Archiv für den Tag: 1. April 2016

NICK LANE – LIFE ASCENDING – BESPRECHUNG – Teil 1

Nick Lane, „Life Ascending“, London: Profile Books Ltd, 2009 (Paperback 2010)

KONTEXT

  1. Auf dem Weg zum neuen Menschenbild im Spannungsfeld zwischen biologischen und nicht-biologischen Systemen (letztere als Maschinen, insbesondere auch als intelligente Maschinen) stellen sich viele interessante Fragen. Grundlegend bleibt die Frage nach dem Unterschied zwischen biologischen und nicht-biologischen Systemen. Insbesondere erweist sich schon die Bestimmung des Biologischen als eigenes Problem. In den Wissenschaften wurde ja lange zwischen der belebten und der unbelebten Natur unterschieden, wurde eine Grenze zwischen Organischem und Anorganischem gezogen. Die Forschung der letzten 10 – 15 Jahre hat aber so viele neue Erkenntnisse zutage gefördert, dass der Übergang zwischen Belebtem und Unbelebtem immer fließender wird. Zumindest für den ersten Übergang von bloß chemischen zu schon biochemischen Prozessen gibt es mittlerweile sehr plausible Modelle und empirische Fakten, so dass der Weg von elementaren metabolischen Prozesszyklen zu komplexeren biologischen Prozessen der Selbstreplikation nicht mehr so aussichtslos erscheint, wie bislang. Dies eröffnet viele interessante Perspektiven.
  2. Das Buch von Nick Lane Life Ascending kann hier hilfreich sein: in gut lesbarer Weise, jedoch eng an den realen Forschungsprozessen orientiert, entwickelt er ein Bild des biologischen Lebens, das versucht, diese neuen Erkenntnisse zu berücksichtigen. Dieses Buch wurde mit viel Lob von führenden Fachzeitschriften und Wissenschaftlern bedacht, und bekam u.a. den Preis der Königlichen Gesellschaft (England) für das beste Wissenschaftsbuch 2010 (es gibt weitere Bücher von Lane, auch ein ganz neues von 2016, in denen unterschiedliche Aspekte des biologischen Lebens auf der Basis neuerer Erkenntnisse thematisiert werden).

EINFÜHRUNG (SS.1-7)

  1. Die großen Erkenntnisfortschritte der letzten Jahrzehnte wurden möglich, da die Methoden der Paläontologie und der Populationsgenetik mit neuen Methoden so erweitert werden konnten, dass man nun immer mehr die biochemischen Strukturen und Prozesse selbst erforschen kann, die den Lebewesen, den Zellen zugrunde liegen und die Zeugnis geben können von Ereignissen und Sachverhalten, die bis in die Frühzeit des Lebens (ca. bis -4 Mrd Jahre rückwärts) zurückreichen.
  2. Nick Lane versucht, diese wunderbare und ungeheuer spannende Geschichte der Entstehung der Lebensformen am Beispiel von 10 Ereignissen zu illustrieren, die er – aus seiner Sicht anhand selbst gewählter Kriterien – als die größten Erfindungen (“inventions‘) des Lebens identifiziert. So beginnt er mit der Entstehung des Lebens, beschreibt die DNA, dann die einmalige Erfindung der Photosynthese und der komplexen Zellen, beleuchtet dann die Rolle der Sexualität, der Bewegung, des Sehens, des warmen Blutes und schließlich das Phänomen des Bewusstseins und des Sterbens.

DIE ENTSTEHUNG DES LEBENS (SS.8-33)

  1. In diesem Kapitel geht es zentral um die Frage, wie es möglich war, dass sich auf der Erde, nachdem sie sich ein wenig beruhigt hatte, und die sogenannten Hadean Epoche (-4.5 Mrd bis – 3.8 Mrd) begonnen hatte, so schnell erste Spuren von Leben finden konnten. Einige Hypothesen gehen davon aus, dass sich schon ab -4 Mrd, erste Bakterien finden, sichere Befunde gibt es spätestens ab -3.4 Mrd. (vgl. S.8f); komplexere Zellen mit Zellkernen (Eukaryoten) finden sich dann aber erst ab ca. -1.4 Mrd bis -1.0 Mrd, also gut zwei  Mrd Jahre später. (S.9).
  2. Die Frage ist dann sinnvoll und spannend, wenn man davon ausgeht, dass sich die biologischen Formen aus den nicht-biologischen Strukturen im Rahmen der Naturgesetze entwickelt haben. Dann muss man Entstehungsprozesse identifizieren bzw. nachträglich rekonstruieren, die dies deutlich machen können. (vgl. S.9f)
  3. Der Vollständigkeit halber zitiert Lane das berühmte Miller-Urey Experiment von 1952 (publiziert 1953), bei dem aus einer Gasmischung mittels elektrischer Entladungen komplexe Moleküle gebildet werden konnten, die jenen ähneln, die man zu den biologischen zählt. Wie man heute weiß, entsprach die Gasmischung des Experiments aber nicht der Zusammensetzung auf der Erde in jener Zeit (vgl. SS.10-12). Ferner gelten für Moleküle und chemische Reaktionen die allgemeinen Gesetze der Thermodynamik; ohne spezielle Umgebungsbedingungen zerfallen Moleküle wieder. Wie eine solche Umgebungen aussehen sollte und ob sie so jemals bestanden hatte, sagte das Experiment nicht (vgl. SS.11-14)
  4. Auf der Suche nach geeigneten Umgebungen führte 1977 die Entdeckung von unterseeischen hydrothermalen Schloten zu einer gewissen Aufregung. Bis heute wurden ca. 200 solcher Schlote gefunden; alle zeichnen sich aus durch einen Überfluss an Leben. (vgl. S.14f) Brodelnde metallische Sulfide ergießen sich ins Wasser, alles sehr säurehaltig, Temperaturen mit bis 400 Grad. (vgl. S.15) In diesem thermodynamischen Ungleichgewicht kommen große Mengen an Schwefelwasserstoff vor. Aus diesem extrahieren Bakterien Wasserstoff (H) und verknüpfen ihn mit Kohlendioxid (CO2) und produzieren daraus organische Stoffe. Dies kostet Energie, die über Sauerstoff (O) zugeführt wird.(vgl. S.15) So interessant diese Umgebungen sind, vieles passte noch nicht so richtig zusammen.
  5. Vor diesem Hintergrund haben Michael J.Russell und Kollegen 1994 alternative Schlote (‚vents‘) vorausgesagt, unterseeische, alkaline hydrothermale Schlote, die eine umfassendere und nachhaltigere Umgebung für die Ausbildung frühen Lebens darstellen würden. Solche Schlote wurden dann 2000 tatsächlich entdeckt, bekannt gemacht ab ca. 2002. Sie wurden spontan Verschwundene Stadt (‚Lost City‘) getauft. Diese alkalische Schlote entstanden aus der Wechselwirkung zwischen Gestein und Seewasser: es sind poröse Gebilde mit unendlich vielen Kompartments, chemischen Verbindungen, und einem Temperaturgradient. (vgl. SS.20-23)
  6. Bei dem Versuch, ‚von unten nach oben‘, vom Einfachen zum Komplexeren Erklärungsmuster zu finden, die zu den komplexeren Strukturen hinführen, kann es auch hilfreich sein, vom bekannten Komplexen auszugehen und zu fragen, was haben alle bekannten reproduzierbaren biologischen Formen gemeinsam? Was sind universelle Kernprozesse? Lane verweist hier auf metabolische Prozesse bekannt als Krebs-Zyklus.(vgl. S.24) Der Krebs-Zyklus bildet die Basis aller eukaryontischen Zellen und ist reversibel. Er kann mit Hilfe von Energie Proteine erzeugen oder umgekehrt Energie. Bei eukaryontischen Zellen ist er in den Mitochondrien lokalisiert, bei prokaryotischen Zellen in der Zellmembran. Das wirkliche Besondere aber ist, dass seine Bestandteile und sein Zusammenbau chemischen Tendenzen der beteiligten Moleküle folgt (Morowitz!) und sich alle Zutaten, bis hin zur passenden Umgebung, in den erwähnten alkalischen hydrothermalen Schloten finden. (vgl. S.25f)
  7. In ähnliche Richtung argumentieren Martin & Russell: heutzutage sind nur 5 metabolische Prozesse bekannt, wie Pflanzen und Bakterien Wasserstoff (H) und Kohlendioxid (CO2) verarbeiten. Vier von Fünf verbrauchen ATP. Einer von fünf erzeugt Energie. Letzteres tun die Archaen.(Vgl. S.27) Dies verweist auf mögliche Vorläufer der Archaen um -4 Mrd Jahren, die über solche solche Prozesse verfügt haben müssen bzw. diese aufgebaut haben. Um aber Energie zu erzeugen, benötigten diese Vorfahren kleine Mengen von Startenergie. Dazu werden Katalysatoren wie Eisen, Nickel und Schwefel benötigt. Genauso diese sind aber in den unterseeischen Schloten vorhanden waren.(vgl. S.27f)
  8. Die elementaren Komponenten dieser Prozesse finden sich also in den unterseeischen Schloten wie auch als Grundbausteine im Krebs-Zyklus, der das Herz aller metabolischen Prozesse von späteren Zellen bildet (vgl. S.28). Als Energiebaustein wird allerdings noch nicht ATP erzeugt, sondern Acetylphosphat C2H5O5P, das aber genauso wie ATP funktioniert. Das Abfallprodukt der Phosphatübertragung ist Essig. (vgl. S.28f)
  9. Während der Energiegewinnungsprozess in den unterseeischen Schloten plausibel erscheint, stellt sich die Frage, wie der Prozess auch außerhalb der Schlote funktionieren kann, wo es keine hinreichende Umgebungsenergie gibt?(vgl. S.29f) Einen Schlüssel lieferte die Forschung von Peter Mitchell, der aufzeigte (Nobelpreis), dass die Produktion von ATP-Molekülen von einem differenzierten Membranprozess gesteuert wird, der durch den Gradientenprozess des Protonentransports mit sehr fein abgestimmten Dosierungen arbeiten kann. (vgl. 31f) Dieser Protonen-abhängige Gradient innerhalb der Chemiosmose findet sich in allen späteren Lebensformen und bot die Voraussetzung der Loslösung aus den alkalischen Schloten.(vgl. 32f)

DISKURS

  1. Ein Kennzeichen der neueren Diskussion ist die Tendenz, dass man sehr stark nach einer Einbettung der biologischen Prozesse in die Gesetze der allgemeinen Physik und Chemie sucht. Besonders zu erwähnen sind hier sicher Schmidt und Morowitz.
  2. Letztere gehen davon aus, dass die Thermodynamik einen Rahmen aufspannt, innerhalb dessen der Fluss freier Energie durch Zusammenfinden geeigneter chemischer Verbindungen verbessert und kontrolliert werden kann. Dies bedeutet, durch ein Zusammenwirken von thermodynamischen Gesetzen und Eigentendenzen der chemischen Verbindungen kommt es zur Ausbildung von speziellen chemischen Prozessketten, innerhalb deren energetisch hochwertigere Teilchen in immer tiefere energetische Zustände weitergereicht werden und dabei Wirkungen entfalten. Da alle Bestandteile zu den universell verfügbaren Grundbausteinen gehören und die Wirkungsgesetze allgemein sind, sind auch diese chemischen Prozessketten universell und sehr stabil.

Die Fortsetzung bildet ein Nachtrag zu Teil 1 als 1b

WEITERE QUELLEN/ LINKS (Selektiv)

  • Harold Morowitz: https://en.wikipedia.org/wiki/Harold_J._Morowitz (ein großes Thema: Wechselwirkung von Thermodynamik und Leben)
  • Michael J.Russel et al: http://www.gla.ac.uk/projects/originoflife/html/2001/pdf_articles.htm: The Origin of Life research project by Michael J. Russell & Allan J. Hall , University of Glasgow, May 2011
  • Krebs-Zyklus: https://en.wikipedia.org/wiki/Citric_acid_cycle
  • Martin W, Russell MJ., On the origin of biochemistry at an alkaline hydrothermal vent. , Philos Trans R Soc Lond B Biol Sci. 2007 Oct 29; 362(1486):1887-925.
  • Martin W, Baross J, Kelley D, Russell MJ., Hydrothermal vents and the origin of life., Nat Rev Microbiol. 2008 Nov; 6(11):805-14.
  • Harold Morowitz und Eric Smith , Energy flow and the organization of life , Journal Complexity archive, Vol. 13, Issue 1, September 2007, SS. 51 – 59 ,John Wiley & Sons, Inc. New York, NY, USA

Einen Überblick über alle Blogeinträge des Autors cagent nach Titeln findet sich HIER.