Archiv für den Monat: September 2014

AVICENNAS ABHANDLUNG ZUR LOGIK – Teil 12

VORGESCHICHTE

Für einen Überblick zu allen vorausgehenden Beiträgen dieser rekonstruierenden Lektüre von Avicennas Beitrag zur Logik siehe AVICENNAS ABHANDLUNG ZUR LOGIK – BLITZÜBERSICHT.

AVICENNAS DISKUSSION WIDERSPRÜCHLICHER AUSSAGEN

MANGEL AN SPEZIFIKATION

1. Schon in den vorausgehenden Abschnitten gab es immer wieder den Fall, dass eine Aussage verneint werden sollte und in nicht wenigen Fällen war nicht so ganz klar, wie Avicenna das Verhältnis von ‚Affirmation‘ und ‚Negation‘ genau verstand.

2. In der modernen formalen Logik sind die Verhältnisse vergleichsweise einfach. Die ‚Negation‘ eines Ausdrucks e wird repräsentiert durch ein entsprechendes Zeichen, z.B. durch das Zeichen ‚$latex \neg$‘, und in den syntaktischen Regeln wird genau festgelegt, welche Ausdrücke F der Ausdrucksmenge E ‚wohlgeformte‘ Ausdrücke einer Logiksprache L sind oder nicht. Diese ’syntaktischen‘ Festlegungen sind völlig unabhängig von irgendeiner ‚Bedeutung‘ M. Sofern diese so charakterisierte wohlgeformte Formelmenge F in der modernen formalen Logik eine zusätzliche Bedeutung M haben sollen, so dass man in jedem Fall sagen kann, wann ein Ausdruck $latex f \in F$ ‚wahr‘ oder ‚falsch‘ im Sinne der Bedeutung M ist – geschrieben: $latex M \models f$ –, dann muss man die Bedeutung selbst komplett mit regeln beschreiben und im einzelnen genau hinschreiben, wann und wie diese Zuordnung zu verstehen ist; sie muss mit ‚endlichen Mitteln nachvollziehbar entscheidbar‘ sein.

3. Wie wir bisher gesehen haben – und wie es in diesem neuen Abschnitt von Avicennas Abhandlung erneut sichtbar wird –, tut Avicenna – hierin der antiken Logik folgend – die Bedeutung M nirgends spezifizieren. Selbst schon die Menge der wohlgeformten Ausdrücke A der Aussagen wird als Ausdrucksmenge nirgends rein syntaktisch charakterisiert. Damit ist die Ausgangslage für die Diskussion/ Analyse in allen Einzelfällen schwierig und meist nicht völlig auflösbar.

WIDERSPRUCH – AFFIRMATIV/ NEGATIV – WAR/ FALSCH

4. Ausgangspunkt sind zwei Ausdrücke A und B, die jeweils ‚Aussagen‘ darstellen. Ist der eine von ihnen – z.B. A – affirmativ, dann wäre der Widerspruch (engl.: ‚contradictory‘) zum affirmativen A ein negatives B, und umgekehrt. Im Falle eines Widerspruchs muss einer der Ausdrücke ‚wahr‘ und der andere ‚falsch‘ sein. Sei also das affirmative A wahr, dann müsste das negative B falsch sein.

5. [Anmerkung: Ein affirmatives A könnte der Ausdruck sein ‚Zid lacht‘. Die Negation als B dazu wäre ‚Zid lacht nicht‘. Wenn A wahr ist, dann ist B falsch].

ANFORDEREUNGEN AN EINEN WIDERSPRUCH

6. Für einen Widerspruch zwischen zwei Aussagen A und B muss gelten, dass die ‚Bedeutung‘ der Aussagen bezogen auf (S P) bzw. ‚Antezedenz – Konsequenz‘ die ‚gleiche‘ sein soll. Als Gegenbeispiele, wo dies nicht der Fall ist, bringt er zwei Fälle, in denen die Bedeutung der verwendeten Subjekte oder Prädikate ‚mehrdeutig‘ ist. Im einen Fall meint der Ausdruck ‚Lamm‘ (engl.: ‚lamb‘) ein Tier, im anderen Fall ein Sternbild; oder der Ausdruck ’sein Ziel‘ (engl.: ‚his end‘) kann einen konkreten Zustand meinen oder die ‚Bestimmung‘ einer Person.

7. [Anmerkung: Dies Beispiel zeigt klar, dass bei Avicenna die Definition eines Widerspruchs nicht unabhängig von der zugehörigen Bedeutung vorgenommen werden kann. In der modernen formalen Logik kann man – unabhängig von jeder möglichen Bedeutung sagen, dass ein Ausdruck $latex \neg A$ auf jeden Fall ein Widerspruch zu der Aussage A darstellt, unabhängig davon, welche Bedeutung A hat. Denn, welche Bedeutung M(A) auch vorliegen mag, diese spezielle Bedeutung M(A) ist so, dass sie den Ausdruck im affirmativen Fall A wahr machen würde, und dann wäre $latex \neg A$ der Widerspruch und ‚falsch‘. Sollte hingegen $latex \neg A$ wahr sein – egal mit welcher Bedeutung –, dann wäre A der Widerspruch und falsch. ]

8. In einer zweiten Forderungen müssen widersprüchliche Aussagen A und B in ihrer Bedeutung auch bzgl. ‚Aktualität‘ und ‚Potentialität‘ übereinstimmen. Damit ist gemeint, dass bei einer Aussage wie ‚Der Mann stirbt‘ geklärt sein muss, ob er ‚aktuell stirbt‘ oder oder er nur ‚potentiell sterben könnte‘.

9. [Anmerkung: Angenommen die affirmative Aussage sei (S P), dann muss man eigentlich voraussetzen, dass beide das Gleiche meinen. In diesem Fall wäre der Widerspruch (S nicht P). Im alltäglichen Reden ist aber die Feststellung der Gleichheit von Bedeutungen ein notorisches Problem. sehr oft ‚glaubt‘ man, dass man die gleiche Bedeutung annehme wie der Gegenüber, und erst später stellt sich heraus, dass dies nicht so war. An der Definition eines Widerspruchs ändert dieses praktische Problem aber eigentlich nichts.]

10. In einer dritten Forderung müssen widersprüchliche Aussagen A und B in ihrer Bedeutung auch bzgl. ‚Raum‘ und ‚Zeit‘ übereinstimmen.

11. [Anmerkung: Zu sagen, ‚Hans ist um 17:00h gestorben‘, obwohl er schon um 16:00h gestorben ist, mag in vielen Kontexten unbedeutend sein, in einem Mordfall kann es sehr bedeutsam sein. Die Aussage ‚Hans ist nicht um 16:00h gestorben‘ wäre aber kein Widerspruch zu ‚Hans ist um 17:00h gestorben‘.]

12. In der vierten Forderung greift er nochmals die erste Forderung mit der Gleichheit der Bedeutung von Subjekt und Prädikat auf, verfeinert sie aber bzgl. des Zusammenspiels von Quantor, Subjekt und Prädikat (Q (S P)), indem er sagt dass der Widerspruch von (Einige (S P)) gegeben sei als (Nicht Einige (S P)), und der Widerspruch von (Nicht Alle (S P)) sei (Einige (S P)).

13. [Anmerkung: Die Aussage (Nicht Alle (S P)) ist äquivalent zu (Einige (S nicht P)). Die Verneinung von (Einige (S nicht P)) wäre wieder (Alle (S P)). Die Behauptung von Avicenna erscheint für den Fall ‚Widerspruch zu (Nicht Alle (S P)) sei (Einige (S P))‘ zumindest unklar.]

ERGEBNIS

14. Grundsätzlich liefert dieser Abschnitt keine neuen Erkenntnisse, wohl aber weitere Beispiele zur Illustration des schwierigen Verhältnisses zwischen Ausdrucksstrukturen mit logischen Operatoren und Quantoren einerseits sowie einer möglichen Bedeutung andererseits. Ohne eine deutliche Verbesserung der Beschreibung des Wechselspiels zwischen Ausdrucksseite und Bedeutungen wird das Reden über alltägliche Logik zu viele Unklarheiten behalten.

Fortsetzung folgt

QUELLEN

  • Avicenna, ‚Avicennas Treatise on Logic‘. Part One of ‚Danesh-Name Alai‘ (A Concise Philosophical Encyclopedia) and Autobiography, edited and translated by Farang Zabeeh, The Hague (Netherlands): Martinus Nijhoff, 1971. Diese Übersetzung basiert auf dem Buch ‚Treatise of Logic‘, veröffentlicht von der Gesellschaft für Nationale Monumente, Serie12, Teheran, 1952, herausgegeben von M.Moien. Diese Ausgabe wiederum geht zurück auf eine frühere Ausgabe, herausgegeben von Khurasani.
  • Digital Averroes Research Environment
  • Nicholas Rescher (1928 – ),The Development of Arabic Logic. University of Pittsburgh Press, 1964
  • Stanford Encyclopedia of Philosophy, Aristotle’s Logic
  • Whitehead, Alfred North, and Bertrand Russell, Principia Mathematica, 3 vols, Cambridge University Press, 1910, 1912, and 1913; Second edition, 1925 (Vol. 1), 1927 (Vols 2, 3). Abridged as Principia Mathematica to *56, Cambridge University Press, 1962.
  • Alfred North Whitehead; Bertrand Russell (February 2009). Principia Mathematica. Volume One. Merchant Books. ISBN 978-1-60386-182-3.
  • Alfred North Whitehead; Bertrand Russell (February 2009). Principia Mathematica. Volume Two. Merchant Books. ISBN 978-1-60386-183-0.
  • Alfred North Whitehead; Bertrand Russell (February 2009). Principia Mathematica. Volume Three. Merchant Books. ISBN 978-1-60386-184-7

Eine Übersicht über alle bisherigen Blogeinträge nach Titeln findet sich HIER.

AVICENNAS ABHANDLUNG ZUR LOGIK – Teil 11

Bildskizzen zu Avicennas Diskussion der Aussagetypen Disjunktive und Konjuntive Konditionale
Bildskizzen zu Avicennas Diskussion der Aussagetypen Disjunktive und Konjuntive Konditionale

VORGESCHICHTE

Für einen Überblick zu allen vorausgehenden Beiträgen dieser rekonstruierenden Lektüre von Avicennas Beitrag zur Logik siehe AVICENNAS ABHANDLUNG ZUR LOGIK – BLITZÜBERSICHT.

Aufgrund des großen Umfangs enthält dieser Blogeintrag zu Avicennas Logik – im Gegensatz zu den vorausgehenden Blogeinträgen 1-9 – nur den Diskussionsteil von Blogeintrag 10. In Blogeintrag 10 wurde weiter die Position Avicennas beschrieben. Ziel der Lektüre ist die Rekonstruktion einer möglichen Theorie der Alltagslogik, wie sie dann in künstlichen lernenden Systemen eingesetzt werden soll (hier trifft die Philosophie direkt auf die Ingenieurskunst ….; man nennt dies ‚Informatik‘).

DISKUSSION

26. Wie schon mehrfach bemerkt, erscheint die Verwendungsweise der meisten Begriffe in Avicennas Abhandlung über die Logik ‚fließen‘ oder – mit einem Begriff aus der modernen Logik – ‚fuzzy‘.

27. Dies hat damit zu tun, dass Avicenna für die Verwendung seiner Begriffe keine klaren Kriterien benutzt. Typisches Beispiel ist sein Begriff der ‚Harmonie‘, den er für die Klassifikation von Antezedenz – Konsequenz Verhältnisse benutzt. Klar ist, dass er für diesen Begriff auf die Bedeutungsdimension zurückgreift; unklar ist, wie genau er dies versteht, da das, was er praktisch überall als ‚Bedeutung unterstellt‘, nirgendwo präzisiert wird. Will man diesen Nachteil beheben, muss man einen Weg finden, die Kriterien zu klären. Ein erprobtes Mittel dafür ist, alle die Umstände explizit zu machen, zu benennen, die man als für ein Kriterium ‚relevant‘ erachtet. Dies ist in der modernen Wissenschaft eine Mischung aus kontrollierten Beobachtungen und theoretischen Annahmen. Und da keine Beobachtung einen ‚Sinn‘ ergibt ohne Bezug zu vorausgesetzten Beziehungen/ Relationen/ Strukturen/ Modellen beginnt jede Klärung eines vagen Zusammenhangs mit ersten ‚theoretischen Annahmen‘ darüber, welche Zusammenhänge man für wichtig hält, mit denen man bekannte – oder noch zu messende – Phänomene ‚erklären‘ möchte.

28. Beginnen wir mit den letzten Annahmen von Avicenna.

AUSSAGEN – AUSSAGESTRUKTUREN

29. Ausgangspunkt sind solche Ausdrücke E, die ‚wahr‘ oder ‚falsch‘ sein können; er nennt sie ‚Aussagen‘ [PROP]: $latex PROP \subseteq E$.
30. Aus logischer Sicht hat Avicenna bislang vier funktionale Rollen innerhalb einer Aussage unterschieden: ‚Subjekt‘, ‚Prädikat‘, ‚Aussageoperatoren‘ sowie ‚Quantoren‘.
31. Minimal benötigen wir ‚Subjekt‘ S und ‚Prädikat‘ P, so dass man im Prädikat P etwas über das Subjekt S aussagen kann: $latex (S P)$
32. Zusätzlich gibt es die Rolle der logischen ‚Aussage-Operatoren‘ ‚Negation‘ $latex \neg$, ‚Exklusive Disjunktion‘ (auch ‚Kontravalenz‘ oder ‚X-OR‘) $latex \sqcup$, und ‚Quantoren‘ Q. Hier unterscheidet er Quantoren über die ‚Anzahl‘ $latex Q_{q}$, und Quantoren über die ‚Zeit‘ $latex Q_{t}$. Man solle gleich noch die Quantoren über den ‚Raum‘ $latex Q_{s}$ ergänzen; diese erwähnt er nicht explizit, aber im Bereich des Bedeutungsraumes spielt die Dimension des Raumes eine wichtige Rolle und begegnet uns in sehr vielen Aussagen.
33. Bei der Verwendung von Quantoren bezieht man sich immer auf eine Gesamtheit. Im Falle von Zeit-Quantoren $latex Q_{t}$ sind dies Zeitpunkte angeordnet auf einem Zeitstrahl. Im Falle von Anzahl-Quantoren $latex Q_{q}$ bezieht man sich auf die Objekte, zu denen das Subjekt einer Aussage in einer Beziehung steht; im Falle von Raum-Quantoren $latex Q_{s}$ bezieht man sich auf zu definierende ‚Raumstellen‘.
34. Unter der Voraussetzung, dass eine Aussage A = (S P) ‚wahr‘ oder ‚falsch‘ sein kann, kann man sagen, dass $latex \neg A$ ‚wahr‘ ist, wenn ‚A‘ alleine ‚falsch‘ ist, d.h. wenn die Aussage A= (S P) nicht zutrifft; d.h. $latex (S \neg P)$ trifft zu.
35. Die Aussage ‚Entweder A oder B‘ $latex (A \sqcup B)$ ist ‚wahr‘, wenn entweder A wahr und B falsch ist oder B wahr und A falsch. Die Verneinung von $latex \neg(A \sqcup B)$ ist wahr, wenn entweder A und B zusammen wahr oder zusammen falsch sind.
36. Die Aussage ‚Wenn A dann B‘ $latex (A \rightarrow B)$ ist nur dann falsch, wenn A zutrifft und zugleich B falsch ist. In allen anderen Fällen ist die Implikation wahr. Die Verneinung $latex \neg(A \rightarrow B)$ wäre dementsprechend wahr, wenn A wahr wäre und B nicht; in allen anderen Fällen falsch
37. Es sei angemerkt, dass die Implikation $latex (A \rightarrow B)$ äquivalent ist zu $latex \neg(A \wedge \neg B)$, wobei das Zeichen ‚$latex \wedge$‘ den aussagenlogischen Operator ‚Konjunktion‘ (‚und‘) repräsentiert. $latex (A \wedge B$ sind nur wahr, wenn A und B zugleich wahr sind, sonst falsch.
38. Quantoren werden Aussagen vorangestellt, also (Q A) bzw. (Q (S P)).
39. Anzahl-Quantoren $latex Q_{q}$ wären ‚alle‘ und verneint $latex \neg Q_{q}$ ’nicht alle‘, definiert durch ‚einige := nicht alle‘.
40. Zeit-Quantoren $latex Q_{t}$ wären ‚immer‘ und verneint $latex \neg Q_{t}$ ’nicht immer‘, definiert durch ‚manchmal := nicht immer‘.
41. Raum-Quantoren $latex Q_{s}$ wären ‚überall‘ und verneint $latex \neg Q_{s}$ ’nicht überall‘, definiert durch ‚einige := nicht überall‘.
42. Als Schreibweisen hat sich herausgebildet, im Falle von ‚alle’/ ‚immer’/ ‚überall‘ von ‚All-Quantoren‘ zu sprechen und zu schreiben $latex \forall(x)$. Das ‚x‘ steht dann für die Art von Objekten, über deren Gesamtheit quantifiziert wird. Im Fall von ‚einige’/ ‚manchmal“ spricht man von ‚Partikularquantoren‘ (missverständlich auch ‚Existenzquantoren‘) und schreibt $latex \exists(x)$. Das ‚x‘ steht wieder für die Art von Objekten, über deren Gesamtheit quantifiziert wird.
43. Im Falle von Partikularquantoren von ‚Existenzquantoren‘ zu sprechen ist leicht irreführend, da ein Existenzquantor $latex \exists(x)$ keine Aussage über die reale Existenz in der umgebenden Welt W trifft, sondern nur angibt, über wie wieviele Objekte x einer Art gesprochen werden soll.
44. Beispiel: ‚Manchmal ist der Himmel grau‘ $latex \exists(t)(der Himmel)(t)(ist grau)$. Es gibt einige Zeitpunkte t (aus der Gesamtheit der geordneten Zeitpunkte T), an denen vom Himmel gesagt werden kann, dass er grau ist.
45. Beispiel: ‚Überall scheint die Sonne‘ $latex \forall(s)(die Sonne)(scheint)$. An allen Raumpunkten s (aus der Gesamtheit der Raumpunkte S), kann von der Sonne gesagt werden kann, dass sie scheint.
46. Beispiel: ‚Alle Menschen sind sterblich‘ $latex \forall(x)(Menschen)(sind sterblich)$. Für alle Objekte aus der Gesamtheit der Menschen kann gesagt werden, dass sie sterblich sind.
47. Beispiel: ‚Nicht alle Menschen sind sterblich‘ $latex \neg\forall(x)(Menschen)(sind sterblich)$ wird übersetzt $latex \exists(x)(Menschen)(sind nicht sterblich)$, $latex \exists(x)(S)(\neg P)$, d.h. für einige Objekte aus der Gesamtheit der Menschen kann gesagt werden, dass sie nicht sterblich sind.

WAHRHEITSBEDINGUNGEN – BEDEUTUNGSRAUM

48. Mit der Einführung der Begriffe ‚Aussage‘, ‚Subjekt‘, ‚Prädikat‘, ‚Aussage-Operator‘, ‚Quantor‘ wurden Strukturelemente von Ausdrücken beschrieben. Allerdings wurde bei der ‚Charakterisierung‘ der unterschiedlichen logischen Rollen immer schon – mehr oder weniger explizit – Bezug genommen auf einen unterstellten ‚Bedeutungsraum‘ M.
49. Der wichtige Punkt hier ist, dass man den Unterschied zwischen dem Bedeutungsraum M und den Eigenschaften X der umgebenden Welt W beachtet.
50. Wie schon zuvor herausgestellt, ist der Bedeutungsraum M, auf den sich die Aussagen mit ihren Strukturen primär beziehen, zu einem gewissen Teil eine Konstruktion über bestimmten Ereignissen X in der umgebenden Welt W.
51. Dieser Unterschied ist die Voraussetzung für Begriffe wie z.B. ‚Existenz‘, ‚wahr’/ ‚falsch‘ und ‚möglich‘.
52. Denn mittels einer Aussage A bestimmte Bedeutungselemente $latex m \subseteq M$ zu benennen, zu aktivieren, ist zwar eine Grundvoraussetzung dafür, dass ein Ausdruck e als Aussage A überhaupt eine ‚Bedeutung‘ hat, diese Bedeutungselemente m sind als solche aber weder ‚wahr‘ noch ‚falsch‘; ihre ‚Existenz‘ ist unklar; ob sie ‚real‘ oder ‚möglich‘ sind folgt aus der primären Bedeutung nicht.
53. Erst wenn man davon ausgeht, dass es innerhalb des Bedeutungsraumes M solche Bedeutungselemente m* gibt, die sich von anderen Bedeutungselementen m0 dadurch unterscheiden, dass ihnen ein ‚Aktualitätsbezug‘ zu aktuellen Wahrnehmungen zusprechen kann, nur dann kann es ein Kriterium geben, wodurch eine Aussage A ’nur‘ eine ‚wahrheitsneutrale‘ Bedeutung m0 hat oder eben durch die ‚Aktualitätseigenschaft‘ m* als ‚zutreffend in der umgebenden Welt M‘ charakterisiert werden kann. An dieser Eigenschaft des ‚aktuell Zutreffens‘ in der umgebenden Welt W lassen sich die Begriffe ‚wahr‘ und ‚falsch‘ ‚anhängen‘: gibt es eine Bedeutung m0, die eine hinreichende Ähnlichkeit mit einer Bedeutung m* hat, dann kann man von der Aussage, die die Bedeutung m0 bezeichnet, sagen, dass sie ‚zutrifft‘ und damit ‚wahr‘ ist; gibt es zu einer aktuell bezeichneten Bedeutung m0 einer Aussage A keine hinreichend ähnliche Bedeutung m*, dann trifft die Bedeutung m0 der Aussage A nicht zu, d.h. sie ist falsch.
54. Sofern wir über ‚Erinnerungen‘ an Bedeutungen m(m*) verfügen, die zu ‚vorausgehenden Zeitpunkten‘ einmal ‚wahr‘ waren, kann dieses Wissen m(m*) dazu benutzt werden, um eine ‚Erwartung‘ über die umgebenden Welt W aufzubauen, dass der Sachverhalt m(m*) sich als aktuelle Wahrnehmung m* ‚reproduzieren‘ lässt; dafür, dass dem so ist, gibt es keine ‚Garantie‘; selbst die sogenannten ‚Naturgesetze‘ sind keine 100%ige Garantie dafür, dass eine erinnerbare Eigenschaft m(m*) aufgrund ihres ‚früheren‘ Auftretens als m* nochmals als m* auftreten wird.

MÖGLICH

55. Ich würde den Begriff der Möglichkeit auch an dieser Differenz aufhängen: einerseits ‚aktuell wahrgenommene‘ Bedeutungselemente m* bzw. ‚erinnert als schon mal aktuell wahrgenommen‘ m(m*)‘ und andererseits nur ‚gedacht’/ ‚vorstellbar‘ als m0 ohne Entsprechung zu einem m* bzw m(m*). Eine ‚Differenz‘ zwischen allgemein vorstellbar/ denkbar und aktuell wahrnehmbar bzw. erinnert als aktuell mal wahrgenommen ist generell ein Hinweis auf Möglichkeit. Wie ‚wahrscheinlich‘ solche möglichen Bedeutungselemente m0 mal als m* reproduziert werden können, ist allgemein kaum anzugeben. Basierend auf dem bislang verfügbaren erinnerbaren Wissen M(M*) insgesamt kann man zwar gewisse ‚Erwartungen‘ konstruieren; dies können aber – wie wir aus der Geschichte wissen – unzuverlässig sein, da sie auf falschen Annahmen bzw. Interpretationen beruhen können (‚Sonne bewegt sich um die Erde‘ oder ‚Erde bewegt sich um die Sonne‘).

WELT ALS FIKTION

56. Aus der bisherigen Rekonstruktion folgt, dass der Begriff der ‚umgebenden Welt W‘ streng genommen eine ‚Fiktion‘ ist. Was es gibt, sind Erregungszustände m* im Gehirn, die es zum überwiegenden Teil nicht selbst verursacht; sie werden in die Erregungsmenge des Gehirns ‚induziert‘. Verglichen damit sind die anderen (bewussten) Erregungszustände m0 ‚von innen‘ (endogen) erzeugt. Unser Gehirn nimmt diese nicht-selbst induzierten (bewussten) Erregungszustände m* als ‚etwas von ihm Verschiedenes‘, an dem sich viele ‚Eigenschaften‘ unterscheiden lassen, u.a. auch eine implizite Raumstruktur. Der Begriff der ‚Welt‘ ist in diesen nicht-selbst induzierten Erregungszuständen m* fest gemacht. Als m* sind diese Erregungszustände ‚unmittelbar‘, ‚direkt‘, so, als ob wir die ‚Welt‘ ‚direkt‘ erleben würden. Wie wir aber heute wissen (können), sind diese direkt erlebbaren Erregungszustände m* das ‚Produkt‘ eines komplizierten Übersetzungsmechanismus, den wir sinnliche Wahrnehmung perc() nennen. Im Prozess der sinnlichen Wahrnehmung perc() werden einige der Weltereignisse X in sinnliche Zustände $latex m_{p}$ abbgebildet: $latex perc: X \longrightarrow M_{p}$. Zusätzlich wissen wir heute, dass die schon verfügbaren Bedeutungselemente M auf diesen Wahrnehmungsprozess Einfluss nehmen können (Stichwort ‚Erwartungen‘, ‚Vorurteile‘ , …): $latex perc: X \times M \longrightarrow M_{p}$.
57. Dabei sind es normalerweise nicht die sinnlichen Erregungszustände $latex M_{p}$, die wir wahrnehmen, sondern die Objekte der nächsten Verarbeitungsstufe, die aus den sinnlichen Elementen als Objektelemente heraus abstrahiert werden: $latex \alpha: M_{p} \times M \longrightarrow M_{o}$. Auch hier wirken sich die schon vorhandenen Bedeutungselemente M auf den Abstraktionsprozess aus. Statt $latex M_{o}$ wird hier auch verkürzend oft nur von den ‚Objekten‘ O gesprochen, da Objekte immer nur als Elemente des Bedeutungsraumes M vorkommen.
58. Die zuvor erwähnten aktuellen Wahrnehmungen m* sind eine Teilmenge der Objektelementen $latex M_{o}$, also $latex m* \subseteq M_{o}$. Die Objektelemente ohne die aktuellen Wahrnehmungen m* gehören zu den ‚denkbaren‘ Objektelementen, also $latex (M_{o} – m*) \subseteq M0$. Dies ist möglich, weil im Gehirn ja nicht ‚reale‘ Objekte mit ‚gedachten‘ Objekten verglichen werden, sondern die ‚realen‘ Objekte treten im Gehirn schon als ‚gezähmte‘ Objekte auf, d.h. was immer an Eigenschaften X in der realen Welt W zur Konstruktion der aktuellen Wahrnehmungen m* geführt hat, m* selbst ist ein Konstrukt wie m0 auch. Deswegen lassen sich beide ‚vergleichen‘ und mit den Mitteln des ‚Denkens‘ ‚bearbeiten‘.

ERGEBNISSE

59. An dieser Stelle könnte man jetzt eine eigene große Abhandlung zur Alltagslogik schreiben. Um den Gang der weiteren Untersuchung von Avicennas Abhandlung damit aber nicht vollständig zu sprengen, beende ich hier die rekonstruierenden Überlegungen und wende mich wieder der Lektüre des Textes zu. Wie man sieht, kann solch eine Lektüre extrem anregend sein.

AVICENNAS ABHANDLUNG ZUR LOGIK – Teil 10

Bildskizzen zu Avicennas Diskussion der Aussagetypen Disjunktive und Konjuntive Konditionale
Bildskizzen zu Avicennas Diskussion der Aussagetypen Disjunktive und Konjuntive Konditionale

VORGESCHICHTE

Für einen Überblick zu allen vorausgehenden Beiträgen dieser rekonstruierenden Lektüre von Avicennas Beitrag zur Logik siehe AVICENNAS ABHANDLUNG ZUR LOGIK – BLITZÜBERSICHT.

Dieser Blogeintrag beginnt mit einer Darstellung der Position von Avicenna und diskutiert dann im Abschnitt ‚DISKUSSION‘ Avicennas Position. Ziel der Lektüre ist die Rekonstruktion einer möglichen Theorie der Alltagslogik, wie sie dann in künstlichen lernenden Systemen eingesetzt werden soll (hier trifft die Philosophie direkt auf die Ingenieurskunst ….; man nennt dies ‚Informatik‘).

AVICENNAs DISKUSSION DES DISJUNKTIVEN UND DES KONJUNKTIVEN KONDITIONALS

1. Anstatt jetzt einzelne Stellen aus dem Text (SS.24-27) zu zitieren hier eine reflektierende Zusammenfassung seiner Aussagen.

AUSDRÜCKE, DIE AUSAGEN SIND

2. Der übergreifende Zusammenhang seiner Überlegungen bilden solche Ausdrücke, die als ‚Aussagen‘ bestimmte Sachverhalte beschreiben, die ‚wahr‘ oder ‚falsch‘ sein können.

3. Das grundsätzliche Kennzeichen solcher Aussagen ist, dass sie von etwas ‚affirmierende‘ (zustimmend, bekräftigend, …) sagen, dass es sich so verhalte, wie gesagt.

QUANTOR SUBJEKT PRÄDIKAT (Q S P)

4. Eine Aussage kann man entweder mit ‚grammatischen‘ Begriffen analysieren im Sinne von ‚Name Verb Präposition Name‘ (z.B. ‚Zyd ist im Haus‘) oder mit logischen Begriffen wie ‚Quantor Subjekt Prädikat‘ (Q S P).

5. Das Subjekt S ist dasjenige, von dem/ über das etwas ausgesagt wird, das im Prädikat P formuliert wird. Der Quantor Q klärt, ob es ‚universell‘ (z.B. ‚alle‘) gemeint ist oder ‚partikulär‘ (z.B. ’nicht alle‘ als ‚einige‘).

EXISTENZ

6. Avicenna benutzt auch bisweilen den Begriff ‚Existenz’/ ‚existieren‘ im Kontext, dass der Sachverhalt einer Aussage ‚existiert‘ oder ’nicht existiert‘, ohne die Verwendung des Begriffs ‚existieren‘ explizit zu analysieren.

EXISTENZ, AFFIRMATION, VERNEINUNG

7. Das Wechselspiel zwischen den Begriffen ‚Affirmieren/ Affirmation‘, ‚Verneinung‘ sowie ‚Existenz‘ ist nicht ganz klar. Einerseits kann die Verneinung eines Sachverhaltes (S nicht P) dennoch eine Affirmation sein, d.h. der Sprecher will damit sagen, dass es zutrifft, dass nicht-P auf S zutrifft, andererseits wird die Verneinung manchmal so verwendet, als ob damit grundsätzlich die Affirmation aufgehoben würde. Einerseits wird ein Ausdruck der Art (S nicht P) interpretiert, dass das ’nicht-P‘ existiert als Eigenschaft von S, dann aber wieder soll das ’nicht‘ in P die ‚Existenz von P‘ aufheben.

BESTIMMT – UNBESTIMMT

8. Auch benutzt Avicenna den Begriff ‚bestimmt/ nicht bestimmt‘ im Kontext der Verwendung von Quantoren. So sagt er z.B. dass (Alle S sind P) ‚bestimmt‘ sei in der Bedeutung, (Nicht-Alle S sind P) aber ’nicht bestimmt‘ als ‚unbestimmt‘. Auch im Kontext der Verwendung von logischen Operatoren (siehe unten) taucht dieses Begriffspaar nochmals auf.

DISJUNKTIVE UND KONJUNKTIVE KONDITIONALE

9. Damit kommen wir zum Hauptthema dieses Abschnitts: ‚Disjunktive und Konjunktive Konditionale‘.

10. Was ein disjunktives oder ein konjunktives Konditional ist erklärt er nicht durch eine explizite Definition innerhalb einer Theorie, sondern durch Beispiele von Ausdrücken, die er (mittels impliziter semantischer Kriterien) so oder so charakterisiert/ klassifiziert.

11. Grundbausteine bleiben die Aussagen (Q S P), die wahr oder falsch sein können. Solche Aussagen kann man auch mit Buchstaben ‚A‘, ‚B‘ abkürzen, was Avicenna selbst im vorausgehenden Text einmal getan hat. Dabei gibt es zwei Fälle: (i) Aussagen ohne Quantoren wie A=(S P) (z.B. ‚Zid lacht‘), oder (ii) Aussagen mit Quantoren A=(Q S P) (z.B. ‚Alle Menschen sind sterblich‘).

QUANTOREN: ANZAHL – ZEIT

12. Er führt dann zwei Arten von logischen Quantoren ein: (i) (Entweder … Oder …) bzw. (ii) (Wenn … dann …). Fall (i) nennt er ‚Disjunktives Konditional‘ und Fall (ii) ‚Konjunktives Konditional‘ (in der späteren modernen Aussagelogik versteht man unter ‚Konjunktion‘ etwas anderes; Fall (ii) von Avicenna heißt in der modernen Aussagenlogik ‚Exklusives Oder‘ oder ‚Kontravalenz‘). Eine moderne Schreibweise für (Wenn A dann B) wäre ($latex A \rightarrow B$), und für (Entweder A oder B) die Schreibweise ($latex A \sqcup B$)).

HARMONIE – DISHARMONIE

13. Interessant ist, dass Avicenna seine logischen Operatoren nicht mit Hilfe sogenannter Wahrheitstafeln (Wahrheitsfunktionen) explizit charakterisiert, sondern aus einer Mischung von Wahrheitswertzuordnungen und den Begriffen ‚Harmonie/ Disharmonie‘.

ANTEZEDENZ – KONSEQUENZ

14. Dazu benötigt er noch zwei Zusatzbegriffe, nämlich die Begriffe ‚Antezedenz‘ und ‚Konsequenz‘. Im Beispiel (Wenn A dann B) kann man nach Avicenna das ‚A‘ als Antezedenz‘ von der Konsequenz ‚B‘ sehen. Im Beispiel (Entweder A oder B) ist es eigentlich nicht klar, welche Komponente das Antezedenz sein soll. Avicenna optiert dafür, dass der ‚linke Teil‘, also ‚Entweder A‘ ein Antezedenz sei, gesteht aber zu, dass es in diesem Fall viele Konsequenzen geben könnte, also (Entweder A oder B1 oder B2 …).

15. Kombiniert mit den Begriffen ‚Harmonie’/ ‚Disharmonie‘ befinden sich die Ausdrucksteile ‚A‘ und ‚B‘ im Fall (Wenn A dann B) in ‚Harmonie‘ (‚Wenn‘ (‚die Sonne‘ ‚aufsteigt‘), ‚dann‘ (‚es‘ ‚ist‘ Tag‘)). B soll hier nach Avicenna von A abhängen. Zu sagen (Wenn (‚es‘ ‚ist‘ ‚Tag‘) dann (‚die Sonne‘ ’steigt auf‘)) würde nach Avicenna disharmonisch sein. Im Falle einer Disjunktion (Entweder A oder B) sei dies aber nicht so. Zwischen dem Antezedenz ‚A‘ und den verschiedenen möglichen Konsequenzen ‚B1‘, ‚B2‘, … besteht keine Harmonie; man kann ihre Anordnung im Ausdruck ändern, ohne dass sich der gemeinte Sachverhalt ändert.

16. Unklar bei Avicenna ist allerdings, ob man nur innerhalb der Konsequenzen ‚B1‘, ‚B2’… umstellen kann bei Beibehaltung des ‚A‘ als Antezedenz oder ob man generell umstellen könnte, also (Entweder ‚B3‘ oder ‚B1‘ oder ‚A‘ oder …).

17. Generell ist die Verwendungsweise der logischen Begriffe bei Avicenna durchgehend ‚fließend‘, d.h. aufgrund seiner generell vagen Charakterisierungen der Begriffe kommt es ständig zu ‚Vermischungen‘ von Verwendungsweisen, die ‚verwirren‘ können. So stellt er einmal die Frage, wie denn das Verhältnis der Begriffe ‚Antezedenz – Konsequenz‘ zu den Begriffen ‚Subjekt S – Prädikat P‘ sei. Würde man berücksichtigen, dass die Begriffe ‚S- P‘ die ‚innere Struktur‘ eines Ausdrucks analysieren, der eine Aussage ist, und die Begriffe ‚Antezedenz‘ – ‚Konsequenz‘ das Verhältnis zwischen Aussagen analysieren, dann würde man diese Frage gar nicht stellen. Die Tatsache aber, dass Avicenna diese Frage aufwirft, zeigt, dass er für sich diese Verwendungsweisen nicht so klar abgegrenzt hat.

18. So kommt Avicenna zu der Deutung, dass in einem Ausdruck der Art (Wenn A dann B) die Verbindung von ‚Wenn‘ mit ‚A‘ aus der Aussage A (die wahr oder falsch sein kann), mit ‚Wenn A‘ ein Ausdruck entsteht, der nicht mehr wahr oder falsch sein kann und daher keine eigentliche Aussage mehr ist. Das gleiche gelte für das Konsequenz ‚dann B‘; auch wenn ‚B‘ für sich wahr oder falsch sein kann, in der Kombination ‚dann B‘ ist der neue zusammengesetzte Ausdruck weder wahr noch falsch und damit keine Aussage.

19. Auf den ersten Blick hat Avicenna Recht, da die beiden Ausdrücke ‚Wenn A‘ und ‚dann B‘ isoliert voneinander, nach den bisherigen Regeln keinen Wahrheitswert haben können. Aber das ‚Wesen‘ eines zusammengesetzten Ausdrucks, dessen Teile über logische Operatoren verbunden sind, besteht ja gerade darin, dass sich der Wahrheitswert des zusammengesetzten Ausdrucks aus den Wahrheitswerten der Teilausdrücke ergeben soll, vorausgesetzt, alle Teilausdrücke sind jeweils für sich Aussagen. Also im Ausdruck (Wenn A dann B) wäre der Wahrheitswert des gesamten Ausdrucks zu berücksichtigen, nicht seiner isolierten modifizierten Teile ‚Wenn A‘ bzw. ‚dann B‘.

20. Avicenna selbst bemerkt, dass der Zusammenhang zwischen (S P) in einer Aussage A=(S P) verschieden ist von dem Zusammenhang von Aussagen in einem zusammengesetzten logischen Ausdruck (Entweder A oder B). Während in der Aussage A das Prädikat P etwas über das Subjekt S aussagt, muss zwischen der Aussage B und der Aussage A in (Entweder A oder B) inhaltlich kein Zusammenhang bestehen. Dennoch bleibt er bei seinen ‚fließenden‘ Verwendungsweisen.

ZEITQUANTOREN

21. Innovativ erscheint seine Benutzung von ‚Quantoren über die Zeit‘. Bislang hatte er ‚Quantoren über die Anzahl‘ benutzt wie ‚alle‘ und ’nicht alle’/ ‚einige‘.

22. Quantoren über die Anzahl: Eine Aussage (alle S sind P) mit dem Quantor Q=’alle‘ nennt er ‚universell‘; eine Aussage (nicht alle S sind P) mit dem Quantor Q=’nicht alle‘ nennt er ‚partikulär‘ (und qualifiziert sie als ‚unbestimmt‘ bzgl. des Wahrheitswertes).

23. Bei Quantoren über die Zeit setzt er implizit eine Art Folge von Zeitpunkten T voraus, so dass man von zwei Zeitpunkten (t,t‘) immer sagen kann, ob t ‚früher‘, ‚gleich‘ oder ’später‘ zu t‘ ist. Ein möglicher Zeitquantor könnte sein ‚immer‘ bzw. ’nicht immer‘ als ‚manchmal‘.

24. Behält man die Struktur (Q S P) bei mit A=(S P) und (Q A), dann gibt es jetzt im Fall von zusammengesetzten logischen Aussagen wieder zwei Möglichkeiten: Entweder (i) die Quantoren sind an die einzelnen Aussagen gebunden (z.B. ‚Wenn (Q A) dann (Q B)‘) oder sie erstrecken sich über mehr als eine Aussage (z.B. ‚Q Wenn A dann B). Avicenna scheint nur den Fall (ii) zu berücksichtigen. Ein Beispiel: (Q Wenn A dann B) als ‚Manchmal Wenn A dann B‘ mit A=’Die Sonne geht auf‘, B=’Es gibt Wolken‘.

DISKUSSION

Wegen des großen Umfangs habe ich die Diskussion dieser Überlegungen von Avicenna in einen nächsten Blogeintrag ausgelagert.

Zur Fortsetzung bitte hier klicken.

QUELLEN

  • Avicenna, ‚Avicennas Treatise on Logic‘. Part One of ‚Danesh-Name Alai‘ (A Concise Philosophical Encyclopedia) and Autobiography, edited and translated by Farang Zabeeh, The Hague (Netherlands): Martinus Nijhoff, 1971. Diese Übersetzung basiert auf dem Buch ‚Treatise of Logic‘, veröffentlicht von der Gesellschaft für Nationale Monumente, Serie12, Teheran, 1952, herausgegeben von M.Moien. Diese Ausgabe wiederum geht zurück auf eine frühere Ausgabe, herausgegeben von Khurasani.
  • Digital Averroes Research Environment
  • Nicholas Rescher (1928 – ),The Development of Arabic Logic. University of Pittsburgh Press, 1964
  • Stanford Encyclopedia of Philosophy, Aristotle’s Logic
  • Whitehead, Alfred North, and Bertrand Russell, Principia Mathematica, 3 vols, Cambridge University Press, 1910, 1912, and 1913; Second edition, 1925 (Vol. 1), 1927 (Vols 2, 3). Abridged as Principia Mathematica to *56, Cambridge University Press, 1962.
  • Alfred North Whitehead; Bertrand Russell (February 2009). Principia Mathematica. Volume One. Merchant Books. ISBN 978-1-60386-182-3.
  • Alfred North Whitehead; Bertrand Russell (February 2009). Principia Mathematica. Volume Two. Merchant Books. ISBN 978-1-60386-183-0.
  • Alfred North Whitehead; Bertrand Russell (February 2009). Principia Mathematica. Volume Three. Merchant Books. ISBN 978-1-60386-184-7

Eine Übersicht über alle bisherigen Blogeinträge nach Titeln findet sich HIER.

AVICENNAS ABHANDLUNG ZUR LOGIK – BLITZÜBERSICHT

(Letzte Änderung 14.Okt.2014, 06:11h )

Da die rekonstruierende Lektüre zu Avicennas Abhandlung zur Logik ein immer größeres Ausmaß annimmt, erweist sich die Methode, jeden einzelnen Beitrag mit einem Überblick über die vorausgehenden Beiträge einzuleiten, als immer weniger praktikabel. Deswegen wird jetzt ein eigener Blogeintrag als Referenzpunkt für diesen Überblick gewählt. Dies bedeutet, dass künftig alle nachfolgenden Beiträge einleitend (für die ‚Vorgeschichte‘), auf diesen Blogeintrag verweisen werden. Es ist zu beachten, dass diese Übersicht nur eine Übersicht über die wichtigsten Begriffe und Themen ist ohne alle Details und normalerweise auch ohne die ausführliche Diskussion von Avicennas Gedanken. Diese finden sich nur in den Blogeinträgen selbst, auf die verwiesen wird.

1. In einem ersten Beitrag AVICENNAS ABHANDLUNG ZUR LOGIK – Teil 1 hatte ich geschildert, wie ich zur Lektüre des Textes von Avicenna gekommen bin und wie der Text grob einzuordnen ist.

2. In einem zweiten Beitrag AVICENNAS ABHANDLUNG ZUR LOGIK – Teil 2 ging es um die Frage, warum überhaupt Logik? Avicenna führt erste Unterscheidungen zu verschiedenen Wissensformen ein, lässt aber alle Detailfragen noch weitgehend im Dunkeln.

3. Im Teil AVICENNAS ABHANDLUNG ZUR LOGIK – Teil 3 ging es um einfache und zusammengesetzte Begriffe, und bei den einfachen Begriffen um ‚individuelle‘ und ‚universelle‘. Schon hier zeigt sich der fundamentale Unterschied zwischen der antiken und der modernen-formalen Logik. In der antiken Logik wird die Ausdrucksebene E – und einer sich daran manifestierenden Folgerungslogik – immer in Verbindung mit einer zugehörigen Bedeutungsstruktur gesehen, die sich an einer Objektstruktur O festmacht. Die moderne formale Logik kennt zwar auch ‚Semantiken‘ und ‚Ontologien‘, diese sind aber ’sekundär‘, d.h. es werden nur solche ‚formalen Semantiken‘ betrachtet, die zum vorausgesetzten syntaktischen Folgerungsbegriff ‚passen‘. Dies sollte dann später an konkreten Beispielen diskutiert werden. Hier liegt der Fokus auf der antiken Logik im Sinne Avicennas.

4. Im Abschnitt AVICENNAS ABHANDLUNG ZUR LOGIK – Teil 4 knüpft Avicenna an den zuvor eingeführten Begriff des ‚universellen‘ Begriffs an und betrachtet jetzt solche als ‚universell‘ bezeichneten Ausdrücke in einem Ausdruckskontext von aufeinanderfolgenden Ausdrücken. Alle diese Ausdrücke könnte man im Sinne der antiken Logik auch als ‚Urteile‘ bezeichnen, durch die einem bestimmten Ausdruck durch andere Ausdrücke bestimmte Bedeutungen (Eigenschaften) zu- oder abgesprochen werden. Hier unterscheidet er die Fälle eines ‚wesentlichen‘ Zusammenhanges zwischen zwei Begriffen und eines ’nicht wesentlichen‘ – sprich ‚akzidentellen‘ – Zusammenhangs.

5. Im Abschnitt AVICENNAS ABHANDLUNG ZUR LOGIK – Teil 5 führt Avicenna eine Reihe von neuen technischen Begriffen ein, die sich nicht alle in ihrer Bedeutung widerspruchsfrei auflösen lassen. Es handelt sich um die Begriffe ‚Genus‘, ‚Spezies‘, Differenz, allgemeine und spezielle Akzidens, den Begriff ‚Kategorie(n)‘ mit den Kategorien ‚Substanz‘, ‚Qualität‘ und ‚Quantität‘. Die Rekonstruktion führt dennoch zu spannenden Themen, z.B. zu einem möglichen Einstieg in das weltverändernde Phänomen der kognitiven Evolution.

6. Im Abschnitt AVICENNAS ABHANDLUNG ZUR LOGIK – Teil 6 geht es um die Begriffe ‚Definition‘ und ‚Beschreibung‘. Im Verhältnis zwischen beiden Begriffen geht die Beschreibung der Definition voraus. In der ‚Definition‘, die Avicenna vorstellt, wird ein neuer Ausdruck e mittels anderer Ausdrücke <e1, …, ek>, die sich auf schon bekannte Sachverhalte beziehen, ‚erklärt‘. Die von Avicenna dann vorgenommene Erklärung, was eine ‚Definition‘ sei, hängt u.a. stark ab von dem Begriff der ‚Bekanntheit‘ und dem Begriff des ‚wahren Wesens‘. Für die Tatsache, dass ein Mensch A bestimmte Ausdrücke <e1, …, ek> einer Sprache L ‚kennt‘ oder ’nicht kennt‘, dafür gibt es keine allgemeinen Regeln oder Kriterien. Von daher macht die Verwendung der Ausdrücke ‚bekannt’/ ’nicht bekannt‘ eigentlich nur Sinn in solch einem lokalen Kontexten W* (z.B. einem Artikel, ein Buch, ein Vortrag, …), in dem entscheidbar ist, ob ein bestimmter Ausdruck e einer Sprache L schon mal vorkam oder nicht. Schwierig wird es mit dem Begriff des ‚wahren Wesens‘. In meiner Interpretation mit der dynamischen Objekthierarchie gibt es ‚das wahre Wesen‘ in Form von Objekten auf einer Stufe j, die Instanzen auf Stufen kleiner als j haben. Dazu gab es weitere Überlegungen.

7. Im folgenden Abschnitt AVICENNAS ABHANDLUNG ZUR LOGIK – Teil 7 beschreibt Avicenna syntaktisch zusammengesetzte, aber semantisch einfache Ausdrücke. Innerhalb der Ausdrücke unterscheidet er die Teileausdrücke ‚Name‘, ‚Verb‘ und ‚Präposition‘. Die unterschiedliche Charakterisierung erfolgt nicht aufgrund der syntaktischen Form, sondern aufgrund der semantischen Eigenschaften, die mit diesen Ausdrücken verbunden werden. Neben dem Objektbezug, der die eigentliche Bedeutung fundiert, gibt es im Bedeutungsraum auch noch den zeitlichen und den räumlichen Aspekt. Das Zusammenspiel von Bedeutung und Ausdruck wird angerissen.

8. Im Abschnitt AVICENNAS ABHANDLUNG ZUR LOGIK – Teil 8 geht es um solche Ausdrücke E, die ‚Aussagen‘ P sind, von denen man sagt, dass sie ‚wahr‘ oder ‚falsch‘ seien. Aussagen sind eine echte Teilmenge aller Ausdrücke, $latex P \subset E$. Avicenna unterscheidet drei Arten von Aussagen: ‚kategorische‘ Aussagen, ‚Disjunktiv-konditionelle‘ und ‚Konjunktiv-konditionelle‘. Es wird ausführlich eine mögliche Wahrheitstheorie für die Zuschreibung ‚wahr’/ ‚falsch‘ diskutiert. Dann werden nochmals die Aussagetypen näher untersucht. Ein Zusammenhang mit der modernen Aussagenlogik wird hergestellt. Disjunktion, Konjunktion (und ergänzend) Implikation) sind Aussagetypen, die aus zwei Teilausdrücken A und B bestehen, die selbst wieder Aussagen sind, die wahr oder falsch sein können. Die beiden Teilausdrücke A und B werden dann durch die Teilausdrücke (oder), (und) sowie (wenn)-(dann)- verknüpft. Sie unterscheiden sich dadurch, wie der Wahrheitswert des Gesamtausdrucks von der Verteilung der Wahrheitswerte auf die Teilausdrücke festgelegt ist. Die Teilausdrücke (oder), (und) sowie (wenn)-(dann)- nennt man später dann auch ‚aussagenlogische Operatoren‘. Der Aussagetyp ‚kategorisierend‘ passt nicht in dieses Schema. Der Aussagetyp ‚kategorisierend‘ ist eine Aussage A, die wahr oder falsch sein kann unabhängig von irgendeinem aussagenlogischen Operator. Auch wird die Verneinung/ Negation diskutiert. Ausdrücke wie (Etwas)(ist nicht)(dies)(oder)(jenes) wurden rekonstruiert als $latex \neg(A)(oder)(B)$ mit dem Zeichen $latex \neg$ für ’nicht‘ oder ‚es ist nicht der Fall, dass‘.

9. Im Abschnitt AVICENNAS ABHANDLUNG ZUR LOGIK – Teil 9 kommt Avicenna auf mehrere Begriffspaare zu sprechen, die sich z.T. mit Themen berühren, die er schon vorher besprochen hat, z.T. neue Aspekte thematisieren, die nicht so ohne weiteres mit dem bisher Gesagten harmonieren. Es handelt sich z.B. um die Begriffe ‚Kategorisch‘, ‚Negation‘, ‚Universal‘, ‚Partikulär‘, die aber jetzt mit neuen Randbedingungen nochmals diskutiert werden. So stellt er die Frage, wann ‚kategorischen‘ (‚kategorisierenden‘) Aussagen ‚affirmativ‘ und wann sie ’negativ‘ sind. Ferner führt er neben den bisherigen die semantisch motivierten Begriffe ‚Name‘, ‚Verb‘ (auch ‚Term‘ genannt), sowie ‚Präposition‘ nun auch das Begriffspaar ‚Subjekt‘ und ‚Prädikat‘. Auch diese sind ’semantisch‘ motiviert, d.h. nur durch Rückgriff auf die Bedeutung kann man zur Klassifikation ‚Subjekt‘ bzw. ‚Prädikat‘ kommen. In den soeben erwähnten Kontexten wie auch in nachfolgenden Beispielen diskutiert Avicenna auch die Begriffe ‚affirmativ‘ und ’negativ‘. Zwischendrin bemerkt er auch mal, dass das Treffen einer Feststellung, eigentlich nur Sinne mache, wenn dasjenige, von dem etwas ausgesagt wird, auch existiere. Doch wird dieser Punkt nicht weiter diskutiert. Vom Subjekt einer Aussage sagt Avicenna, dass es partikulär‘ oder ‚universell‘ sein kann. Falls universell, dann kann man unterscheiden, ob sie ‚unbestimmt‘ (engl.: ‚indeterminate‘) ist – wie viele genau involviert sind — oder eben ‚bestimmt‘ (engl.: ‚determinate‘). Ferner illustriert er am Beispiel der kategorisierenden Aussagen auch die Begriffe ’notwendig‘ und ‚kontingent‘. Diese Verwendung der Begriffe stimmt überein mit den zuvor eingeführten Begriffe ‚wesentlich‘ und ‚akzidentell‘. Auch erwähnt Avicenna den Begriff ‚möglich‘. Er sieht mindestens zwei Verwendungsweisen von ‚möglich‘: In der Diskussion dieses Abschnitts werden einerseits einige Widersprüchlichkeiten in den Ausführungen Avicennas sichtbar gemacht, andererseits wird die Rekonstruktion einer möglichen systematischen Theorie zur Logik Avicennas fortgesetzt. Die wichtigsten Kritikpunkte kreisen um das Begriffspaar ‚affirmativ – negativ‘ mit der Kritik, dass beide Begriffe auf unterschiedlichen semantischen Ebenen liegen. Ferner widerspricht die Handhabung der Quantoren durch Avicenna der allgemeinen Verwendung.

10. Im Abschnitt AVICENNAS ABHANDLUNG ZUR LOGIK – Teil 10 diskutiert Avicenna seine Begriffe ‚Konjunktives‘ und ‚Disjunktives Konditional‘ unter verschiedensten Aspekten. Einige davon sind die Quantoren (wobei er auch Quantoren über die Zeit benutzt!), das Begriffspaar ‚Antezedenz – Konsequenz‘, der Begriff der ‚Harmonie‘, und wiederholt die Aspekte ‚Existenz‘, ‚Affirmation‘ sowie ‚Bestimmt/ Unbestimmt‘. Alle diese Aspekte werden in diesem Blogeintrag schon ein wenig ‚vorsortiert‘, um dann im nachfolgenden Blogeintrag weiter rekonstruierend diskutiert zu werden.

11. Im Abschnitt AVICENNAS ABHANDLUNG ZUR LOGIK – Teil 11 erfolgt eine ‚rekonstruierende Diskussion‘ von Avicennas Überlegungen aus Blogeintrag 10. Seine Überlegungen werden aufgegriffen und in einen theoretischen Rahmen eingeordnet, der es erlaubt, die Begriffe schärfer zu fassen und sie dadurch besser voneinander abzugrenzen. Nach einer Übersicht über die Struktur der Aussagen erfolgt dann eine Rekonstruktion von Bedeutungszuordnungen und eine Erklärung von Begriffen wie ‚wahr’/ ‚falsch‘, ‚Existenz‘, und ‚möglich‘.

12. Im Abschnitt AVICENNAS ABHANDLUNG ZUR LOGIK – Teil 12 diskutiert Avicenna den Fall widersprüchlicher Aussagen. Gemessen an dem bisher Gesagten bringt er in diesem Abschnitt keine neuen Aspekte ins Spiel. Wohl aber bietet dieser Abschnitt weitere Beispiele für sein Auffassung des Sachverhalts. Sie belegen, wie schwer er sich durchgängig damit tut, in dem unscharfen Wechselspiel von Ausdrucksseite und Bedeutungsseite eine konstante Verwendungsweise seiner Begriffe durchzuhalten. In diesem Blogeintrag erfolgt die Diskussion seines Textes immer unmittelbar hinter jedem Punkt in Form einer Anmerkung.

13. Im Abschnitt AVICENNAS ABHANDLUNG ZUR LOGIK – Teil 13 diskutiert Avicenna die Möglichkeit der Konvertierung von Aussagen mit Quantoren in solche, deren Bedeutung trotz Veränderung von Ausdruckselementen ‚erhalten‘ bleibt. In einigen Beispielen widerspricht er sich selbst; manche Stellen sind unklar. Es zeigt sich allgemein: (i) die Formulierung von Konvertierungsregeln greift beständig auf bestimmte unterstellte Bedeutungen zurück und (ii) genau diese unterstellten Bedeutungen werden nicht hinreichend klar definiert. Daraus entsteht die Forderung, diese unterstellte Bedeutung klar zu definieren und auf dieser Basis alle logischen Ausdruckselemente eindeutig zu definieren (was im nachfolgenden Abschnitt dann unternommen wird).

14/14b. In den Blogeinträgen AVICENNAS ABHANDLUNG ZUR LOGIK – Teil 14 sowie AVICENNAS ABHANDLUNG ZUR LOGIK – Teil 14b geht es darum, erstmalig einen theoretischen Rahmen für eine Semantik zu formulieren, mit der man die Logik Avicennas konsistent entwickeln kann. Abschnitt 14b stellt eine Überarbeitung des Eingangsteils von Abschnitt 14 dar. Es hat sich gezeigt, dass die in 14b gewählte Begrifflichkeit für das weitere Vorgehen ‚günstiger‘ wirkt. Aber wir befinden uns noch in der Phase der ‚Annäherung‘ an das ‚Neue‘.

15. In dem Blogeintrag AVICENNAS ABHANDLUNG ZUR LOGIK – Teil 15 geht es um die Feinstruktur von Aussagen. Avicenna unterteilt ja Ausdrücke anhand inhaltlicher Kriterien nach Subjekt S, Prädikat P und ergänzend nach Quantoren Q. Es fragt sich, wie man diesen Ausdrucksteilen eine ‚Bedeutung‘ im Objektraum O zuordnen kann. Wichtig ist hier die schon früher getroffene Unterscheidung zwischen ‚echten‘ und ‚unechten‘ Objekten. ‚Unechte‘ Objekte wurden als ‚Eigenschaften‘ bezeichnet. Mit dieser Terminologie kann man sagen, dass die Objekthierarchie O primär von echten Objekten gebildet wird; unechte Objekte als Eigenschaften treten nur im Kontext eines echten Objekts auf. Damit kann man die begriffe ‚Gattung‘ und ‚Art‘ einführen. Gattungen, die keine Gattungen mehr ‚über sich‘ haben können, sollen hier ‚Kategorien‘ genannt werden. Setz man Definitionen von Worten voraus, dann kann man ach erklären, warum eine Aussage wie ‚a ist eine Tasse‘ ‚rein definitorisch‘ (bzw. ‚rein analytisch‘) ‚wahr ist, unabhängig davon, ob diesem gedanklichen Sachverhalt etwas Sinnliches entspricht. Im Gegensatz zu solch einer rein definitorischen (analytischen) Wahrheit eines Objekts a soll hier die ursprünglich vereinbarte ‚Wahrheit‘ durch Bezug auf eine ’sinnliche Gegebenheit‘ $latex s \subseteq Os$ ‚ontologische‘ Wahrheit genannt werden. Solange wir uns in unseren Aussagen auf das Enthaltensein eines Objektes a in einem Gattungsobjekts X beschränken ‚a ist ein X‘ oder das Feststellen von Eigenschaften der Art ‚a hat b‘ kann man sagen, dass eine Aussagestruktur wie (S P) wie folgt interpretiert werden kann: Es gibt einen Ausdruck A=(AsAp), bei dem ein Ausdrucksteil As sich auf ein echtes Objekt M(As) = $latex a \in Oa$ bezieht und der andere Ausdrucksteil Ap bezieht sich auf die Beziehung zwischen dem Objekt a und entweder einem Gattungsobjekt X (Ap = ‚ist ein X‘) oder auf eine Eigenschaft Y (Ap = ‚hat Y‘). Hierbei ist eine gewisse ‚Asymmetrie‘ zu beachten. Die Bedeutung vom Ausdrucksteil As – M(As) – bezieht sich auf eine ‚konkrete‘ Eigenschaftsstruktur innerhalb der Objekthierarchie. Die Bedeutung vom Ausdrucksteil Ap – M(Ap) – bezieht sich auf eine ‚Beziehung‘ / ‚Relation’/ ein ‚Verhältnis‘ [R] zwischen dem bezeichneten Bedeutungsobjekt M(As) = a und einem anderen bezeichneten Bedeutungsobjekt M(Ap), also R(M(As), M(Ap)). Die Beziehung R ist selbst kein ‚Objekt‘ so wie das Objekt a oder das implizit angenommene ‚Bezugsobjekt‘ X bzw. Y von a. Eine solche Beziehung R setzt – um prozessural ‚hantierbar‘ zu sein – eine zusätzliche ‚Objektebene‘ voraus, auf der es ein R-Objekt gibt, das die Beziehung zwischen dem a-Objekt und dem X-Y-Objekt ‚repräsentiert.

16. In dem Blogeintrag AVICENNAS ABHANDLUNG ZUR LOGIK – Teil 16 wird die Analyse der vorausgesetzten Objekthierarchie O und der damit interagierenden Ausdrucksstruktur E weiter analysiert. Nach der Analyse der Feinstruktur von (S P) werden die Aspekte Anzahl, Raum und Zeit betrachtet. Es wird gezeigt, wie man für diese Aspekte sowohl ‚globale Quantoren‘ wie auch ‚lokale Relationen‘ einführen kann; zudem ist die Wechselwirkung zwischen diesen Aspekten konfliktfrei, da sie voneinander unabhängig sind.

17. In dem Blogeintrag AVICENNAS ABHANDLUNG ZUR LOGIK – Teil 17 geht es um die Frage, wie man Aussagen über Veränderungen in der hypothetisch angenmmenen Bedeutungsstruktur nachzeichnen kann. Es lässt sich erkennen, dass die Kodierung von Veränderungen mittels Ausdruckselementen innerhalb eines Prädikates P mittels ‚Veränderungsausdrücken‘ V (‚Verben‘) oft nicht nur die beteiligten Objekte Y benennt, sondern zusätzlich zahlreiche weitere Ausdruckselemente aktiviert, die räumliche Gegebenheiten R_r bezeichnen, zeitliche Relationen R_t, zusätzliche Eigenschaften At an den Veränderungen; dazu ferner spezielle kulturelle Relationen R_x einbeziehen können sowie mit zusätzlichen Subjektrepräsentationen operieren. Auch kann man beobachten, wie die Aneinanderreihung von unterschiedlichen Sachverhalten (S P) mit logischen Operatoren (S P) UND (S2 P2) auch zu speziellen Verkürzungen führen kann wie (S P1 UND P2). Dies lässt erahnen, dass eine vollständige Analyse auch nur einer einzigen Alltagssprache von ihrer logisch relevanten Semantik her eine schier unendliche Aufgabe ist. Diese wird weder ein einzelner Mensch alleine noch viele Menschen über viele Genrationen hinweg jemals vollständig erfüllen können. Was aber möglich erscheint, das ist die Analyse des grundlegenden Mechanismus, der sich mit Hilfe von evolvierenden Computermodellen experimentell untersuchen und mit realen semiotischen Systemen überprüfen lässt.

18. In dem Blogeintrag AVICENNAS ABHANDLUNG ZUR LOGIK – Teil 18 weitet sich nun der Blick Avicennas auf das Wissen allgemein, und konzentriert sich im Wissen auf das schlussfolgernde Denken in Form von ‚beweisenden Syllogismen‘. Nach einer Definition von ‚Syllogismus‘ unterscheidet er dann zwei Arten von Syllogismen ‚Konjunktiver‘ Syllogismen und ‚Disjunktiver‘ Syllogismus. Am Beispiel des ‚Konjunktiven Syllogismus‘ führt Avicenna dann eine Reihe von technischen Begriffen ein. Dann stellt Avicenna zusätzliche Beschränkungen vor, um die 256 möglichen Figuren/ Muster auf nur 27 mögliche Muster einzuschränken. Alle seine Festlegungen geschehen ohne eigentliche Begründung.

19. In dem Blogeintrag AVICENNAS ABHANDLUNG ZUR LOGIK – Teil 19 beginnt die Diskussion um die Interpretation der syllogistischen Schlussfiguren am Beispiel der ersten Figur (A F B), (A B H) und (A F H) mit der Quantorenbelegung ‚AAA‘. In einzelnen Schritten wird dann eine erste Skizze zu einer Logik auf der Basis einer dynamischen Objektstruktur erarbeitet. Zentrale Begriffe sind hier OBJEKTIFIZIERUNG, ENTHALTENSEIN, ZUSCHREIBUNG und VERERBUNG. In dieser Skizze werden auch ‚Aktivitäten‘ berücksichtigt, die in dem Muster zur ersten Figur nicht vorkommen, zusätzlich werden neben den Anzahlquantoren auch Raum- und Zeitquantoren berücksichtigt.

20. In dem Blogeintrag AVICENNAS ABHANDLUNG ZUR LOGIK – Teil 20 geht es um die Interpretation des zweiten Musters der ersten syllogistischen Schlussfigur ‚A F ist B‘, ‚A B ist nicht H‘ (als ‚Kein A ist B‘), ‚A F ist nicht H‘ (als ‚Kein F ist H‘), dazu die Beispiele ‚Jeder ausgedehnte Körper ist farbig‘, ‚Kein farbiger Körper ist unerschaffen‘, ‚Kein ausgedehnter Körper ist unerschaffen‘. Wir treffen in diesem Muster wieder auf den Prozess der Objektifizierung, tatsächlich sogar in impliziten Formen mit der expliziten Angabe von Eigenschaften und der stillschweigenden Annahme einer daraus sich ergebenden Mengenbildung. Zusätzlich finden sich wieder Enthaltensbeziehungen einerseits anhand von Eigenschaftszuschreibungen, andererseits durch Benutzung von Anzahlquantoren. Die Zuschreibung von Eigenschaften wird explizit vorgenommen. Eine Vererbung von Eigenschaften von einer Menge zur anderen tritt nur implizit über eine Enthaltensbeziehung auf. Es tritt nur eine Sorte von Quantoren auf. Auch sei angemerkt, dass außer der Negation kein weiterer aussagenlogischer Operator auftritt.

21. In dem Blogeintrag AVICENNAS ABHANDLUNG ZUR LOGIK – Teil 21 geht es um die Interpretation der Muster 3-4 der Schlussfigur 1. Dabei entsteht die Vermutung, dass viele der Unterscheidungen von Avicenna (die weitgehend auf Aristoteles zurückgehen!) möglicherweise ‚redundant‘ sind, d.h. mit anderen Formulierungen letztlich doch ‚das Gleiche‘ sagen. Der Ansatzpunkt für diese Vermutung liegt darin begründet, dass die Unterscheidung von einem Term als ‚Subjekt‘ (S) und als ‚Prädikat‘ (P) auf Seiten der abstrakten Bedeutungsstruktur als Bedeutungsrepräsentation jeweils ein ‚echtes‘ oder ein ‚unechtes‘ Objekt haben können, und zwar so, dass diese Strukturen ‚fließend‘ sind: jedes ‚echte‘ Objekt kann als ‚unechtes‘ interpretiert werden und umgekehrt. Weitere Vereinfachungen deuten sich an. Diese sollen im Folgenden überprüft werden.

Fortsetzung folgt …

QUELLEN

  • Avicenna, ‚Avicennas Treatise on Logic‘. Part One of ‚Danesh-Name Alai‘ (A Concise Philosophical Encyclopedia) and Autobiography, edited and translated by Farang Zabeeh, The Hague (Netherlands): Martinus Nijhoff, 1971. Diese Übersetzung basiert auf dem Buch ‚Treatise of Logic‘, veröffentlicht von der Gesellschaft für Nationale Monumente, Serie12, Teheran, 1952, herausgegeben von M.Moien. Diese Ausgabe wiederum geht zurück auf eine frühere Ausgabe, herausgegeben von Khurasani.
  • Digital Averroes Research Environment
  • Immanuel Kant, Critik der reinen Vernunft‘, Riga, 1781
  • Konrad Lorenz, 1973, ‚Die Rückseite des Spiegels. Versuch einer Naturgeschichte des menschlichen Erkennens‘, München, Zürich: Piper
  • Günther Patzig, ‚Die Aristotelische Syllogistik‘, 3,verb.Aufl., Göttingen: Vandenhoeck & Rupprecht, 1969
  • Nicholas Rescher (1928 – ),The Development of Arabic Logic. University of Pittsburgh Press, 1964
  • Hans-Jörg Sandkühler (Hg.) unter Mitwirkung von Dagmar Borchers, Arnim Regenbogen, Volker Schürmann und Pirmin Stekeler-Weithofer, ‚Enzyklopädie Philosophie‘, 3 Bd., Hamburg: FELIX MEINER VERLAG, 2010 (mit CD-ROM)
  • Stanford Encyclopedia of Philosophy, Aristotle’s Logic
  • Whitehead, Alfred North, and Bertrand Russell, Principia Mathematica, 3 vols, Cambridge University Press, 1910, 1912, and 1913; Second edition, 1925 (Vol. 1), 1927 (Vols 2, 3). Abridged as Principia Mathematica to *56, Cambridge University Press, 1962.
  • Alfred North Whitehead; Bertrand Russell (February 2009). Principia Mathematica. Volume One. Merchant Books. ISBN 978-1-60386-182-3.
  • Alfred North Whitehead; Bertrand Russell (February 2009). Principia Mathematica. Volume Two. Merchant Books. ISBN 978-1-60386-183-0.
  • Alfred North Whitehead; Bertrand Russell (February 2009). Principia Mathematica. Volume Three. Merchant Books. ISBN 978-1-60386-184-7

Eine Übersicht über alle bisherigen Blogeinträge nach Titeln findet sich HIER.