noch weiter diskutieren), dann hätten DNA-Ketten aufgrund ihrer zufälligen Bildung von ihrer Entstehung her einen maximale Informationsgehalt (was die Verteilung betrifft).
  9. Die Aussage, dass mit der DNA-RNA die ‚Information‘ in das Geschehen eingreift, ist also eher nichtssagend bzw. falsch. Dennoch machen die speziellen Informationsbegriffe von Shannon und Chaitin etwas deutlich, was die Ungeheuerlichkeit an der ‚Geburt des Zeichens‘ verstärkt: die zufallsgesteuerte Konstruktion von DNA-Ketten verleiht ihnen nicht nur eine minimale Redundanz (Shannon, Chaitin) sondern lässt die Frage aufkommen, wie es möglich ist, dass ‚zufällige‘ DNA-Ketten über ihre RNA-Interpretation, die in sich ‚fixiert‘ ist, Protein-Strukturen beschreiben können, die in der vorausgesetzten Welt lebensfähig sind? Zwar gibt es im Kontext der biologischen (= zeichengesteuerten) Evolution noch das Moment der ‚Selektion‘ durch die Umwelt, aber interessant ist ja, wie es durch einen rein ‚zufallsgesteuerten‘ DNA-Bildungsprozess zu Ketten kommen kann, die sich dann ‚positiv‘ selektieren lassen. Dieses Paradox wird umso stärker, je komplexer die Proteinstrukturen sind, die auf diese Weise erzeugt werden. Die ‚Geordnetheit‘ schon einer einzigen Zelle ist so immens groß, dass eine Beschreibung dieser Geordnetheit durch einen ‚zufälligen‘ Prozess absurd erscheint. Offensichtlich gibt es hier noch einen weiteren Faktor, der bislang nicht klar identifiziert wurde (und der muss im Generierungsprozess von DNA-Ketten stecken).]
  10. [ANMERKUNG: Eine erste Antwort steckt vielleicht in den spekulativen Überlegungen von Duve, wenn er die Arbeiten von Spiegelmann (1967), Orgel (1979) und Eigen (1981) diskutiert (vgl. S.57-62). Diese Arbeiten deuten daraufhin, dass RNA-Molküle Replizieren können und Ansätze zu evolutionären Prozessen aufweisen. Andererseits sind RNA-Moleküle durch Übersetzungsprozesse an Proteinstrukturen gekoppelt. Wenn also beispielsweise die RNA-Moleküle vor den DNA-Ketten auftraten, dann gab es schon RNA-Ketten, die sich in ihrer jeweiligen Umgebung ‚bewährt‘ hatten. Wenn nun — auf eine Weise, die Duve nicht beschreibt — zusätzlich zu den RNA-Ketten DNA-Ketten entstanden sind, die primär nur zur Replikation da waren und die RNA-Ketten dann ’nur‘ noch für die Übersetzung in Proteinstrukturen ‚zuständig‘ waren, dann haben die DNA-Ketten nicht bei ‚Null‘ begonnen sondern repräsentierten potentielle Proteinstrukturen, die sich schon ‚bewährt‘ hatten. Der Replikationsmechanismus stellte damit eine lokale Strategie dar, wie die im realen Raum vorhandenen DNA/ RNA-Ketten den ‚unbekannten Raum‘ möglicher weiterer Proteinstrukturen dadurch ‚absuchen‘ konnten, dass neue ‚Suchanfragen‘ in Form neuer DNA-Moleküle gebildet wurden. Der ‚Akteur‘ war in diesem Fall die komplette Umgebung (Teil der Erde), die mit ihren physikalisch-chemischen Eigenschaften diese Replikationsprozesse ‚induzierte‘. Die einzige Voraussetzung für einen möglichen Erfolg dieser Strategie bestand darin, dass die ‚Sprache der DNA‘ ‚ausdrucksstark‘ genug war, alle für das ‚hochorganisierte Leben‘ notwendigen ‚Ausdrücke‘ ‚bilden‘ zu können. Betrachtet man den RNA-Proteinkonstruktionsprozess als die ‚Maschine‘ und die DNA-Ketten als die ‚Anweisungen‘, dann muss es zwischen der RNA-Proteinmaschine‘ und den DNA-Anweisungen eine hinreichende Entsprechung geben.]
  11. [ANMERKUNG: Die Überlegungen von Duve haben einen weiteren kritischen Punkt erreicht. Um die Optimierung des Zusammenspiels zwischen RNA und Proteinen und ihren Vorformen erklären zu können, benötigt er einen Rückkopplungsmechanismus, der ein schon vorhandenes ‚Zusammenspiel‘ von allen beteiligten Komponenten in einer gemeinsamen übergeordneten Einheit voraussetzt. Diese hypothetische übergeordnete gemeinsame Einheit nennt er ‚Protozelle‘ (‚protocell‘). (vgl.S.65f)]
  12. Die Protein-Erzeugungsmaschinerie (‚proteine-synthesizing machinery‘) besteht aus mehreren Komponenten. (i) Das Ribosom heftet eine Aminosäure an eine wachsende Peptid-Kette, quasi ‚blindlings‘ entsprechend den determinierenden chemischen Eigenschaften. (vgl. S.66) Das Bindeglied zwischen den ‚informierenden‘ Aminosäuren und den zu bildenden Petidketten (Proteinen) bildet die ‚Boten-RNA‘ (‚messenger RNA, mRNA‘), in der jeweils 3 Aminosäuren (Aminosäuren-Triplets) als ‚Kodon‘, also 4^3=64, eine von 64 möglichen Zieleinheiten kodieren. Dem Kodon entspricht in einer ‚Transport-RNA‘ (‚transfer-RNA, tRNA‘) dann ein ‚Antikodon‘ (ein chemisch komplementäres Aminosäure-Triplet), an das genau eine von den 22 (21) biogenen Aminosäuren ‚angehängt‘ ist. Durch diesen deterministischen Zuordnungsprozess von mRNA-Kodon zu tRNA-Antikodon und dann Aminosäure kann eine Peptidkette (Protein) Schritt für Schritt entstehen. Diejenigen Zieleinheiten aus den 64 Möglichen, die nicht in eine Aminosäure übersetzt werden, bilden ‚Befehle‘ für die ‚Arbeitsweise‘ wie z.B. ‚Start‘, ‚Stopp‘. Dieser ‚Kode‘ soll nach Duve ‚universal‘ für alle Lebewesen gelten. (vgl. S.66f)
  13. [ANMERKUNG: Für eine vergleichende Lektüre zu diesem zentralen Vorgang der Proteinbildung sei empfohlen, die immer sehr aktuellen Versionen der entsprechenden englischsprachigen Wikipediabeiträge zu lesen (siehe unten Wkipedia (en).]
  14. Duve weist ausdrücklich darauf hin, dass die eigentliche ‚Übersetzung‘, die eigentliche ‚Kodierung‘ außerhalb, vorab zu dem mRNA-tRNA Mechanismus liegt. Der ribosomale Konstruktionsprozess übernimmt ja einfach die Zuordnung von Antikodon und Aminosäure, wie sie die Transfer-RNA liefert. Wann, wie und wo kam es aber zur Kodierung von Antikodon und Aminosäure in dem Format, das dann schließlich zum ‚Standard‘ wurde? (vgl. S.69)
  15. Letztlich scheint Duve an diesem Punkt auf der Stelle zu treten. Er wiederholt hier nur die Tatsachen, dass RNA-Moleküle mindestens in der dreifachen Funktionalität (Botschaft, Transfer und Konformal) auftreten können und dass sich diese drei Funktionen beim Zusammenbauen von Peptidketten ergänzen. Er projiziert diese Möglichkeit in die Vergangenheit als möglichen Erklärungsansatz, wobei diese reine Möglichkeit der Peptidwerdung keinen direkten ‚evolutionären Fitnesswert‘ erkennen lässt, der einen bestimmte Entwicklungsprozess steuern könnte.(vgl. S.69f) Er präzisiert weiter, dass der ‚Optimierung‘ darin bestanden haben muss, dass — in einer ersten Phase — ein bestimmtes Transfer-RNA Molekül hochspezifisch nur eine bestimmte Aminosäure kodiert. In einer nachfolgenden Phase konzentrierte sich die Optimierung dann auf die Auswahl der richtigen Boten-RNA. (vgl.S.70f)
  16. [ANMERKUNG: Das alles ist hochspekulativ. Andererseits, die ‚Dunkelheit‘ des Entstehungsprozesses ist nicht ‚völlige Schwärze‘, sondern eher ein ’nebliges Grau‘, da man sich zumindest grundsätzlich Mechanismen vorstellen kann, wie es gewesen sein könnte.]
  17. Duve reflektiert auch über mögliche chemische Präferenzen und Beschränkungen innerhalb der Bildung der Zuordnung (= Kodierung) von Kodons und Antikodons mit der Einschätzung, dass die fassbaren chemischen Eigenschaften darauf hindeuten, dass eine solche Zuordnung nicht ohne jede Beschränkung, sprich ’nicht rein zufällig‘ stattgefunden hat.(vgl. S.72f)
  18. [ANMERKUNG: Der spekulative Charakter bleibt, nicht zuletzt auch deswegen, weil Duve schon für den ‚evolutionären‘ Charakter der Kodon-Antikodon Entwicklung das fiktive Konzept einer ‚Protozelle‘ voraussetzen muss, deren Verfügbarkeit vollständig im Dunkel liegt. Etwas kaum Verstandenes (= die Kodon-Antikodon Zuordnung) wird durch etwas an dieser Stelle vollständig Unverstandenes (= das Konzept der Protozelle) ‚erklärt‘. Natürlich ist dies keine echte Kritik an Duve; schließlich versucht er ja — und darin mutig — im Nebel der verfügbaren Hypothesen einen Weg zu finden, der vielleicht weiter führen könnte. In solchen unbefriedigenden Situationen wäre eine ‚vornehme Zurückhaltung‘ fehl am Platze; Suchen ist allemal gefährlich… ]
  19. Duve geht jedenfalls von der Annahme aus, dass ein evolutionärer Prozess nur in dem Umfang effektiv einsetzen konnte, als die Veränderung der Kodon-Antikodon Zuordnung samt den daraus resultierenden chemischen Prozessen (Katalysen, Metabolismus…) insgesamt ein Trägersystem — in diesem Fall die vorausgesetzte Protozelle — ‚positiv‘ unterstützte und ‚überlebensfähiger‘ machte. (vgl. S.73f)
  20. Ungeachtet der Schwierigkeit, die Details des Entstehungsprozesses zum jetzigen Zeitpunkt zu enthüllen, versucht Duve weitere Argumente zu versammeln, die aufgrund allgemeiner Eigenschaften des Entstehungsprozesses den evolutionären Charakter dieses Prozesses weiter untermauern.
  21. Generell gehört es zu einem evolutionären Prozess, dass die Entwicklung zum Zeitpunkt t nur auf das zurückgreifen kann, was an Möglichkeiten zum Zeitpunkt t-1 zur Verfügung gestellt wird, also change: STATE —> STATE. Dies schränkt den Raum der Möglichkeiten grundsätzlich stark ein. (vgl. S.75, 77)
  22. Da es bei der Übersetzung von mRNA in Peptide zu Fehlern kommen kann (Duve zitiert Eigen mit der quantitativen Angabe, dass auf 70 – 100 übersetzten Aminosäuren 1 Baustein falsch ist ), bedeutet dies dass die ersten Kodon-Antikodon Zuordnungen in Gestalt von mRNA Molekülen aufgrund dieser Fehlerrate nur 60 – 90 Einheiten lang sein konnten, also nur 20 – 30 Aminosäuren kodieren konnten. (vgl. S.76)
  23. Rein kombinatorisch umfasst der Möglichkeitsraum bei 20 Aminosäuren 20^n viele Varianten, also schon bei einer Länge von nur 100 Aminosäuren 10^130 verschiedene Moleküle. Rein praktisch erscheint nach Duve ein solcher Möglichkeitsraum zu groß. Nimmt man hingegen an — was nach Duve der tatsächlichen historischen Situation eher entsprechen soll –, dass es zu Beginn nur 8 verschiedene Aminosäuren gab die zu Ketten mit n=20 verknüpft wurden, dann hätte man nur 8^20 = 10^18 Möglichkeiten zu untersuchen. In einem kleinen Tümpel (‚pond‘) erscheint das ‚Ausprobieren‘ von 10^18 Variationen nach Duve nicht unrealistisch.(vgl. S.76)
  24. Schließlich führt Duve noch das Prinzip der ‚Modularität‘ ein: RNA-Moleküle werde nicht einfach nur ‚Elementweise‘ verlängert, sondern ganze ‚Blöcke‘ von erprobten Sequenzen werden kombiniert. Dies reduziert einserseits den kombinatorischen Raum drastisch, andererseits erhöht dies die Stabilität. (vgl. S.77)

Fortsetzung folgt…

LITERATURVERWEISE

Chaitin, G.J; Algorithmic information theory. Cambridge: UK, Cambridge University Press, (first:1987), rev.ed. 1988, 1990, 1992, ,paperback 2004

Chaitin, G.J; Exploring Randomness. London: UK, Springer Ltd., (2001, corr. 2001), 3rd printing 2002

Noeth, W., Handbuch der Semiotik, 2. vollst. neu bearb. und erw. Aufl. mit 89 Abb. Stuttgart/Weimar: J.B. Metzler, xii + 668pp, 2000

Claude E. Shannon A mathematical theory of communication. Bell System Tech. J., 27:379-423, 623-656, July, Oct. 1948 (online: http://cm.bell-labs.com/cm/ms/what/shannonday/paper.html; zuletzt besucht: May-15, 2008)

Claude E. Shannon; Warren Weaver The mathematical theory of communication. Urbana – Chicgo: University of Illinois Press, 1948.

Wikipedia (en): Genetischer Kode: http://en.wikipedia.org/wiki/Genetic_code, Ribosom: http://en.wikipedia.org/wiki/Ribosome, Protein Biosynthesis: http://en.wikipedia.org/wiki/Protein_biosynthesis, Aminosäuren: http://en.wikipedia.org/wiki/Amino_acid, Proteinoide Aminosäuren:http://en.wikipedia.org/wiki/Proteinogenic_amino_acid (Alle Links zuletzt besucht: Mo, 29.Okt.2012)

Für einen Überblick über alle bisherigen Einträge nach Titeln siehe HIER.

Der Ursprung und die Evolution des Lebens auf der Erde. Leben als ein kosmischer Imperativ. Reflexionen zum Buch von Christian de Duve. Teil 2

Christian de Duve, VITAL DUST. Life as a Cosmic Imperative, New York: Basic Books, 1995

Beginn: 20.Okt.2012, 18:10h

Letzte Änderung: 25.Okt.2012, 07:40h

Für Teil1 siehe HIER.

  1. Duve beginnt seine Rekonstruktion in der Frühzeit der Erde, in der es zwar einfache chemische Stoffe gab, insbesondere die fünf häufigsten Elemente (CHNOPS = (C) Carbon = Kohlenstof, (H) Hydrogen = Wasserstoff, (N) Nitrogen, (O) Oxygen = Sauerstoff, (P) Phosphor, (S) Sulfur = Schwefel ), aber noch nicht die komplexen Verbindungen, die im späteren Verlauf wichtige Funktionen im Leben übernahmen.(vgl. S.15)
  2. Die Frage nach der genauen Konstellation von chemischen Elementen in der Frühzeit der Erde für die Entstehung lebensermöglichender (:= biogener) chemischer Verbindungen lässt sich bislang noch nicht vollständig klären. Als hauptsächlichste Szenarien werden favorisiert entweder flache warme Gewässer oder hydrothermale Schlote in dunkler Tiefsee oder Kombinationen von beidem.(vgl. 15-18)
  3. Verschiedene theoretische Ansätze (Oparin 1924, Watson und Crick 1953), sowie neuartige Experimente (Miller und Urey 1952/ 1953) zeigten auf, dass rein chemische Prozesse möglich sind, die zur Bildung komplexerer biogener Verbindungen führen können; allerdings wurden in keinem Experiment jene chemischen Verbindungen gefunden, die für biogene Verbindungen als ausreichend erachtet werden.(vgl. S.18f)
  4. Mit der Verbesserung der Beobachtungsmethoden und hier speziell der Spektroskopie konnte man herausfinden, dass sich im interstellaren Raum überall nicht nur genügend chemische Elemente finden, sondern sogar viele chemische Verbindungen, die als biogen qualifiziert werden können. Zusammenfassend gilt es nach Duve als erwiesen, dass zahlreiche biogene chemische Verbindungen sowohl unter den Bedingungen der frühen Erde, im interstellaren Raum, wie auch in Kometen und Meteoriten entstehen können und die extraterrestrischen Verbindungen ein Eindringen in die Atmosphäre der Erde samt Aufschlag überleben können. (vgl. S.19f)
  5. Für das Zusammenwirken verschiedener chemischer Verbindungen in Richtung Ermöglichung von noch komplexeren biogenen chemischen Verbindungen geht Duve von folgenden Annahmen aus: (i) Aminosäuren sind die auffälligsten (‚conspicuous‘) chemischen Verbindungen der abiotischen Chemie auf der Erde wie auch im interstellaren Raum; (ii) Aminosäuren sind die Bausteine von Proteinen; (iii) Proteine sind zentrale Faktoren in biologischen Strukturen, insbesondere funktionieren Proteine in heutigen biologischen Strukturen als ‚Enzyme‘, durch die wichtige chemische Reaktionen stattfinden; (iv) nach Cricks Hypothese von 1957 fließt ‚Information‘ [Anmk: Begriff hier nicht erklärt, aber im nächsten Abschnitt] immer von den Nukleinsäuren zu den Proteinen, niemals umgekehrt. Letztere Hypothese wurde von Czech und Altmann dahingehend unterstützt, als diese Wissenschaftler herausfanden, dass Nukleinsäuren (’nucleic acids‘) in Form von Ribonucleinsäuren (RNA) katalytische Eigenschaften besitzen und es eben die RNA ist, die in heutigen biologischen Strukturen sowohl die Informationen zur Konstruktion von Proteinen besitzt wie auch katalytische Eigenschaften, um solche Prozesse in Gang zu setzen. Die Hypothese von der ‚RNA-Welt‘ war geboren, die der Proteinwelt vorausgeht. (vgl.SS.20-22)
  6. Ein RNA-Molekül besteht aus vielen (tausenden) Elementen genannt ‚Nukleotide‘, die jeweils aus einer Strukturkomponente und einer Informationskomponente bestehen. Eine Informationskomponente ist ein ein 4-elementiges Wort über dem Alphabet {A,G,C,U}(‚Adenin, Guanin, Cyatin, Uracil‘). Nach Duve ist es bislang nicht klar, wie es unter den Bedingungen der frühen Erde zur Ausbildung von RNA-Molekülen kommen konnte.(vgl.S.22f)
  7. [Anmerkung: Die Anzahl möglicher RNA-Moleküle ist rein theoretisch immens groß. Schon bei einer Länge von nur 100 Nukleotiden gibt es 1.6*10^60 viele mögliche Ausprägungen. Bei einer Länge von 1000, also 4^1000, versagt schon ein Standardrechenprogramm auf einem Standardcomputer, um die Zahl auszurechnen. ‚Reale RNA-Moleküle‘ – nennen wir sie RNA+ — bilden nur eine kleine Teilmenge aus der Menge der theoretisch möglichen RNA-Moleküle – also RNA+ subset RNA –. Die RNA+ repräsentieren diejenige Menge, die unter den realen Bedingungen der Erde chemisch möglich sind und die einen ‚Mehrwert‘ liefern. ]
  8. Von ‚hinten her‘ betrachtet ist klar, dass es einen Weg von den einfachen chemischen Verbindungen zu den komplexen biologischen Strukturen geben musste. Vom heute bekannten chemischen Mechanismus her ist ferner klar, dass es ein Weg von vielen kleinen Schritten gewesen sein musste, der immer nur von dem ausgehen konnte, was zu einem bestimmten Zeitpunkt gerade erreicht worden war. Nach Duve sollte man den Weg der chemischen Evolution anhand der Rolle der Enzyme untersuchen. Denn Enzyme sind für fast alle chemischen Reaktionen wichtig. Wenn es aber keine Proteine waren, die diese katalytische (= enzymatische) Rolle spielten [, da diese ja erst durch die RNA-Moleküle gezielt produziert wurden?], welche chemischen Verbindungen waren es dann? (vgl. SS.24-26)
  9. Elemente, die ‚katalytisch‘ wirken, beschreibt Duve als solche, durch deren Präsenz andere Moleküle miteinander reagieren und sich verbinden können, ohne dass die katalytischen Elemente selbst dabei ‚konsumiert‘ würden. Die katalytischen Elemente können daher beliebig oft ihre Wirkung entfalten. Zusätzlich bewirken katalytische Elemente in der Regel eine ‚Beschleunigung‘ des Prozesses und sie tragen dazu bei, dass sich die ‚Ausbeute‘ (‚yield‘) erhöht. (vgl. S.26f)
  10. Duve zitiert dann unterschiedliche theoretische Ansätze, mit welchen chemischen Stoffen sich katalytische Wirkungen erzielten lassen können sollten. Bislang konnte aber keiner der vielen Ansätze wirklich überzeugen.(vgl. S.28f)
  11. Besonders erwähnt werden ‚Peptide‘; dies sind Ketten von aneinandergereihten Aminosäuren. Die Übergänge zwischen Peptiden, Polypeptiden und Proteinen sind fließend. Aminosäuren, aus denen Peptide (und Proteine) bestehen, gehörten – nach Annahme – zu den ersten organischen Verbindungen der frühen Erde. Und erste Entdeckungen von möglichen Verbindungsarten (‚bonds‘), die aus Aminosäuren erste einfache ‚Ketten‘ machen können, wurden in den 1950iger Jahren gemeldet.(vgl.S.29f)
  12. Eine besondere Rolle scheinen nach Duve hier Verbindungen der Art ‚Esther‘ und ‚Thioesther‘ zu spielen. Nicht nur, dass diese in der heute bekannten Welt eine Schlüsselrolle spielen, sondern die Thioester entstehen aus dem Gas ‚Schwefelwasserstoff‘ (H_2S), das auf der frühen Erde überall vorhanden war. Allerdings gilt für diese Verbindungen, dass ihre Synthese die Verfügbarkeit von Kondensierungsprozessen voraussetzen, die ‚Energie‘ benötigen, um Sauerstoffatome herauszulösen. Die Machbarkeit dieser Synthesen unter Bedingungen, die der frühen Erde zu gleichen scheinen, wurde 1993 von Miller und Schlesinger demonstriert. (vgl.S.30-32)
  13. Aus all diesen verschiedenen Teilerkenntnissen bildet Duve seine persönliche Arbeitshypothese, dass relativ kurze und nicht zu geordnete Ketten von Aminosäuren entstehen konnten, die Duve dann ‚Multimere‘ nennt, ‚kürzer‘ als ‚Polymere‘, aber mehr als ‚Oligomere‘. Allerdings war eine solche Entstehung nur dann möglich, wenn genügend ‚Energie‘ zur Verfügung stand, diese Komplexifikationsprozesse zu unterstützen. Grundsätzlich gab es in und auf der frühen Erde genügend Energie. (vgl. S.32-34)
  14. Im Kern ist gefordert, Mechanismen zu finden, durch die Elektronen ihre Energieniveaus ändern, entweder mittels Energie ihr ‚Niveau‘ erhöhen oder vermindern. Dies kann verbunden sein mit einem ‚Transfer‘ von einem Ort, dem ‚Elektronen-Spender (‚donor‘)(mit höherem Energielevel), zum ‚Elektronen-Empfänger (‚acceptor‘)(niedrigerer Energielevel). Sowohl der Spender wie der Empfänger ändern dadurch ihre chemische Natur. Der Verlust von Elektronen wird auch ‚Oxidation‘ genannt, der Gewinn ‚Reduktion‘. Duve berichtet von zwei solcher Mechanismen: einer, der mit UV-Strahlen und Eisenionen in Oberflächenwasser funktioniert, ein anderer, der an das Vorhandensein von Schwefelwasserstoff gebunden ist, was in den dunklen Tiefen der Weltmeere gegeben war. Mit diesen Überlegungen wurde die Möglichkeit der Verfügbarkeit von Elektronen sichtbar gemacht; wie steht es aber mit der ‚Synthese‘, dem Herstellen von ‚Verbindungen‘ (‚bonds‘) zwischen Elementen? (vgl. SS.35-39)
  15. Überlegungen zum ATP-Molekül und seinen diversen Vorstufen (AMP –> ADP –> ATP) führen zur Klärung von zwei möglichen Synthesemöglichkeiten: Pyrophosphate oder Thioester. (vgl. SS.39-41) Entscheidend dabei ist, dass der Elektronentransfer eingebettet ist in einen Kreislauf, der sich wiederholen kann und dass die gespendeten Elektronen direkt nutzbar sind für Synthesen. Ein zentraler Mechanismus im Kontext von gespendeten Elektronen ist nach Duve die Erzeugung (‚formation‘) von Thioester, der dann im weiteren Schritt zur Erzeugung von ATP führen kann. Thioester kommen in heutigen biologischen Systemen eine Schlüsselrolle zu. Das Problem: sie brauchen zu ihrer Entstehung selbst Energie. Bei genügender Hitze und in der Gegenwart von Säure kann Thiol sich allerdings spontan zu Thioester verbinden. Die zahlreichen heißen Quellen in der Tiefsee bieten solche Bedingungen. Alternativ können solche Prozesse aber auch in der Atmosphäre ablaufen oder, ganz anders, im Wasser, mit Unterstützung von UV-Licht und Eisen-(III) (= ‚ferric iron‘) bzw. Eisen-(II) (=ferrous iron‘), wodurch sich Thioester-Verbindungen erzeugen lassen. Duve sagt ausdrücklich, dass es sich hier um Arbeitshypothesen aufgrund der ihm verfügbaren Evidenzen handelt. (vgl. SS.41-45)
  16. [Anmerkung: Die Vielfalt und Tiefe der Details im Text von Duve, die in dieser Zusammenfassung stark abgemildert wurden, sollte nicht vergessen lassen, dass es bei all diesen Untersuchungen letztlich um einige wenige Hauptthemen geht. Grundsätzlich geht es um die Frage, wie überhaupt Mechanismen denkbar sind, die scheinbar gegen die Entropie arbeiten. Und letztlich wird sichtbar, dass es die zur Zeit im Universum noch frei verfügbare Energie ist, die das Freisetzen von Elektronen auf einem höheren Energieniveau ermöglichen, wodurch andere Prozesse (katalytisch) ermöglicht werden, die zu neuen Bindungen führen. Und es sind genau diese neuen Verbindungen, durch die sich ‚Information‘ in neuer Weise bilden kann, eine Art ‚prozeßgesteuerte Information‘. Dass diese prozeßgesteuerte Information in Form von Peptiden, dann RNAs und DNAs schließlich fähig ist, immer komplexere chemische Prozesse selbst zu steuern, Prozesse, in denen u.a. dann Proteine entstehen können, die immer komplexere materielle Strukturen bilden mit mehr Informationen und mit mehr Energieverbrauch, das ist aus der puren chemischen Kombinatorik, aus den primären physikalischen Eigenschaften der beteiligten Komponenten nicht direkt ablesbar.
  17. Dies zeigt sich eigentlich erst auf einer ‚Metaebene‘ zur primären Struktur, im Lichte von Abstraktionen unter Benutzung symbolischer Strukturen (Theorien), im Raum des ‚bewussten Denkens‘, das selbst in seinem Format ein Produkt dieses biologischen Informationsgeschehens ist. Die schiere Größe des mathematischen kombinatorischen Raumes der Möglichkeiten, wie die beteiligen Materialien sich formieren können, zeigt die absolute Unsinnigkeit, dieses komplexe Geschehen vollständig dem ‚reinen Zufall‘ zuzuschreiben. Aus der denkerischen Unmöglichkeit einer bloß zufallsgesteuerten Entstehung von Leben folgt zwingend, dass die zufälligen Generatoren eingebettet sein müssen in einen Kontext von ‚Präferenzen‘, die sich aus dem gesamten Kontext (Energie –> Materie –> Sterne, Planeten… –> Planet Erde –> physikalisch-chemische Eigenschaften …) herleiten. Die Entstehung bestimmter chemischer Verbindungen ist eben nicht beliebig sondern folgt den physikalischen Eigenschaften der beteiligten Komponenten. Determinismus kombiniert mit freier Kombinatorik ist ein Medium von Emergenz, in dem sich offensichtlich Schritt für Schritt all das zeigt, was in der ‚Vorgabe‘ der beteiligten materiellen Strukturen ‚angelegt‘ ist.
  18. Legt man die aus der Vergangenheit bekannten Deutungen von ‚Materie‘ und ‚Geist‘ als ‚zeitgebunden‘ und heute irreführend beiseite, dann zeigt sich das atemberaubende Bild einer graduellen, inkrementellen ‚Sichtbarwerdung‘ von ’neuem Geist‘ als der ‚inneren Form der Materie‘ sprich der ‚inneren Form der Energie‘. Alle mir bekannten ‚Bilder‘ und ‚Sprechweisen‘ von ‚Geist‘ und ‚Seele‘ aus der Vergangenheit sind, verglichen mit dem Bild, das sich uns heute mehr und mehr bietet geradezu armselig und primitiv. Warum tun wir uns dies an? Literatur, Musik, bildende Künste usw. sind Ausformung von ‚Geist‘, ja, aber eben von einem universalen kosmischen Geist, der alles bis in die allerletzten Winkel der Atome und atomaren Partikel durchdringt, und der die ‚künstliche Abschottung‘ der sogenannten ‚Geisteswissenschaften‘ von den ‚Naturwissenschaften in keiner Weise mehr gerechtfertigt erscheinen lässt.]
  19. Duve lässt keinen Zweifel an dem hochspekulativen Charakter seiner Überlegungen zu den Vorstufen einer möglichen RNA-Welt. Die verschiedenen Überlegungen, die er vorstellt, klingen nichtsdestoweniger interessant und lassen mögliche Mechanismen erkennen. Klar ist auf jeden Fall, dass mit dem Auftreten ‚informationsrelevanter‘ RNA-Moleküle das Zeitalter der ‚chemischen Evolution‘ – ohne erkennbare autonom wirkender Informationsstrukturen – zu Ende geht und mit dem Auftreten von RNA-Molekülen das Zeitalter der ‚biologischen Evolution‘ beginnt. Leitprinzip in allem Geschehen ist die Einhaltung der physikalisch-chemischen Gesetze und der Aufbau des Komplexeren aus einfacheren Vorstufen. (vgl. SS.46-51)


  20. Fortsetzung Teil 3

 

Für einen Überblick über alle bisherigen Einträge nach Titeln siehe HIER

Der Ursprung und die Evolution des Lebens auf der Erde. Leben als ein kosmischer Imperativ. Reflexionen zum Buch von Christian de Duve. Teil 1

Christian de Duve, VITAL DUST. Life as a Cosmic Imperative, New York: Basic Books, 1995

Beginn: 14.Okt.2012, 11:10h

Letzte Änderung: 20.Okt.2012, 11:30h

  1. Ich bin auf das Buch von Christian de Duve aufmerksam geworden durch das Buch von Paul Davies.
  2. Christian de Duve bekam 1974 zusammen mit Albert Claude und George Palade den Nobelpreis in Physiologie in seiner Eigenschaft als Zytologe und Biochemiker für die Erkenntnisse zur Struktur und Funktion der Zelle (eine Biographie findet sich auf der Seite der Nobelpreisverleihung.
  3. Man muss sich immer wieder fragen, warum man sich die Zeit nimmt, Bücher zu lesen, deren Inhalt zwangsläufig weniger ‚aktuell‘ ist als die entsprechenden Artikel in den einschlägigen wissenschaftlichen Zeitschriften (‚journals‘). Meine Erfahrung ist aber die, dass die Zeitschriftenartikel immer sehr punktuell sind, wenig Kontext sichtbar machen, und daher das Verständnis eines größeren Zusammenhangs nur bei Lektüre von vielen hundert Artikeln möglich ist (abgesehen davon, dass der heutige Zwang zur Spezialisierung und der übermäßige Druck zum Publizieren wenig geeignet ist, Qualität zu unterstützen. Dazu kommen immer mehr ‚Zitierkartelle‘, durch die bestimmte Arbeitsgruppen versuchen, sich im ‚Haifischbecken‘ der internationalen Anerkennung ‚Gehör‘ zu verschaffen. Weiterhin gibt es den rein statistischen Impactfacor im Verein mit ‚wissenschaftspolitisch orientierten‘ Redaktionen). Die Bücher von Wissenschaftlern mit Rang (wie Davies, Duve, Heisenberg, Schrödinger usw.) enthalten in der Regel einen ‚Metatext‘, implizite ‚Kontexte‘, die die vielen Details in einen Zusammenhang stellen, der es allererst erlaubt, die vielen Details zu gewichten. Sie ersetzen die Lektüre aktueller Artikel nicht, aber sie bilden nach meinem Verständnis einen notwendigen Interpretationskontext, ohne den alles eher ‚unkoordiniert‘, ‚wirr‘ erscheint.
  4. Wie so viele andere beginnt Duve sein Buch in der Vorrede mit der bezeichnenden Feststellung, dass er über das Thema nur schreiben kann, indem er seine Fachgrenzen übersteigt. Niemand habe heute mehr das umfassende Wissen das notwendig sei. Dennoch können wir über unsere Stellung im Kosmos nur Klarheit gewinnen, wenn wir den Gesamtzusammenhang in den Blick nehmen. Und das Leben – einschließlich unserer selbst –, das wir verstehen wollen, gehört zum Komplexesten, was das Universum bisher hervorgebracht hat (vgl. S.xiii).
  5. Er beklagt, dass der normale Wissenschaftsbetrieb für solche umfassenden Betrachtungen nicht ausgelegt ist. Das Alltagsgeschäft und die zunehmende Spezialisierung liegen konträr zur Forderung einer integrativen Gesamtsicht (vgl. S.xiii.f).
  6. Am Ende seines Buches ‚Blueprint for a Cell‘ (1991) war er schon zu der Einsicht gekommen, dass das Leben sich ‚obligatorisch‘ aus den Eigenschaften der Materie ergeben haben muss, eine Einsicht, die weitere Fragen mit sich bringt. (vgl. S.xiv)
  7. In all seinen Untersuchungen geht er davon aus, dass die Phänomene des Lebens sich als ‚rein natürlicher Prozess‘ erklären lassen, durch Bezug auf jene empirischen Gesetze, die auch in den anderen naturwissenschaftlichen Gebieten gelten.(vgl. S.xiv)
  8. Ausgestattet mit diesen Prämissen meint Duve in dem Prozess des Kosmos eine Zunahme von ‚Komplexität‘ zu erkennen, die er in sieben Stufen anordnet: Beginnend mit deterministischen chemischen Prozessen (vor ca. 4 Mrd. Jahren), sieht er in den Wechselwirkungen der chemischen Bestandteil ‚Informationen‚ am Werke, die steuernd wirken; es bilden sich komplexe Protozellen als Vorläufer von Zellen; dann Einzelzellen, die sich unterschiedliche Protozellen als Bestandteile einverleiben. In diesen Zusammenhang gehört auch die ‚Erfindung‘ der Photosynthese, die es erlaubt, Sauerstoff abzuspalten und damit zur Bildung einer Sauerstoffatmosphäre führte. Multizelluläre Organismen besiedeln das Land; erst Pflanzen, dann auch Tiere. Die Fortpflanzungstechniken (Sexualität) passen sich den neuen Verhältnissen an. Bei den Pflanzen von Sporen zu Samen zu Blüten zu Früchten. Bei den Tieren von einer Entwicklung im Wasser zu Kopulation, zu Eiern im Wasser, dann auf dem Land, dann im Bauch. Schließlich bilden sich immer komplexere Netzwerke von neuronalen Zellen, die als Gehirn (‚brain‘), die Grundlage für ein neues Phänomen, den Geist (‚mind‘) bilden. Dies führt zu einer extremen Beschleunigung bei der Entwicklung des Menschen. (vgl. S.xvi-xvii)
  9. Für Duve ist es wichtig, festzustellen, dass das Phänomen des Geistes eine natürliche Manifestation der Materie ist, kein ‚Witz‘ (‚joke‘).(vgl.S.xviii)
  10. [ANMERKUNG: Es ist nicht üblich, in einem Vorwort mehodologische Aspekte zu diskutieren. Da wir hier die Thematik aber aus philosophischer Sicht behandeln, soll hier angemerkt werden, dass die primäre Untersuchungsperspektive die der Naturwissenschaften sein soll. Nimmt man dies an, dann fallen zwei Begriffe auf ‚Komplexität‘ und ‚Geist‘.
  11. ‚Komplexität‘ ist ein theoretischer Begriff, der nicht nur einen bestimmten ‚Theorierahmen‘ voraussetzt, sondern dessen Bedeutungsbereich selbst schon theoretische Begriffe sein müssen, die bestimmten theoretischen Anforderungen entsprechen. Es ist im weiteren Verlauf darauf zu achten, wie Duve mit diesem Begriff umgeht.
  12. ‚Geist‘ ist – nach normalem Sprachgebrauch – kein Begriff aus dem Bereich der Naturwissenschaften. Der Begriff ‚Geist‘ hat eine vielschichte ‚Begriffsgeschichte‘. In den meisten Fällen verbindet man den Begriff ‚Geist‘ mit Eigenschaften von ‚Menschen‘, deren ‚Verhalten‘ man ‚Eigenschaften‘ zuschreibt, die man mit ‚Geist‘ verknüpft. Die Verwendungsweise dieses Begriffs ist aber alles andere als klar. Selbst in der modernen Philosophie gibt es hier keine einheitliche Position. Man darf also gespannt sein, wie Duve diesen Begriff in seinem Buch verwenden wird.
  13. Ferner fällt auf, dass Duve die ‚kosmologische Vorgeschichte‘ in seiner Komplexitätshierarchie ausklammert. Diese wird heute in der neueren Astrobiologie sehr intensiv behandelt. Aus diesen Untersuchungen wissen wir, dass die Vorgeschichte ‚wesentlich‘ ist für die Rahmenbedingungen, unter denen Leben auf der Erde entstehen konnte. Man wird also prüfen müssen, inwieweit sich diese Ausklammerung auf die Ausführungen Duves merklich auswirken.]
  14. In der Einleitung wiederholt Duve die These, dass das Phänomen ‚Leben‘ auf der Erde das außergewöhnlichste Ereignis (‚most extraordinary adventure‘) im bekannten Universum ist und er wiederholt, dass man in dieser Geschichte des Lebens eine Reihe von ‚Innovationen‘ erkennen kann, die sich durch einen jeweiligen Anstieg an ‚Komplexität‘ auszeichnen. Und zur Beschreibung all dieser Phänomene genügen die Gesetze der ‚Physik‘ und ‚Chemie‘. (vgl.S.1)
  15. [ANMERKUNG: Neben den schon getätigten Anmerkungen oben sollte man sich im Hinterkopf behalten, dass der Physiker Paul Davies bzgl. der ‚Beschreibungskraft‘ der Physik eher kritisch daher kommt. Natürlich bleibt uns kaum eine Alternative zum Ansatz einer experimentellen Naturwissenschaft, aber es kann sein – was Davies ausdrückt – dass eine bestimmte Disziplin zu einem bestimmten Zeitpunkt selbst noch zu wenig Erkenntnisse verfügbar hat, um ein ‚komplexes‘ Phänomen adäquat beschreiben zu können. Dies sind die interessanten Grenzfälle, die die Chance bieten, vorhandene Schwachstellen in der Erkenntnis zu identifizieren und evtl. zu verbessern. Um solche Schwachstellen zu erkennen, muss man die methodischen Voraussetzungen immer sehr klar auf den Tisch legen und sich ihrer allzeit bewusst sein. Ob ein Chemiker sich der Grenzen der Physik allzeit voll bewusst ist, darf man zunächst einmal methodisch anzweifeln. Von daher ist es gut, die Worte von Paul Davies nicht zu vergessen.]
  16. Duve beginnt mit der weiteren These, dass das Phänomen des Lebens ‚eins‘ sei, da es aus dem gleichen ‚Material‘ bestehe, da es sich nach den gleichen ‚Prinzipien‘ gebildet habe, und da es – nach allen bisherigen Untersuchungen – auf die gleichen gemeinsamen ‚Vorstrukturen‘ zurückverweisen. (vgl. S.1)
  17. Mit ‚Material‘ meint er ‚Proteine‘ und ‚Nukleinsäuren‘ (’nucleic acids‘). Protein sind Sequenzen von – standardmäßig 20 (in Ausnahmen auch 22) verschiedenen — Aminosäuren, so dass man Proteine auch als ‚Worte‘ über dem Alphabet der Aminosäuren bezeichnet. Die vergleichenden Analysen von Proteinen und Nukleinsäuren haben bislang eine so hohe ‚Ähnlichkeit‘ zwischen allen bekannten Lebewesen gezeigt, dass eine rein ‚zufällige‘ Bildung auszuschließen sei, eine Ähnlichkeit, die zudem jeweils auf gemeinsame Vorstufen verweise. Daraus ergibt sich die weitere Frage, wann und wie es zu den ‚ersten‘ Strukturen kam, die wir als ‚Leben‘ bezeichnen?(vgl. S.1f)
  18. [ANMERKUNG: Bezeichnet man das Alphabet der Aminosäuren, die zum Einsatz kommen mit ‚A‘ und gibt man die Anzahl der Elemente des Alphabets an mit 20 (22), dann kann man schreiben |A| = 20 (22). Die Menge aller ‚Worte‘ (= Sequenzen) über dem Alphabet bezeichnet man normalerweise mit ‚A*‘. Ein einzelnes Protein p aus der Menge aller Proteine P ist dann ein Element aus dieser Menge, also ‚p in A*‘ bzw. ‚P subset A*‘. Die tatsächlich vorkommende Menge der Proteine sei ‚P+ subset P‘. Für die Menge aller theoretisch möglichen Proteine P gilt |P| = 20^L (bzw. 22^L) mit ‚L‘ als Länge eines Proteins. Also bei L=2 gibt es theoretisch schon 22^2 = 484 verschiedene Proteine. Bei 22^8 = 54.875.873.536, usw. Umso größer die Zahl der theoretischen Möglichkeiten wird, umso geringer wird die Wahrscheinlichkeit für ein bestimmtes Protein, vorzukommen, nämlich ‚1/20^L‘.
  19. Auch sollte man beachten, dass das ‚Material‘ der Proteine und Nukleinsäure nur einen kleinen Ausschnitt aus dem darstellt, was die Physik heute als ‚Materie‘ bezeichnen würde. Der heutige Materiebegriff ist grundsätzlich verschieden von dem Materiebegriff der vorausgehenden Jahrhunderte und allemal der vorausgehenden Jahrtausende. Fast alle philosophischen Aussagen, die irgendwie Bezug nehmen auf den Begriff ‚Geist‘ im Unterschied zu ‚Materie‘ sind aus heutiger Sicht von daher stark ‚wertlos‘ geworden, da sie Voraussetzungen implizieren, die so einfach nicht mehr stimmen. In vielen Diskussionen — insbesondere auch theologischen — wird dies kaum bis garnicht beachtet.
  20. Die Angaben zu den konkreten Details der Gemeinsamkeiten zwischen den verschiedenen ‚Lebensmaterialien‘ sind an dieser Stelle noch sehr vage. Man sollte dies im Blick behalten.]
  21. Fragt man sich, wie man über die vorausgehende Geschichte der Lebensformen etwas wissen kann, so verweist Duve auf speziell zwei Quellen: Fossilien, die bis zu 600 Mio Jahren zurückreichen sollen und die genetischen Informationen der lebenden Zellen. (vgl. S.2f) Allerdings gibt es noch spezielle Fossilien von Bakterien und den Zellkörpern von Bakterien, die sich in Ablagerungen bis zu 3.5 Mrd Jahre zurück datieren lassen.(vgl. S.4f)
  22. Im Falle lebender Zellen herrscht die Annahme, dass sich Unterschiede im Laufe der Zeit aufgrund von Mutationen gebildet haben können. Je mehr sich unterschiedliche Codes unterscheiden, um so weiter liegen sie zeitlich (man muss dafür die Veränderungsgeschwindigkeit nach Anzahl von Generationen pro Zeiteinheit ermitteln) auseinander. Nach dieser Logik kann man auf der Zeitachse ‚zurückschauen‘ und die sich immer ähnlicher werdenden Vorfahren (‚ancestors‘) identifizieren. Bei diesem Verfahren muss man nicht das gesamte Genom vergleichen, sondern es hilft oft schon nur ein bestimmte Protein zu nehmen, das eine wichtige Funktion ausübt. (vgl. S.3f)
  23. Bei der Frage nach dem Ursprung des Lebens – auf der Erde oder von außerhalb der Erde – sieht Duve momentan keine überzeugenden Argumente für eine eindeutige Entscheidung in Richtung von ‚außerhalb‘ der Erde. Zumal im letzteren Fall die Frage nach der genauen Entstehung weiter im Dunkel verbliebe. Optiert man für den Entstehungsort Erde, dann bleiben ca. 200 Mio Jahre Zeit für solch einen Prozeß auf einer in dieser Phase eher lebensfeindlichen Erde.(vgl. S.6f) [Anmerkung: Eine Klärung der Frage einer möglichen Entstehung auf der Erde ist ja zugleich auch ein Beitrag zur Grundsatzfrage, wie die erste Zelle entstehen konnte (auch wenn bei einer Entstehung auf einem anderen Planeten durch unterschiedliche Randbedingungen Details im Zellaufbau evtl. anders sein würden)].
  24. Dennoch verbleibt die Frage, ob es wissenschaftlich Sinn macht, die Frage nach der Entstehung des Lebens tatsächlich zu stellen? Was, wenn – wie nicht wenige annehmen – die Entstehung des Lebens auf einer Reihe von absolut zufälligen Ereignissen beruht, die sich als solche nicht reproduzieren lassen? (vgl. S.7f)
  25. Dem hält Duve entgegen, dass die schon heute bekannten molekular-biologischen chemischen Mechanismen von Zellen und deren Bestandteile dermaßen komplex und hochorganisiert sind, dass rein logisch ein rein zufälliges Geschehen ausscheidet. Vielmehr sprechen alle Tatsachen dafür, dass es die Struktur der Materie selbst ist, die gewissen Entwicklungstendenzen als hochwahrscheinlich erscheinen lässt, also in dem Sinne, dass die Materie ‚von Leben geschwängert‘ ist (‚pregnant with life‘). Mit dieser Voraussetzung kann Leben quasi ‚überall‘ entstanden sein und wird auch entstehen, wenn gewissen Bedingungen gegeben sein. (vgl. S.6-7)
  26. Dieses ‚Schwanger sein von Leben‘ ist nicht zu verwechseln mit einem ‚Plan‘, oder einem expliziten ‚Design‘. Es realisiert sich vielmehr schrittweise, über viele Zwischenstationen, in denen zu keinem Zeitpunkt der aktuelle Prozess ‚weiß‘, was noch kommen soll. Der aktuelle Prozess lebt im ‚Augenblick‘ und es passiert nur das, was nach den herrschenden Gesetzen zu diesem Zeitpunkt möglich ist. (vgl. S.9f)

Zur Fortsetzung siehe TEIL 2.

Eine Übersicht über alle bisherigen Blogeinträg nach Themen findet sich HIER.

NACHTGESPRÄCH im INM (Frankfurt) oder REENGINEERING VON GOETHES FAUST

  1. Heute vor 20 Jahren begannen zwei junge Wissenschaftler ihre Arbeit in einem 1992 weltweit bekannten Institut, dem Institut für Neue Medien, damals Teil der Städelschule, der Hochschule für Bildende Künste in Frankfurt ( auf ihrer Webseite http://www.staedelschule.de/ zeigt sich die Städelschule heute bar jeder Geschichte, völlig aseptisch, meinungslos…). Die beiden hießen Dr. Michael Klein (Physiker) und Dr. Gerd Doeben-Henisch (Philosoph, Theologe, Wissenschaftstheoretiker).
  2. In einem bunten Haufen von Künstlern und unterstützenden Technikern entstanden in der Zeit 1989 – 1994 am INM viele bahnbrechende interaktive Kunstwerke, die über berühmte Ausstellungen schließlich ihren Weg in die Museen der Welt fanden. Zehn der damals aktiven Künstler endeten als ProfessorenInnen (meist an Kunsthochschulen).
  3. Das Medium des Computers (zu der Zeit die sehr seltenen, weil sehr teuren, Silicon Graphics Computer) (und eine üppige finanzielle Ausstattung) lies die Künstler-Techniker-Wissenschaftler Teams den Raum der interaktiven Bilder und Töne und Handlungen kreativ erforschen. Vieles, was heute als selbstverständlich erscheint (z.B. das Morphing von Bildern, Interaktion von Tönen/ Geräuschen mit Bildern, spezielle Interface) wurde im INM erstmalig erforscht und neuartig ausprobiert. Reale Pflanzen wurden zu Schnittstellen zu interaktiven Pflanzen-Bild-Grafiken; Atmung wurde als Steuerungsparameter für großflächige bewegte Grafiken genutzt; Gehirnströme dienten der Steuerung von Scharen kleiner Roboter; der Zugang zu einer Ausstellung wurde durch Steuerpulte ersetzt; drei-dimensionale Klangräume steuerbar über eine bewegliche Bühne; und, und, und….
  4. Als das Institut der Städelschule wegen Kürzung der Zuschüsse geschlossen werden musste (Okt.1994), wurde es am gleichen Tag von den beiden Wissenschaftlern, unterstützt von der Stadt Frankfurt und der Kulturstiftung der Deutschen Bank, neu gegründet, als INM e.V.. Mit Unterstützung der ars electronica (Linz, Österreich) konnte dann u.a. das Großprojekt ‚Blind’s World I‘ (Doeben-Henisch und Team) realisiert werden.
  5. Es folgte eine bewegte Zeit mit vielen Aufs und Abs. Aus dem INM e.V. gingen allein 5 Startups hervor, die aber alle mit dem Platzen der sogenannten ‚Internetblase‘ mit in den Strudel von Insolvenzen gerissen wurden (Im Falle der Knowbotic Systems GmbH mussten die Geschäftsführer die Insolvenz zwei Tage nach dem Gewinn des ersten Preises der Stadt Frankfurt für die beste Gründung bekannt geben… welch Ironie). Allein diese Gründungsphase wäre ein eigener Roman wert.
  6. Dies und vieles mehr kam am Abend des 9.Oktobers 2012 im Rahmen der Veranstaltung ‚unplugged heads 2.0‘ des INM e.V. zur Sprache. Michael Klein zeigte eine Auswahl aus den vielen spannenden Videofilmen dieser Zeit; Gerd und Michael kommentierten.
  7. Es entwickelte sich dann ein intensives Gespräch mit allen über Kunst, Videokunst, Computerkunst, Kommerz, institutionelle Zwänge, neue Bewegungen, Lehren aus der Vergangenheit…bis sich Gerd Doeben-Henisch mit zwei der Besucher in Fortspinnung des ars electronica Experimentes The Blinds World I in das Thema des lernenden künstlichen ‚Geistes‘ verbiss.
  8. In einem gedanklichen ‚cross over‘ von Computerspielen, künstlicher Intelligenz,Kognitionswissenschaft, Entwicklungspsychologie, Linguistik, Netzcommunity entstand dann im Gespräch die Vision eines künstlerisch-wissenschaftlichen experimentellen Universum von künstlichen Strukturen, die immer mehr ‚geist-ähnliche‘ Eigenschaften in sich versammeln, in einem web- und real-öffentlichem Raum, bei dem alle zuschauen können, wo viele mit-experimentieren können. In Interaktion mit einem künstlichen Raum und realen Menschen entsteht ein künstlicher Geist, der aber nicht an die Spielregeln eines realen Körpers gebunden ist. Wie wird dieser künstliche Geist Musik machen, Bilder malen, Tanzen, Mathematik machen, sprechen? Wie werden wir uns ändern, wenn wir einem künstlichen Geist gegenüberstehen, der ‚anders‘ ist/ sein kann?
  9. In der Stadt Goethes, in Frankfurt, kann dies nur bedeuten, dass wir zum ‚Reengineering von Goethes Faust‘ aufrufen. ‚Faust III‘ wird sich ganz anders lesen als ‚Faust I/II‘. Sicher wird es irgendwann dann auch einen ‚Faust IV‘ geben. Wir denken erst mal an ‚Faust III‘. Zum 25.jährigen Jubiläum des INM im Jahr 2014 wäre dies ein gutes Thema: Im künstlerischen Gewandte versucht die Wissenschaft den Pseudo-Mythos von der Notwendigkeit des Teufels zur Wissensanreicherung als literarisches Verwirrspiel zu entlarven, und dies in einer vollständigen öffentlichen Inszenierung, mit einem ‚realen künstlichen‘ Geist.

Der Vortrag am 16.Nov.2012 in München liefert einige Argumente, warum das Experiment mit dem künstlichen Geist sehr wohl Sinn macht. Das ‚Schlimmste‘, was passieren kann, ist ja nur, dass wir u.U. besser verstehen, was wir noch übersehen haben. Das aber wäre im Sinne der Forschung ein sehr gutes Ergebnis. Bekanntlich kann man nur durch Fehler wirklich lernen! Fehlerfreiheit bestätigt immer nur den letzten Stand der aktuellen Un-Wahrheit…

 

LITERATURNACHWEISE

G.Döben-Henisch,The BLIND’s WORLD I. Ein philosopisches Experiment auf dem Weg zum digitalen Bewußtsein, In: K.Gerbel/ P.Weibel (eds.), Mythos Information. Welcome to the wired world. @rs electronica 95, Springer-Verlag, Wien, pp.227-244, 1995. Online at THE BLIND’s WORLD I (only German, without the English translation, without the fancy figures.

 

Einen Überblick über alle bisherigen Beiträge findet sich HIER.

IN EIGENER SACHE – PROVIDERWECHSEL

(1) Wie vielleicht einige bemerkt haben, hat der Blog seit kurzem ein anderes Aussehen. Dies ist nur das äußere Anzeichen dafür, dass ich den Provider wechseln musste.
(2) Mein bisheriger Provider (1und1) sah sich außerstande, mein WordPress Blog zu aktualisieren. Zum Glück fand ich einen neuen Provider (InternetWerk), der WordPress voll unterstützt.
(3) Der Umzug gelang weitgehend ohne große Probleme. Der letzte Artikel kam dabei kurzzeitig unter die Räder; konnte aber wieder rekonstruiert werden.
(4) Da bei 1und1 der Zugriff auf die WordPress Quellen samt Datenbank nicht gegeben war gingen beim Umzug alle registrierten Benutzer verloren (mehr als 550). Das ist sehr schade. Vielleicht findet der eine oder die andere nochmals Zeit, sich neu zu registrieren.
(5) Bei dieser Gelegenheit möchte ich auch sagen, dass ich mich über Vorschläge. Rückmeldungen, Kommentare usw. immer freue. Wegen dem leidigen Spam-Problem muss ich leider auf Registrierung eines Beitrags mit Zustimmung durch den Redakteur bestehen. Pro Woche gibt es mindestens 1-2 Spamversuche (trotz Kontrolle). Würde ich das freigeben, würde es explodieren. Ich hätte zu wenig Zeit, um dies alles zu verfolgen.

Nachtrag: Stelle gerade fest, dass bei dem Wechsel auch alle Schaubilder verschwunden sind. Das ist sehr misslich. Werde versuchen, sie nach und nach wieder einzubauen.

 

Einen Überblick über alle bisherigen Beiträge findet sich HIER.

DIE UNBEGREIFBARKEIT DES MENSCHEN oder DAS GEHIRN ALS SPIEGEL DES UNIVERSUMS (wegen Providerwechsel war dieser Beitrag zeitweise nicht sichtbar)

  1. Wenn man sich aufmacht in die Welt der neuen Erkenntnisse zum Universum und zum Leben, dann ist man sehr bald an einem Punkt, wo die Maschinerie des Alltags ‘bizarr’ wirkt, ‘unwirklich’, wie ein Marionettentheater von ‘Wahnsinnigen’, die sich über Dinge aufregen, die dermaßen lachhaft erscheinen, dass man nicht begreifen kann, wie solch ein Verhalten möglich ist.
  2. Aber, falsche Überheblichkeit ist fehl am Platze. Wo immer wir uns als ‘Beobachter’ wähnen stecken wir zu 100% leibhaftig genau mittendrin in diesem so ‘lächerlich erscheinendem’ Spiel. Was immer wir ‘tief in uns drinnen’ zu fühlen und zu denken meinen, so wahr es uns erscheint, so bedeutsam, gegenüber der ‘Welt da draußen’, der Welt, die wir ‘real’ nennen, so wenig wird das ‘Innere’ ‘wirksam’, ‘gestalterisch mächtig’, ‘verändernd’, solange wir keinen Weg finden, unser ‘Inneres’ mit dem ‘Äußeren’ zu ‘versöhnen’.
  3. Von daher erscheint es oft einfacher, erst gar keine Erkenntnisse zu haben. Man gerät nicht in ‘Spannung’, man spürt keine ‘Differenzen’, man sieht keine Anhaltspunkte, wo man etwas tun sollte….Das Bild von den ‘glücklichen Kühen’… Doch ist auch dies – vermute ich – eine grobe Vereinfachung. Eher scheint es so zu sein, dass alle Lebensformen, selbst die einfachsten, im ‘Medium ihrer inneren Zustände’ Äquivalente von ‘Erleben’ und ‘Leiden’ haben, die wegzudiskutieren bequem ist, aber diesen Zuständen womöglich nicht gerecht wird.
  4. Wenn man aber irgendwelche Erkenntnisse hat – und die haben wir alle, wenngleich unterschiedlich –, dann führen diese unweigerlich zu ‘Spannungen’ zu dem Bisherigen. Wie geht man damit um? Empfindet man sie als ’störend’ und ‘bedrückend’, dann wird man unzufrieden, krank,…. Empfindet man sie als ‘anregend’, ‘belebend’, ‘inspirierend’, dann fühlt man sich gut….
  5. Natürlich macht es einen Unterschied, ob neue Erkenntnisse sich eher in ‘Übereinstimmung’ mit der aktuellen Situation befinden oder eher im ‘Gegensatz’. Im letzteren Fall deuten sich Konflikte an, mögliche Änderungen des Status Quo. Sind die Menschen in der Umgebung aufgeschlossen, neugierig, unternehmungslustig, ist dies kein Problem. Herrscht dagegen ‘Bewahrung’ vor, ‘Festhalten’, Angst vor Veränderung, dann können neue Erkenntnisse zum Problem werden.
  6. Die Geschichte zeigt, dass das Neue, sofern es wirtschaftliche und politische Vorteile zu bringen scheint, eher eine Chance hat, als wenn es liebgewordene Anschauungen in Religion, Politik usw. so in Frage stellt, dass herrschende Vorteilsverhältnisse gefährdet werden (eine Glühbirne, die 100 Jahre hält, will keiner; ein Medikament, das Ursachen beseitigt anstatt Leiden zu mildern, will auch keiner; usw.).
  7. Zurück zu den neuen Erkenntnissen über das Universum und das Leben. Zurück zu unserer Welt, die in ihren konkreten Abläufen so ‘verrückt’ erscheinen kann. Was machen wir dann, wenn wir uns in dieser permanenten Spannung zwischen ‘gedanklich anderer Welt’ und ‘faktisch vorfindlicher So-Welt’ vorfinden? Müssen wir verzweifeln?
  8. Wenn man sich anschaut, wie mühsam dasjenige, was wir von heute aus als ‘Leben’ erkennen können, sich aus dem Raum der Atome und Moleküle der jungen Erde im Laufe von mehr als 3.5 Mrd Jahre herausexperimentiert hat, mit unendlichem Aufwand, unter permanentem Leiden, immer im Totalverlust (Tod) endend, dann erscheint zumindest die aktuelle Situation als ein solch unglaublicher und – vergleichsweise – ‘paradiesischer’ Zustand, dass ein – wie auch immer geartetes – Lamentieren geradezu als ’schäbig’ erscheinen mag .
  9. Andererseits, wir sind – nach allem, was wir wissen – die erste Art von Lebewesen, die ein ‘Gehirn’ besitzen, das uns in die Lage versetzt, nicht nur auf primitive Weise wahrgenommene Reize (Stimuli = S) direkt und ‘festverdrahtet’ (’reaktiv’, ‘Instinktiv’) in fixierte Antworten (Reaktionen = R) zu übersetzen, sondern wir können weit mehr. Unser Gehirn kann z.B. Ereignisse verallgemeinern, in Beziehung zu anderem setzen, kann erinnern, kann relativ zu Körperzuständen ‘bewerten’, kann ‘komplexe Modelle’ von Situationen und deren mögliche Veränderungen ‘denken’…Mit anderen Worten, unser Gehirn versetzt uns in die Lage ‘in’ unserem Körper die Welt ‘da draußen’ ‘nachzubauen’, sie ‘intern zu simulieren’ und in ‘Gedankenexperimenten’ alternative ‘mögliche Welten’ zu ‘denken’. In diesem Kontext können wir auch ein ‘Modell von uns selbst’ und ‘den Anderen’ konstruieren. Es sind diese ’selbstgemachten Bilder’ in unserem Gehirn die wir für ‘real’ halten, nicht die Welt selbst; die kennt unser Gehirn gar nicht.
  10. D.h. – soweit wir wissen — passiert heute, ca. 14,7 Mrd. Jahre nach dem sogenannten ‘Big Bang’, etwas, was innerhalb des bekannten Universums ungeheuerlich ist: im Medium der biologischen Gehirne ’schaut sich das Universum selbst an’ (wobei diese Gehirne ein ‘Produkt’ dieses Universums sind als Teil des Phänomens ‘Leben’!). D.h. das Universum schafft sich gleichsam einen ‘Spiegel’, in dem es sich selbst anschauen kann. Mehr noch, über das ‘Spiegeln’ hinaus ist ein Gehirn (und noch mehr ein ‘Verbund von Gehirnen’) in der Lage, Veränderungen ‘einzuleiten’ auf der Basis der ‘Spiegelungen’. Dies führt zum Paradox, dass das Universum einerseits im Lichte der bekannten physikalischen Gesetze eine ‘bestimmte Entwicklung’ zu nehmen scheint, während es im Medium der Gehirne ’sich selbst in Frage stellen kann’. Welch ein wahnwitziger Gedanke (allerdings bilden wir individuelle Menschen uns bislang eher ein, wir seien die Meister des Universums… eine putzige Vorstellung…).
  11. Aus Sicht des einzelnen Menschen mag dies ‘unwirklich’ erscheinen, ‘artifiziell’, aber im Gesamtkontext des Lebens im Universum ist dies ein absolut herausragendes Ereignis. Während die ‘Materiewerdung’ mit den anschließenden Ausprägungen als stellare Wolken, Sterne, Galaxien sich einigermaßen mit den Gesetzen der Physik beschreiben lassen, entzieht sich die Entstehung des Lebens als Opponentin zur Entropie und durch den ‘inneren Trend’ zur Steigerung der Komplexität bislang allen physikalischen Erklärungsversuchen. Ein Teil der Komplexität ist auch die Zunahme der Kommunikation, die zu einer Koordinierung von Gehirnen, deren ‘gedanklichen Räumen’ führt.
  12. Das Erleben von ‘mehr’ Erkenntnis und einer damit einhergehenden ‘Unruhe’, ‘Spannung’ ist also kein ‘Zufall’, keine ‘Panne’, keine ‘Störung’ sondern gehört wesentlich zum Phänomen des Lebens hinzu. Indem das Leben sich alle frei verfügbare Energien in seiner Umgebung immer mehr ‘einverleibt’ und damit Strukturen schafft, die dies immer besser können, also immer mehr Energie ‘einsammeln’ können, stellt sich die Frage, wozu das Ganze?
  13. Nach gängiger Meinung ist der ‘Big Bang’ dadurch charakterisiert, dass Energie sich in einer Weise in Materie verwandelt hat, dass daraus eben das heute bekannte Universum ‘hervorgehen’ konnte. Sterne und Galaxien sind eine Form der Zusammenballung dieser Materie (durch Gravitation, aber nicht nur (schwarze Materie?)); das uns bekannte ‘Leben’ ist auch eine Zusammenballung von Energie, aber anders. Was verstehen wir noch nicht?
  14. Die klassischen Religionen, so hilfreich sie in er Vergangenheit partiell vielleicht waren, in der heutigen Situation erscheinen sie mir wenig hilfreich, eher hinderlich. Sie verstellen den Blick und können das Herz verdunkeln. Damit will ich nicht sagen, dass auch die Gottesfrage obsolet sei. Wenn es überhaupt so etwas wie ‘Gott’ gibt, so sind wie ihm näher als je zuvor.
  15. Nur sollten wir die ‘Wahrheit’ der Erkenntnis nicht verwechseln mit dem ‘Erkenntniswunsch’. Die Bücher der alten Philosophen (alt kann bis gestern gehen..-:)) sind voll von Pseudorationalismen: man analysiert wie ein Weltmeister um letztlich dann doch nur sein eigenes Vorurteil zu rechtfertigen. Niemand ist davor gefeit; auch ich nicht.
  16. Alle bekannten Positionen muss man immer und immer wieder in Frage stellen, muss sie versuchsweise zerstören. Die ‘wahre Wahrheit’ ist das, was sich nicht zerstören lässt, sie ist das, was vor all unserem individuellen Denken schon immer da war (was nicht heißt, dass sie ‘ewig’ sein muss). Vor der Wahrheit brauchen wir daher keine Angst haben, nur vor uns selbst, vor uns Menschen, die wir unsere individuellen Unwahrheiten schützen und retten wollen, weil wir uns nicht vorstellen können, dass die wahre Wahrheit schlicht und einfach größer ist. Wir klammern uns an das bischen Leben, was wir individuell haben ohne lange zu begreifen, dass dieses ‘Bischen’ nur da ist, weil es ein größeres Ganzes gibt, durch das wir überhaupt geworden sind und in dem alles andere nur weiterlebt.
  17. Was bleibt also: viel Geduld ist notwendig und die Kunst, immer wieder sterben zu können um zu lernen, dass das Leben erst dort anfängt, wo wir oft glauben, dass es zu Ende sei. Freiwillig schaffen dies die wenigsten. Leicht ist es nicht. Transzendenz in Immanenz.
  18. Eigentlich wollte ich über etwas ganz anderes schreiben, aber so kommt es manchmal.

Eine Übersicht über alle bisherige Beiträge findet sich HIER.