Archiv der Kategorie: Allgemein

GEMEINSAMKEIT IN DER VIELFALT – GRASWURZEL-/ BOTTOM-UP-PHILOSOPHIE – Memo zur philosophieWerkstatt vom 12.Okt.2014

Dieses Memo bezieht sich auf die philosophieWerkstatt v.2.0 vom 12.Okt.2014.

1. Ein neuer Ort, eine neue Zeit, neue Menschen …. die philosophieWerkstatt v2.0 ging an den Start und trotz schönem Wetter und vielen Grippeinfizierten gab es eine bunte Runde von Gesprächsteilnehmern die sich zu einem philosophischen Gespräch zusammen fanden.

2. In einer kleinen ‚Aufwärmphase‘ konnte jeder etwas von sich und seinen Erwartungen erzählen und es wurde ein erstes Begriffsfeld sichtbar, das von Vielfalt kündete und einen erkennbaren Zusammenhang noch vermissen lies (siehe nachfolgendes Bild).

Begriffe im Raum, unverbunden, der Anfang
Begriffe im Raum, unverbunden, der Anfang

3. Es stand die Frage im Raum, ob und wie man hier zu einem verbindlichen Zusammenhang kommen könne? Wie – hier vorgreifend auf das Ergebnis des Gespräches – das abschließende Gesprächsbild andeutet, kam es zu immer mehr Differenzierungen, wechselseitigen Abhängigkeiten, Verdichtungen und Abstraktionen, die – wenngleich noch zaghaft – eine erste Struktur andeuten, an der man bei einem Nachfolgegespräch weiter anknüpfen könnte.

Begriffe in einem beginnenden Zusammenhang, Umrisse einer Struktur
Begriffe in einem beginnenden Zusammenhang, Umrisse einer Struktur

BILDER VON DER WELT – BEDEUTUNG

4. Eine erste Wendung im Gespräch kam durch den Hinweis, dass die ‚Bedeutung‘, die wir von den ‚Ausdrücken‘ einer Sprache unterscheiden, ‚in unserem Kopf‘ zu verorten sei. Dort. ‚in unserem Kopf‘ haben wir ‚Bilder von der Welt‘ (‚Vorstellungen‘, ‚mentale Repräsentationen‘), die für uns ‚Eigenschaften der umgebenden Welt‘ repräsentieren.

VORWISSEN

5. Bald kam auch der Begriff des ‚Vorwissens‘, der ‚bisherigen Erfahrung‘, einer ‚Vorprägung‘ ins Spiel: gemeint war damit, dass wir in jedem Augenblick nicht vom Punkt Null beginnen, sondern schon Erfahrungen in der Vergangenheit gemacht haben, die auf die aktuelle ‚Wahrnehmung der Welt‘ einwirken: als ‚Erwartungen‘, als ‚Vor-Urteil‘, als ‚Übertragung‘.

SOZIALER DRUCK

6. Hier wurde auch darauf hingewiesen, dass die ‚Interpretation der Wahrnehmung‘ von anderen Menschen (‚Gruppenzwang‘, ‚gesellschaftliche Gewohnheiten/ Erwartungen‘, ‚Prüfungssituationen‘) zusätzlich beeinflusst werden kann. Während man normalerweise spontan (fast unbewusst) entscheidet, wie man eine Wahrnehmung interpretieren soll (obgleich sie vieldeutig sein kann), kann dieser Prozess unter sozialem Druck gestört werden; wie zögern, werden unsicher, bemerken, dass die Situation vielleicht nicht eindeutig ist, und suchen dann nach Anhaltspunkten, z.B. nach den Meinungen der anderen. Oft ist es so, dass die ‚Mehrheit‘ besser ist als die Meinung eines einzelnen; die Mehrheit kann aber auch völlig daneben liegen (berühmtes Galileo-Beispiel).

ÄHNLICHKEITEN ZWISCHEN PERSONEN

7. Die Frage war, wie es denn überhaupt zu ‚Ähnlichkeiten‘ zwischen Personen kommen kann, wenn jeder seine Bilder im Kopf hat?

8. Ein Schlüssel scheint darin zu liegen, dass jeder seine Bilder in seinem Kopf anlässlich der Gegebenheiten der umgebenden Welt ‚formt‘. Sofern die umgebende Welt für alle die ‚gleiche‘ ist, lässt sich von daher eine gewisse Ähnlichkeit der Bilder motivieren.

9. Zusätzlich gibt es aber auch die Sachlage, dass die Körper der Menschen mit ihren Organen und Prozessen, insbesondere mit ihrem Gehirn und den darauf basierenden Information verarbeitenden Prozessen, eine gewisse Ähnlichkeit zwischen allen Menschen aufweisen, so dass auch dadurch Ähnlichkeiten zwischen den Bildern im Kopf begünstigt werden.

BEGRENZUNG DES BEWUSSTSEINS

10. In der neuzeitlichen Orientierung am Bewusstsein als primärer Erkenntnisquelle (ungefähr seit Descartes und später bis zur Phänomenologie) gab es keine Ansatzpunkte, um diese implizite ‚Harmonie der Körper und Erkenntnisse‘ aufzuhellen. Die antike Philosophie – insbesondere Aristoteles und seine Schüler – hatte zwar Ansatzpunkte, die Erkenntnisse über die Welt einzubeziehen, aber die damaligen ‚Welterkenntnisse‘ reichten nicht aus, um das moderne empirische Wissen über die physikalische, chemische, biologische und kulturelle Evolution vorweg zu nehmen. Erst mit den neuen Wissenschaften und einer davon inspirierten Strömung einer ‚evolutionär inspirierten‘ Erkenntnistheorie und Philosophie lieferte erste sachdienliche Hinweise, dass die unübersehbare ‚Harmonie der Körper‘ auch ein Grund für die Ähnlichkeit zwischen den Bildern in den verschiedenen Köpfen sein kann.

SCHLÜSSEL EVOLUTION

11. Mehr noch, die verblüffende ‚Passung‘ von menschlicher Erkenntnis zur ‚umgebenden Welt‘ ist letztlich vollständig induziert von einer evolutionären Entwicklung, in der sich nur solche Organismen ‚durchsetzen‘ konnten, die relativ am besten die ‚lebensfördernden Eigenschaften‘ der umgebenden (aber auch in sich sich verändernden) Welt aufgreifen und nutzen konnten.

12. Wenn man davon sprechen kann, dass der Menschen ein ‚Ebenbild‘ sei, wie es biblische Texte nahelegen (hier ohne kritischen Kommentar), dann zunächst mal ein Ebenbild der vorgegebenen Erde als Teil eines Sonnensystems als Teil einer Galaxie als Teil eines BigBang-Universums (Weiterreichende Interpretationen sind damit per se noch nicht ausgeschlossen).

BILDER IM KOPF vs. WELT

13. Es wurde auch festgestellt, dass man zwischen den ‚Bildern von der Welt im Kopf‘ und den ’sprachlichen Ausdrücken‘ unterscheiden muss.

ALLGEMEINBEGRIFFE

14. Die ‚Bilder von der Welt‘ repräsentieren irgendwie (mal mehr, mal weniger ‚passend‘) die ‚Gegebenheiten‘ der umgebenden Welt. Dies geschieht durch eine ‚denkerische‘ Mixtur aus ’sinnlicher Erfahrung von Einzelnem‘ und ‚denkerischer Abstraktion von Allgemeinheiten‘, so dass wir in jedem Moment zwar einen einzelnen konkreten Gegenstand identifizieren können, zugleich aber auch immer einen ‚allgemeinen Begriff‘, eine ‚Kategorie‘ zur Verfügung haben, die anhand von ‚abstrahierten Eigenschaften‘ einzelne Gegenstände als ‚Beispiele‘ (‚Instanzen‘) einer allgemeinen Struktur erscheinen lässt. Unser Denken lässt gar nichts anderes zu; es ‚zwingt‘ uns zur ‚automatischen‘ (‚unbewussten‘) Konstruktion von ‚Allgemeinbegriffen‘.

SPRACHE UND DING

15. Es wurde darauf hingewiesen, dass wir ja auch verschiedene Sprachen sprechen und dass möglicherweise die ‚Bilder im Kopf‘ bis zu einem gewissen Grade unabhängig von der verwendeten Sprache sind. Deswegen können wir auch zwischen den Sprachen übersetzen! Weil die körpergebundenen Sachstrukturen – bis zu einem gewissen Grade – sprachunabhängig gegeben sind und sich ‚aufbauen‘, können die Ausdrücke einer Sprache L darauf Bezug nehmen und durch andere ‚bedeutungsgleiche‘ Ausdrücke ‚ersetzt werden.

VERÄNDERLICHE WELT vs. STATISCHE BILDER

16. Die ‚Bedeutung‘ sprachlicher Ausdrücke (ihre ‚Semantik‘) begründet sich also von den körperbedingten Objektstrukturen her. Wenn nun die umgebende Welt sich ändert (Prozess, Geschichte, Evolution, …), dann ändern sich zwar die Sachstrukturen in der Welt, nicht aber unbedingt synchron die Bilder im Kopf eines Menschen. Damit entsteht das, was wir oft erleben: Menschen benutzen Ausdrücke einer Sprache L, ‚Begriffe‘, ‚Termini‘, die sie mit bestimmten ‚Bildern im Kopf‘ verknüpfen (assoziieren), aber diese Bilder können ‚veraltet‘ sein, da sich die Gegebenheiten in der Welt mittlerweile verändert haben (im Gespräch wurde der Ausdruckswandel des Begriffs ‚Student‘ angesprochen).

EINFACH vs. KOMPLEX

17. Vor dem Hintergrund einer ‚erlernten‘ Bedeutung kann es dann passieren, dass die ‚erlernten‘ Bedeutungen aus einer früheren Zeit die Welt ‚einfacher‘ erscheinen lassen als die gegenwärtige Welt mit ihrer wachsenden Vielfalt (es standen die Bemerkungen im Raum, dass Mädchen und junge Frauen es früher ‚einfacher‘ gehabt haben sollen als Mädchen und junge Frauen heute).

WAS IST WAHRHEIT?

18. An diesem Punkt im Gespräch angekommen stellte sich nochmals die Frage nach der ‚Wahrheit‘, ein Begriff, der ganz am Anfang etwas isoliert im Raum stand.

19. Ausgangspunkt ist die alltägliche Beobachtung, dass wir manchen Aussagen als ‚richtig‘, manche als ‚falsch‘ bezeichnen. Dies knüpft an dem Umstand an, dass ‚Behauptungen über die Gegebenheiten der Welt‘ bis zu einem gewissen Grade ‚überprüfbar‘ sind. D.h. es scheint, dass wir die ‚Bilder in unserem Kopf‘ mit den sinnlich wahrnehmbaren Gegebenheiten der umgebenden Welt bis zu einem gewissen Grad so ‚vergleichen‘ können, dass wir eine ‚Übereinstimmung‘ oder ‚Nicht-Übereinstimmung‘ feststellen können, und zwar alle Menschen in gleicher Weise.

20. Wenn wir diesen grundsätzlichen Sachverhalt zum Ausgangspunkt nehmen, dann würde der Begriff ‚Wahrheit‘ in diesem Kontext bedeuten, dass eine Aussage mit ’sinnlicher Bestätigung‘ sowohl ‚richtig‘ als auch ‚wahr‘ wäre bzw. — falls keine Übereinstimmung vorliegt –, ’nicht richtig‘ bzw. ‚falsch‘ bzw. ’nicht wahr‘ wäre.

21. Bei diesem Interpretationsansatz werden damit die ‚Gegebenheiten der Welt‘ zum Ausgangspunkt, zur ‚Vorgabe‘, zum ‚Maßstab‘, an dem wir uns letztlich orientieren. Davon abgeleitet könnte man dann auch – ganz im Sinne der antiken Metaphysik und Ontologie – davon sprechen, dass ‚das Seiende‘, wie es uns – in gewissem Sinne ‚a priori‘ – vorgegeben ist, das ‚Wahre‘, die ‚Wahrheit‘ verkörpert, an der wir uns orientieren müssen, wollen wir im Sinn der Welt/ des Sonnensystems/ der Galaxie/ des BigBang-Universums/ des … ‚wahr‘ sein. Empirische Wissenschaft ist dann nichts anderes als antike Metaphysik (dafür gäbe es noch mehr Argumente).

22. Eine solcherart (ontologisch) verstandene Wahrheit ist dann nicht beliebig, sondern eher ‚verpflichtend‘: wer das ‚Leben‘ ‚achtet‘ und ‚liebt‘ muss sich eigentlich an dieser Wahrheit orientieren. Dies wäre damit auch die mögliche Begründung einer ‚Ethik des Lebens‘, die sich z.B. als ‚ökologisches Denken‘ manifestiert.

ANALYTISCH WAHRHEIT

23. Wenn wir annehmen, dass wir zu einem bestimmten Zeitpunkt ‚Bilder im Kopf‘ von der umgebenden Welt haben und wir diese Bilder als ‚zutreffen‘ – sprich als ‚wahr‘ – betrachten, dann können wir oft auch auf der Basis dieser vorausgesetzten Bilder ‚Schlüsse ziehen‘. Berühmt sind die Beispiele mit Syllogismen wie (Annahme 1) ‚Alle Menschen sind sterblich‘, (Annahme2:) ‚Sokrates ist ein Mensch‘, (Schluß:) ‚Sokrates ist sterblich‘. Nimmt man an, dass Annahme 1 und 2 ‚wahr‘ sind, dann folgt ‚analytisch‘ (ohne Bezug auf die aktuelle empirische Welt), der Schluss. Die Wissenschaft der Logik arbeitet im Prinzip nur mit solchen analytischen Schlüssen und ihren möglichen (formalen) Formen. Sie weiß als Wissenschaft der Logik nichts von der Welt (was sich auch darin auswirkt/ auswirken kann, dass sie formale Strukturen entwickelt, die mehr oder weniger ‚unbrauchbar‘ für das weltbezogene Alltagsdenken sind).

ALLE SIND TRÄGER DER WAHRHEIT

24. Rückblickend zu diesem Gespräch kann man also sagen, dass letztlich jeder Stücke der allgemeinen Wahrheit mit sich herum trägt und dass es eigentlich nur darauf ankommt, diese einzelnen Fragmente zusammen zu sammeln und sie in rechter Weise ‚zusammen zu fügen’… Graswurzel-Philosophie … Bottom-Up Philosophie … induktives Denken …

Die Ankündigung zur nächsten Sitzung am 9.Nov.2014 findet sich HIER.

Für einen Überblick über alle Blogeinträge zur Philosophiewerkstatt siehe HIER

Für einen Überblick über alle Blogeinträge nach Titeln siehe HIER

AVICENNAS ABHANDLUNG ZUR LOGIK – BLITZÜBERSICHT

(Letzte Änderung 14.Okt.2014, 06:11h )

Da die rekonstruierende Lektüre zu Avicennas Abhandlung zur Logik ein immer größeres Ausmaß annimmt, erweist sich die Methode, jeden einzelnen Beitrag mit einem Überblick über die vorausgehenden Beiträge einzuleiten, als immer weniger praktikabel. Deswegen wird jetzt ein eigener Blogeintrag als Referenzpunkt für diesen Überblick gewählt. Dies bedeutet, dass künftig alle nachfolgenden Beiträge einleitend (für die ‚Vorgeschichte‘), auf diesen Blogeintrag verweisen werden. Es ist zu beachten, dass diese Übersicht nur eine Übersicht über die wichtigsten Begriffe und Themen ist ohne alle Details und normalerweise auch ohne die ausführliche Diskussion von Avicennas Gedanken. Diese finden sich nur in den Blogeinträgen selbst, auf die verwiesen wird.

1. In einem ersten Beitrag AVICENNAS ABHANDLUNG ZUR LOGIK – Teil 1 hatte ich geschildert, wie ich zur Lektüre des Textes von Avicenna gekommen bin und wie der Text grob einzuordnen ist.

2. In einem zweiten Beitrag AVICENNAS ABHANDLUNG ZUR LOGIK – Teil 2 ging es um die Frage, warum überhaupt Logik? Avicenna führt erste Unterscheidungen zu verschiedenen Wissensformen ein, lässt aber alle Detailfragen noch weitgehend im Dunkeln.

3. Im Teil AVICENNAS ABHANDLUNG ZUR LOGIK – Teil 3 ging es um einfache und zusammengesetzte Begriffe, und bei den einfachen Begriffen um ‚individuelle‘ und ‚universelle‘. Schon hier zeigt sich der fundamentale Unterschied zwischen der antiken und der modernen-formalen Logik. In der antiken Logik wird die Ausdrucksebene E – und einer sich daran manifestierenden Folgerungslogik – immer in Verbindung mit einer zugehörigen Bedeutungsstruktur gesehen, die sich an einer Objektstruktur O festmacht. Die moderne formale Logik kennt zwar auch ‚Semantiken‘ und ‚Ontologien‘, diese sind aber ’sekundär‘, d.h. es werden nur solche ‚formalen Semantiken‘ betrachtet, die zum vorausgesetzten syntaktischen Folgerungsbegriff ‚passen‘. Dies sollte dann später an konkreten Beispielen diskutiert werden. Hier liegt der Fokus auf der antiken Logik im Sinne Avicennas.

4. Im Abschnitt AVICENNAS ABHANDLUNG ZUR LOGIK – Teil 4 knüpft Avicenna an den zuvor eingeführten Begriff des ‚universellen‘ Begriffs an und betrachtet jetzt solche als ‚universell‘ bezeichneten Ausdrücke in einem Ausdruckskontext von aufeinanderfolgenden Ausdrücken. Alle diese Ausdrücke könnte man im Sinne der antiken Logik auch als ‚Urteile‘ bezeichnen, durch die einem bestimmten Ausdruck durch andere Ausdrücke bestimmte Bedeutungen (Eigenschaften) zu- oder abgesprochen werden. Hier unterscheidet er die Fälle eines ‚wesentlichen‘ Zusammenhanges zwischen zwei Begriffen und eines ’nicht wesentlichen‘ – sprich ‚akzidentellen‘ – Zusammenhangs.

5. Im Abschnitt AVICENNAS ABHANDLUNG ZUR LOGIK – Teil 5 führt Avicenna eine Reihe von neuen technischen Begriffen ein, die sich nicht alle in ihrer Bedeutung widerspruchsfrei auflösen lassen. Es handelt sich um die Begriffe ‚Genus‘, ‚Spezies‘, Differenz, allgemeine und spezielle Akzidens, den Begriff ‚Kategorie(n)‘ mit den Kategorien ‚Substanz‘, ‚Qualität‘ und ‚Quantität‘. Die Rekonstruktion führt dennoch zu spannenden Themen, z.B. zu einem möglichen Einstieg in das weltverändernde Phänomen der kognitiven Evolution.

6. Im Abschnitt AVICENNAS ABHANDLUNG ZUR LOGIK – Teil 6 geht es um die Begriffe ‚Definition‘ und ‚Beschreibung‘. Im Verhältnis zwischen beiden Begriffen geht die Beschreibung der Definition voraus. In der ‚Definition‘, die Avicenna vorstellt, wird ein neuer Ausdruck e mittels anderer Ausdrücke <e1, …, ek>, die sich auf schon bekannte Sachverhalte beziehen, ‚erklärt‘. Die von Avicenna dann vorgenommene Erklärung, was eine ‚Definition‘ sei, hängt u.a. stark ab von dem Begriff der ‚Bekanntheit‘ und dem Begriff des ‚wahren Wesens‘. Für die Tatsache, dass ein Mensch A bestimmte Ausdrücke <e1, …, ek> einer Sprache L ‚kennt‘ oder ’nicht kennt‘, dafür gibt es keine allgemeinen Regeln oder Kriterien. Von daher macht die Verwendung der Ausdrücke ‚bekannt’/ ’nicht bekannt‘ eigentlich nur Sinn in solch einem lokalen Kontexten W* (z.B. einem Artikel, ein Buch, ein Vortrag, …), in dem entscheidbar ist, ob ein bestimmter Ausdruck e einer Sprache L schon mal vorkam oder nicht. Schwierig wird es mit dem Begriff des ‚wahren Wesens‘. In meiner Interpretation mit der dynamischen Objekthierarchie gibt es ‚das wahre Wesen‘ in Form von Objekten auf einer Stufe j, die Instanzen auf Stufen kleiner als j haben. Dazu gab es weitere Überlegungen.

7. Im folgenden Abschnitt AVICENNAS ABHANDLUNG ZUR LOGIK – Teil 7 beschreibt Avicenna syntaktisch zusammengesetzte, aber semantisch einfache Ausdrücke. Innerhalb der Ausdrücke unterscheidet er die Teileausdrücke ‚Name‘, ‚Verb‘ und ‚Präposition‘. Die unterschiedliche Charakterisierung erfolgt nicht aufgrund der syntaktischen Form, sondern aufgrund der semantischen Eigenschaften, die mit diesen Ausdrücken verbunden werden. Neben dem Objektbezug, der die eigentliche Bedeutung fundiert, gibt es im Bedeutungsraum auch noch den zeitlichen und den räumlichen Aspekt. Das Zusammenspiel von Bedeutung und Ausdruck wird angerissen.

8. Im Abschnitt AVICENNAS ABHANDLUNG ZUR LOGIK – Teil 8 geht es um solche Ausdrücke E, die ‚Aussagen‘ P sind, von denen man sagt, dass sie ‚wahr‘ oder ‚falsch‘ seien. Aussagen sind eine echte Teilmenge aller Ausdrücke, $latex P \subset E$. Avicenna unterscheidet drei Arten von Aussagen: ‚kategorische‘ Aussagen, ‚Disjunktiv-konditionelle‘ und ‚Konjunktiv-konditionelle‘. Es wird ausführlich eine mögliche Wahrheitstheorie für die Zuschreibung ‚wahr’/ ‚falsch‘ diskutiert. Dann werden nochmals die Aussagetypen näher untersucht. Ein Zusammenhang mit der modernen Aussagenlogik wird hergestellt. Disjunktion, Konjunktion (und ergänzend) Implikation) sind Aussagetypen, die aus zwei Teilausdrücken A und B bestehen, die selbst wieder Aussagen sind, die wahr oder falsch sein können. Die beiden Teilausdrücke A und B werden dann durch die Teilausdrücke (oder), (und) sowie (wenn)-(dann)- verknüpft. Sie unterscheiden sich dadurch, wie der Wahrheitswert des Gesamtausdrucks von der Verteilung der Wahrheitswerte auf die Teilausdrücke festgelegt ist. Die Teilausdrücke (oder), (und) sowie (wenn)-(dann)- nennt man später dann auch ‚aussagenlogische Operatoren‘. Der Aussagetyp ‚kategorisierend‘ passt nicht in dieses Schema. Der Aussagetyp ‚kategorisierend‘ ist eine Aussage A, die wahr oder falsch sein kann unabhängig von irgendeinem aussagenlogischen Operator. Auch wird die Verneinung/ Negation diskutiert. Ausdrücke wie (Etwas)(ist nicht)(dies)(oder)(jenes) wurden rekonstruiert als $latex \neg(A)(oder)(B)$ mit dem Zeichen $latex \neg$ für ’nicht‘ oder ‚es ist nicht der Fall, dass‘.

9. Im Abschnitt AVICENNAS ABHANDLUNG ZUR LOGIK – Teil 9 kommt Avicenna auf mehrere Begriffspaare zu sprechen, die sich z.T. mit Themen berühren, die er schon vorher besprochen hat, z.T. neue Aspekte thematisieren, die nicht so ohne weiteres mit dem bisher Gesagten harmonieren. Es handelt sich z.B. um die Begriffe ‚Kategorisch‘, ‚Negation‘, ‚Universal‘, ‚Partikulär‘, die aber jetzt mit neuen Randbedingungen nochmals diskutiert werden. So stellt er die Frage, wann ‚kategorischen‘ (‚kategorisierenden‘) Aussagen ‚affirmativ‘ und wann sie ’negativ‘ sind. Ferner führt er neben den bisherigen die semantisch motivierten Begriffe ‚Name‘, ‚Verb‘ (auch ‚Term‘ genannt), sowie ‚Präposition‘ nun auch das Begriffspaar ‚Subjekt‘ und ‚Prädikat‘. Auch diese sind ’semantisch‘ motiviert, d.h. nur durch Rückgriff auf die Bedeutung kann man zur Klassifikation ‚Subjekt‘ bzw. ‚Prädikat‘ kommen. In den soeben erwähnten Kontexten wie auch in nachfolgenden Beispielen diskutiert Avicenna auch die Begriffe ‚affirmativ‘ und ’negativ‘. Zwischendrin bemerkt er auch mal, dass das Treffen einer Feststellung, eigentlich nur Sinne mache, wenn dasjenige, von dem etwas ausgesagt wird, auch existiere. Doch wird dieser Punkt nicht weiter diskutiert. Vom Subjekt einer Aussage sagt Avicenna, dass es partikulär‘ oder ‚universell‘ sein kann. Falls universell, dann kann man unterscheiden, ob sie ‚unbestimmt‘ (engl.: ‚indeterminate‘) ist – wie viele genau involviert sind — oder eben ‚bestimmt‘ (engl.: ‚determinate‘). Ferner illustriert er am Beispiel der kategorisierenden Aussagen auch die Begriffe ’notwendig‘ und ‚kontingent‘. Diese Verwendung der Begriffe stimmt überein mit den zuvor eingeführten Begriffe ‚wesentlich‘ und ‚akzidentell‘. Auch erwähnt Avicenna den Begriff ‚möglich‘. Er sieht mindestens zwei Verwendungsweisen von ‚möglich‘: In der Diskussion dieses Abschnitts werden einerseits einige Widersprüchlichkeiten in den Ausführungen Avicennas sichtbar gemacht, andererseits wird die Rekonstruktion einer möglichen systematischen Theorie zur Logik Avicennas fortgesetzt. Die wichtigsten Kritikpunkte kreisen um das Begriffspaar ‚affirmativ – negativ‘ mit der Kritik, dass beide Begriffe auf unterschiedlichen semantischen Ebenen liegen. Ferner widerspricht die Handhabung der Quantoren durch Avicenna der allgemeinen Verwendung.

10. Im Abschnitt AVICENNAS ABHANDLUNG ZUR LOGIK – Teil 10 diskutiert Avicenna seine Begriffe ‚Konjunktives‘ und ‚Disjunktives Konditional‘ unter verschiedensten Aspekten. Einige davon sind die Quantoren (wobei er auch Quantoren über die Zeit benutzt!), das Begriffspaar ‚Antezedenz – Konsequenz‘, der Begriff der ‚Harmonie‘, und wiederholt die Aspekte ‚Existenz‘, ‚Affirmation‘ sowie ‚Bestimmt/ Unbestimmt‘. Alle diese Aspekte werden in diesem Blogeintrag schon ein wenig ‚vorsortiert‘, um dann im nachfolgenden Blogeintrag weiter rekonstruierend diskutiert zu werden.

11. Im Abschnitt AVICENNAS ABHANDLUNG ZUR LOGIK – Teil 11 erfolgt eine ‚rekonstruierende Diskussion‘ von Avicennas Überlegungen aus Blogeintrag 10. Seine Überlegungen werden aufgegriffen und in einen theoretischen Rahmen eingeordnet, der es erlaubt, die Begriffe schärfer zu fassen und sie dadurch besser voneinander abzugrenzen. Nach einer Übersicht über die Struktur der Aussagen erfolgt dann eine Rekonstruktion von Bedeutungszuordnungen und eine Erklärung von Begriffen wie ‚wahr’/ ‚falsch‘, ‚Existenz‘, und ‚möglich‘.

12. Im Abschnitt AVICENNAS ABHANDLUNG ZUR LOGIK – Teil 12 diskutiert Avicenna den Fall widersprüchlicher Aussagen. Gemessen an dem bisher Gesagten bringt er in diesem Abschnitt keine neuen Aspekte ins Spiel. Wohl aber bietet dieser Abschnitt weitere Beispiele für sein Auffassung des Sachverhalts. Sie belegen, wie schwer er sich durchgängig damit tut, in dem unscharfen Wechselspiel von Ausdrucksseite und Bedeutungsseite eine konstante Verwendungsweise seiner Begriffe durchzuhalten. In diesem Blogeintrag erfolgt die Diskussion seines Textes immer unmittelbar hinter jedem Punkt in Form einer Anmerkung.

13. Im Abschnitt AVICENNAS ABHANDLUNG ZUR LOGIK – Teil 13 diskutiert Avicenna die Möglichkeit der Konvertierung von Aussagen mit Quantoren in solche, deren Bedeutung trotz Veränderung von Ausdruckselementen ‚erhalten‘ bleibt. In einigen Beispielen widerspricht er sich selbst; manche Stellen sind unklar. Es zeigt sich allgemein: (i) die Formulierung von Konvertierungsregeln greift beständig auf bestimmte unterstellte Bedeutungen zurück und (ii) genau diese unterstellten Bedeutungen werden nicht hinreichend klar definiert. Daraus entsteht die Forderung, diese unterstellte Bedeutung klar zu definieren und auf dieser Basis alle logischen Ausdruckselemente eindeutig zu definieren (was im nachfolgenden Abschnitt dann unternommen wird).

14/14b. In den Blogeinträgen AVICENNAS ABHANDLUNG ZUR LOGIK – Teil 14 sowie AVICENNAS ABHANDLUNG ZUR LOGIK – Teil 14b geht es darum, erstmalig einen theoretischen Rahmen für eine Semantik zu formulieren, mit der man die Logik Avicennas konsistent entwickeln kann. Abschnitt 14b stellt eine Überarbeitung des Eingangsteils von Abschnitt 14 dar. Es hat sich gezeigt, dass die in 14b gewählte Begrifflichkeit für das weitere Vorgehen ‚günstiger‘ wirkt. Aber wir befinden uns noch in der Phase der ‚Annäherung‘ an das ‚Neue‘.

15. In dem Blogeintrag AVICENNAS ABHANDLUNG ZUR LOGIK – Teil 15 geht es um die Feinstruktur von Aussagen. Avicenna unterteilt ja Ausdrücke anhand inhaltlicher Kriterien nach Subjekt S, Prädikat P und ergänzend nach Quantoren Q. Es fragt sich, wie man diesen Ausdrucksteilen eine ‚Bedeutung‘ im Objektraum O zuordnen kann. Wichtig ist hier die schon früher getroffene Unterscheidung zwischen ‚echten‘ und ‚unechten‘ Objekten. ‚Unechte‘ Objekte wurden als ‚Eigenschaften‘ bezeichnet. Mit dieser Terminologie kann man sagen, dass die Objekthierarchie O primär von echten Objekten gebildet wird; unechte Objekte als Eigenschaften treten nur im Kontext eines echten Objekts auf. Damit kann man die begriffe ‚Gattung‘ und ‚Art‘ einführen. Gattungen, die keine Gattungen mehr ‚über sich‘ haben können, sollen hier ‚Kategorien‘ genannt werden. Setz man Definitionen von Worten voraus, dann kann man ach erklären, warum eine Aussage wie ‚a ist eine Tasse‘ ‚rein definitorisch‘ (bzw. ‚rein analytisch‘) ‚wahr ist, unabhängig davon, ob diesem gedanklichen Sachverhalt etwas Sinnliches entspricht. Im Gegensatz zu solch einer rein definitorischen (analytischen) Wahrheit eines Objekts a soll hier die ursprünglich vereinbarte ‚Wahrheit‘ durch Bezug auf eine ’sinnliche Gegebenheit‘ $latex s \subseteq Os$ ‚ontologische‘ Wahrheit genannt werden. Solange wir uns in unseren Aussagen auf das Enthaltensein eines Objektes a in einem Gattungsobjekts X beschränken ‚a ist ein X‘ oder das Feststellen von Eigenschaften der Art ‚a hat b‘ kann man sagen, dass eine Aussagestruktur wie (S P) wie folgt interpretiert werden kann: Es gibt einen Ausdruck A=(AsAp), bei dem ein Ausdrucksteil As sich auf ein echtes Objekt M(As) = $latex a \in Oa$ bezieht und der andere Ausdrucksteil Ap bezieht sich auf die Beziehung zwischen dem Objekt a und entweder einem Gattungsobjekt X (Ap = ‚ist ein X‘) oder auf eine Eigenschaft Y (Ap = ‚hat Y‘). Hierbei ist eine gewisse ‚Asymmetrie‘ zu beachten. Die Bedeutung vom Ausdrucksteil As – M(As) – bezieht sich auf eine ‚konkrete‘ Eigenschaftsstruktur innerhalb der Objekthierarchie. Die Bedeutung vom Ausdrucksteil Ap – M(Ap) – bezieht sich auf eine ‚Beziehung‘ / ‚Relation’/ ein ‚Verhältnis‘ [R] zwischen dem bezeichneten Bedeutungsobjekt M(As) = a und einem anderen bezeichneten Bedeutungsobjekt M(Ap), also R(M(As), M(Ap)). Die Beziehung R ist selbst kein ‚Objekt‘ so wie das Objekt a oder das implizit angenommene ‚Bezugsobjekt‘ X bzw. Y von a. Eine solche Beziehung R setzt – um prozessural ‚hantierbar‘ zu sein – eine zusätzliche ‚Objektebene‘ voraus, auf der es ein R-Objekt gibt, das die Beziehung zwischen dem a-Objekt und dem X-Y-Objekt ‚repräsentiert.

16. In dem Blogeintrag AVICENNAS ABHANDLUNG ZUR LOGIK – Teil 16 wird die Analyse der vorausgesetzten Objekthierarchie O und der damit interagierenden Ausdrucksstruktur E weiter analysiert. Nach der Analyse der Feinstruktur von (S P) werden die Aspekte Anzahl, Raum und Zeit betrachtet. Es wird gezeigt, wie man für diese Aspekte sowohl ‚globale Quantoren‘ wie auch ‚lokale Relationen‘ einführen kann; zudem ist die Wechselwirkung zwischen diesen Aspekten konfliktfrei, da sie voneinander unabhängig sind.

17. In dem Blogeintrag AVICENNAS ABHANDLUNG ZUR LOGIK – Teil 17 geht es um die Frage, wie man Aussagen über Veränderungen in der hypothetisch angenmmenen Bedeutungsstruktur nachzeichnen kann. Es lässt sich erkennen, dass die Kodierung von Veränderungen mittels Ausdruckselementen innerhalb eines Prädikates P mittels ‚Veränderungsausdrücken‘ V (‚Verben‘) oft nicht nur die beteiligten Objekte Y benennt, sondern zusätzlich zahlreiche weitere Ausdruckselemente aktiviert, die räumliche Gegebenheiten R_r bezeichnen, zeitliche Relationen R_t, zusätzliche Eigenschaften At an den Veränderungen; dazu ferner spezielle kulturelle Relationen R_x einbeziehen können sowie mit zusätzlichen Subjektrepräsentationen operieren. Auch kann man beobachten, wie die Aneinanderreihung von unterschiedlichen Sachverhalten (S P) mit logischen Operatoren (S P) UND (S2 P2) auch zu speziellen Verkürzungen führen kann wie (S P1 UND P2). Dies lässt erahnen, dass eine vollständige Analyse auch nur einer einzigen Alltagssprache von ihrer logisch relevanten Semantik her eine schier unendliche Aufgabe ist. Diese wird weder ein einzelner Mensch alleine noch viele Menschen über viele Genrationen hinweg jemals vollständig erfüllen können. Was aber möglich erscheint, das ist die Analyse des grundlegenden Mechanismus, der sich mit Hilfe von evolvierenden Computermodellen experimentell untersuchen und mit realen semiotischen Systemen überprüfen lässt.

18. In dem Blogeintrag AVICENNAS ABHANDLUNG ZUR LOGIK – Teil 18 weitet sich nun der Blick Avicennas auf das Wissen allgemein, und konzentriert sich im Wissen auf das schlussfolgernde Denken in Form von ‚beweisenden Syllogismen‘. Nach einer Definition von ‚Syllogismus‘ unterscheidet er dann zwei Arten von Syllogismen ‚Konjunktiver‘ Syllogismen und ‚Disjunktiver‘ Syllogismus. Am Beispiel des ‚Konjunktiven Syllogismus‘ führt Avicenna dann eine Reihe von technischen Begriffen ein. Dann stellt Avicenna zusätzliche Beschränkungen vor, um die 256 möglichen Figuren/ Muster auf nur 27 mögliche Muster einzuschränken. Alle seine Festlegungen geschehen ohne eigentliche Begründung.

19. In dem Blogeintrag AVICENNAS ABHANDLUNG ZUR LOGIK – Teil 19 beginnt die Diskussion um die Interpretation der syllogistischen Schlussfiguren am Beispiel der ersten Figur (A F B), (A B H) und (A F H) mit der Quantorenbelegung ‚AAA‘. In einzelnen Schritten wird dann eine erste Skizze zu einer Logik auf der Basis einer dynamischen Objektstruktur erarbeitet. Zentrale Begriffe sind hier OBJEKTIFIZIERUNG, ENTHALTENSEIN, ZUSCHREIBUNG und VERERBUNG. In dieser Skizze werden auch ‚Aktivitäten‘ berücksichtigt, die in dem Muster zur ersten Figur nicht vorkommen, zusätzlich werden neben den Anzahlquantoren auch Raum- und Zeitquantoren berücksichtigt.

20. In dem Blogeintrag AVICENNAS ABHANDLUNG ZUR LOGIK – Teil 20 geht es um die Interpretation des zweiten Musters der ersten syllogistischen Schlussfigur ‚A F ist B‘, ‚A B ist nicht H‘ (als ‚Kein A ist B‘), ‚A F ist nicht H‘ (als ‚Kein F ist H‘), dazu die Beispiele ‚Jeder ausgedehnte Körper ist farbig‘, ‚Kein farbiger Körper ist unerschaffen‘, ‚Kein ausgedehnter Körper ist unerschaffen‘. Wir treffen in diesem Muster wieder auf den Prozess der Objektifizierung, tatsächlich sogar in impliziten Formen mit der expliziten Angabe von Eigenschaften und der stillschweigenden Annahme einer daraus sich ergebenden Mengenbildung. Zusätzlich finden sich wieder Enthaltensbeziehungen einerseits anhand von Eigenschaftszuschreibungen, andererseits durch Benutzung von Anzahlquantoren. Die Zuschreibung von Eigenschaften wird explizit vorgenommen. Eine Vererbung von Eigenschaften von einer Menge zur anderen tritt nur implizit über eine Enthaltensbeziehung auf. Es tritt nur eine Sorte von Quantoren auf. Auch sei angemerkt, dass außer der Negation kein weiterer aussagenlogischer Operator auftritt.

21. In dem Blogeintrag AVICENNAS ABHANDLUNG ZUR LOGIK – Teil 21 geht es um die Interpretation der Muster 3-4 der Schlussfigur 1. Dabei entsteht die Vermutung, dass viele der Unterscheidungen von Avicenna (die weitgehend auf Aristoteles zurückgehen!) möglicherweise ‚redundant‘ sind, d.h. mit anderen Formulierungen letztlich doch ‚das Gleiche‘ sagen. Der Ansatzpunkt für diese Vermutung liegt darin begründet, dass die Unterscheidung von einem Term als ‚Subjekt‘ (S) und als ‚Prädikat‘ (P) auf Seiten der abstrakten Bedeutungsstruktur als Bedeutungsrepräsentation jeweils ein ‚echtes‘ oder ein ‚unechtes‘ Objekt haben können, und zwar so, dass diese Strukturen ‚fließend‘ sind: jedes ‚echte‘ Objekt kann als ‚unechtes‘ interpretiert werden und umgekehrt. Weitere Vereinfachungen deuten sich an. Diese sollen im Folgenden überprüft werden.

Fortsetzung folgt …

QUELLEN

  • Avicenna, ‚Avicennas Treatise on Logic‘. Part One of ‚Danesh-Name Alai‘ (A Concise Philosophical Encyclopedia) and Autobiography, edited and translated by Farang Zabeeh, The Hague (Netherlands): Martinus Nijhoff, 1971. Diese Übersetzung basiert auf dem Buch ‚Treatise of Logic‘, veröffentlicht von der Gesellschaft für Nationale Monumente, Serie12, Teheran, 1952, herausgegeben von M.Moien. Diese Ausgabe wiederum geht zurück auf eine frühere Ausgabe, herausgegeben von Khurasani.
  • Digital Averroes Research Environment
  • Immanuel Kant, Critik der reinen Vernunft‘, Riga, 1781
  • Konrad Lorenz, 1973, ‚Die Rückseite des Spiegels. Versuch einer Naturgeschichte des menschlichen Erkennens‘, München, Zürich: Piper
  • Günther Patzig, ‚Die Aristotelische Syllogistik‘, 3,verb.Aufl., Göttingen: Vandenhoeck & Rupprecht, 1969
  • Nicholas Rescher (1928 – ),The Development of Arabic Logic. University of Pittsburgh Press, 1964
  • Hans-Jörg Sandkühler (Hg.) unter Mitwirkung von Dagmar Borchers, Arnim Regenbogen, Volker Schürmann und Pirmin Stekeler-Weithofer, ‚Enzyklopädie Philosophie‘, 3 Bd., Hamburg: FELIX MEINER VERLAG, 2010 (mit CD-ROM)
  • Stanford Encyclopedia of Philosophy, Aristotle’s Logic
  • Whitehead, Alfred North, and Bertrand Russell, Principia Mathematica, 3 vols, Cambridge University Press, 1910, 1912, and 1913; Second edition, 1925 (Vol. 1), 1927 (Vols 2, 3). Abridged as Principia Mathematica to *56, Cambridge University Press, 1962.
  • Alfred North Whitehead; Bertrand Russell (February 2009). Principia Mathematica. Volume One. Merchant Books. ISBN 978-1-60386-182-3.
  • Alfred North Whitehead; Bertrand Russell (February 2009). Principia Mathematica. Volume Two. Merchant Books. ISBN 978-1-60386-183-0.
  • Alfred North Whitehead; Bertrand Russell (February 2009). Principia Mathematica. Volume Three. Merchant Books. ISBN 978-1-60386-184-7

Eine Übersicht über alle bisherigen Blogeinträge nach Titeln findet sich HIER.

DIE UNBEGREIFBARKEIT DES MENSCHEN oder DAS GEHIRN ALS SPIEGEL DES UNIVERSUMS (wegen Providerwechsel war dieser Beitrag zeitweise nicht sichtbar)

  1. Wenn man sich aufmacht in die Welt der neuen Erkenntnisse zum Universum und zum Leben, dann ist man sehr bald an einem Punkt, wo die Maschinerie des Alltags ‘bizarr’ wirkt, ‘unwirklich’, wie ein Marionettentheater von ‘Wahnsinnigen’, die sich über Dinge aufregen, die dermaßen lachhaft erscheinen, dass man nicht begreifen kann, wie solch ein Verhalten möglich ist.
  2. Aber, falsche Überheblichkeit ist fehl am Platze. Wo immer wir uns als ‘Beobachter’ wähnen stecken wir zu 100% leibhaftig genau mittendrin in diesem so ‘lächerlich erscheinendem’ Spiel. Was immer wir ‘tief in uns drinnen’ zu fühlen und zu denken meinen, so wahr es uns erscheint, so bedeutsam, gegenüber der ‘Welt da draußen’, der Welt, die wir ‘real’ nennen, so wenig wird das ‘Innere’ ‘wirksam’, ‘gestalterisch mächtig’, ‘verändernd’, solange wir keinen Weg finden, unser ‘Inneres’ mit dem ‘Äußeren’ zu ‘versöhnen’.
  3. Von daher erscheint es oft einfacher, erst gar keine Erkenntnisse zu haben. Man gerät nicht in ‘Spannung’, man spürt keine ‘Differenzen’, man sieht keine Anhaltspunkte, wo man etwas tun sollte….Das Bild von den ‘glücklichen Kühen’… Doch ist auch dies – vermute ich – eine grobe Vereinfachung. Eher scheint es so zu sein, dass alle Lebensformen, selbst die einfachsten, im ‘Medium ihrer inneren Zustände’ Äquivalente von ‘Erleben’ und ‘Leiden’ haben, die wegzudiskutieren bequem ist, aber diesen Zuständen womöglich nicht gerecht wird.
  4. Wenn man aber irgendwelche Erkenntnisse hat – und die haben wir alle, wenngleich unterschiedlich –, dann führen diese unweigerlich zu ‘Spannungen’ zu dem Bisherigen. Wie geht man damit um? Empfindet man sie als ’störend’ und ‘bedrückend’, dann wird man unzufrieden, krank,…. Empfindet man sie als ‘anregend’, ‘belebend’, ‘inspirierend’, dann fühlt man sich gut….
  5. Natürlich macht es einen Unterschied, ob neue Erkenntnisse sich eher in ‘Übereinstimmung’ mit der aktuellen Situation befinden oder eher im ‘Gegensatz’. Im letzteren Fall deuten sich Konflikte an, mögliche Änderungen des Status Quo. Sind die Menschen in der Umgebung aufgeschlossen, neugierig, unternehmungslustig, ist dies kein Problem. Herrscht dagegen ‘Bewahrung’ vor, ‘Festhalten’, Angst vor Veränderung, dann können neue Erkenntnisse zum Problem werden.
  6. Die Geschichte zeigt, dass das Neue, sofern es wirtschaftliche und politische Vorteile zu bringen scheint, eher eine Chance hat, als wenn es liebgewordene Anschauungen in Religion, Politik usw. so in Frage stellt, dass herrschende Vorteilsverhältnisse gefährdet werden (eine Glühbirne, die 100 Jahre hält, will keiner; ein Medikament, das Ursachen beseitigt anstatt Leiden zu mildern, will auch keiner; usw.).
  7. Zurück zu den neuen Erkenntnissen über das Universum und das Leben. Zurück zu unserer Welt, die in ihren konkreten Abläufen so ‘verrückt’ erscheinen kann. Was machen wir dann, wenn wir uns in dieser permanenten Spannung zwischen ‘gedanklich anderer Welt’ und ‘faktisch vorfindlicher So-Welt’ vorfinden? Müssen wir verzweifeln?
  8. Wenn man sich anschaut, wie mühsam dasjenige, was wir von heute aus als ‘Leben’ erkennen können, sich aus dem Raum der Atome und Moleküle der jungen Erde im Laufe von mehr als 3.5 Mrd Jahre herausexperimentiert hat, mit unendlichem Aufwand, unter permanentem Leiden, immer im Totalverlust (Tod) endend, dann erscheint zumindest die aktuelle Situation als ein solch unglaublicher und – vergleichsweise – ‘paradiesischer’ Zustand, dass ein – wie auch immer geartetes – Lamentieren geradezu als ’schäbig’ erscheinen mag .
  9. Andererseits, wir sind – nach allem, was wir wissen – die erste Art von Lebewesen, die ein ‘Gehirn’ besitzen, das uns in die Lage versetzt, nicht nur auf primitive Weise wahrgenommene Reize (Stimuli = S) direkt und ‘festverdrahtet’ (’reaktiv’, ‘Instinktiv’) in fixierte Antworten (Reaktionen = R) zu übersetzen, sondern wir können weit mehr. Unser Gehirn kann z.B. Ereignisse verallgemeinern, in Beziehung zu anderem setzen, kann erinnern, kann relativ zu Körperzuständen ‘bewerten’, kann ‘komplexe Modelle’ von Situationen und deren mögliche Veränderungen ‘denken’…Mit anderen Worten, unser Gehirn versetzt uns in die Lage ‘in’ unserem Körper die Welt ‘da draußen’ ‘nachzubauen’, sie ‘intern zu simulieren’ und in ‘Gedankenexperimenten’ alternative ‘mögliche Welten’ zu ‘denken’. In diesem Kontext können wir auch ein ‘Modell von uns selbst’ und ‘den Anderen’ konstruieren. Es sind diese ’selbstgemachten Bilder’ in unserem Gehirn die wir für ‘real’ halten, nicht die Welt selbst; die kennt unser Gehirn gar nicht.
  10. D.h. – soweit wir wissen — passiert heute, ca. 14,7 Mrd. Jahre nach dem sogenannten ‘Big Bang’, etwas, was innerhalb des bekannten Universums ungeheuerlich ist: im Medium der biologischen Gehirne ’schaut sich das Universum selbst an’ (wobei diese Gehirne ein ‘Produkt’ dieses Universums sind als Teil des Phänomens ‘Leben’!). D.h. das Universum schafft sich gleichsam einen ‘Spiegel’, in dem es sich selbst anschauen kann. Mehr noch, über das ‘Spiegeln’ hinaus ist ein Gehirn (und noch mehr ein ‘Verbund von Gehirnen’) in der Lage, Veränderungen ‘einzuleiten’ auf der Basis der ‘Spiegelungen’. Dies führt zum Paradox, dass das Universum einerseits im Lichte der bekannten physikalischen Gesetze eine ‘bestimmte Entwicklung’ zu nehmen scheint, während es im Medium der Gehirne ’sich selbst in Frage stellen kann’. Welch ein wahnwitziger Gedanke (allerdings bilden wir individuelle Menschen uns bislang eher ein, wir seien die Meister des Universums… eine putzige Vorstellung…).
  11. Aus Sicht des einzelnen Menschen mag dies ‘unwirklich’ erscheinen, ‘artifiziell’, aber im Gesamtkontext des Lebens im Universum ist dies ein absolut herausragendes Ereignis. Während die ‘Materiewerdung’ mit den anschließenden Ausprägungen als stellare Wolken, Sterne, Galaxien sich einigermaßen mit den Gesetzen der Physik beschreiben lassen, entzieht sich die Entstehung des Lebens als Opponentin zur Entropie und durch den ‘inneren Trend’ zur Steigerung der Komplexität bislang allen physikalischen Erklärungsversuchen. Ein Teil der Komplexität ist auch die Zunahme der Kommunikation, die zu einer Koordinierung von Gehirnen, deren ‘gedanklichen Räumen’ führt.
  12. Das Erleben von ‘mehr’ Erkenntnis und einer damit einhergehenden ‘Unruhe’, ‘Spannung’ ist also kein ‘Zufall’, keine ‘Panne’, keine ‘Störung’ sondern gehört wesentlich zum Phänomen des Lebens hinzu. Indem das Leben sich alle frei verfügbare Energien in seiner Umgebung immer mehr ‘einverleibt’ und damit Strukturen schafft, die dies immer besser können, also immer mehr Energie ‘einsammeln’ können, stellt sich die Frage, wozu das Ganze?
  13. Nach gängiger Meinung ist der ‘Big Bang’ dadurch charakterisiert, dass Energie sich in einer Weise in Materie verwandelt hat, dass daraus eben das heute bekannte Universum ‘hervorgehen’ konnte. Sterne und Galaxien sind eine Form der Zusammenballung dieser Materie (durch Gravitation, aber nicht nur (schwarze Materie?)); das uns bekannte ‘Leben’ ist auch eine Zusammenballung von Energie, aber anders. Was verstehen wir noch nicht?
  14. Die klassischen Religionen, so hilfreich sie in er Vergangenheit partiell vielleicht waren, in der heutigen Situation erscheinen sie mir wenig hilfreich, eher hinderlich. Sie verstellen den Blick und können das Herz verdunkeln. Damit will ich nicht sagen, dass auch die Gottesfrage obsolet sei. Wenn es überhaupt so etwas wie ‘Gott’ gibt, so sind wie ihm näher als je zuvor.
  15. Nur sollten wir die ‘Wahrheit’ der Erkenntnis nicht verwechseln mit dem ‘Erkenntniswunsch’. Die Bücher der alten Philosophen (alt kann bis gestern gehen..-:)) sind voll von Pseudorationalismen: man analysiert wie ein Weltmeister um letztlich dann doch nur sein eigenes Vorurteil zu rechtfertigen. Niemand ist davor gefeit; auch ich nicht.
  16. Alle bekannten Positionen muss man immer und immer wieder in Frage stellen, muss sie versuchsweise zerstören. Die ‘wahre Wahrheit’ ist das, was sich nicht zerstören lässt, sie ist das, was vor all unserem individuellen Denken schon immer da war (was nicht heißt, dass sie ‘ewig’ sein muss). Vor der Wahrheit brauchen wir daher keine Angst haben, nur vor uns selbst, vor uns Menschen, die wir unsere individuellen Unwahrheiten schützen und retten wollen, weil wir uns nicht vorstellen können, dass die wahre Wahrheit schlicht und einfach größer ist. Wir klammern uns an das bischen Leben, was wir individuell haben ohne lange zu begreifen, dass dieses ‘Bischen’ nur da ist, weil es ein größeres Ganzes gibt, durch das wir überhaupt geworden sind und in dem alles andere nur weiterlebt.
  17. Was bleibt also: viel Geduld ist notwendig und die Kunst, immer wieder sterben zu können um zu lernen, dass das Leben erst dort anfängt, wo wir oft glauben, dass es zu Ende sei. Freiwillig schaffen dies die wenigsten. Leicht ist es nicht. Transzendenz in Immanenz.
  18. Eigentlich wollte ich über etwas ganz anderes schreiben, aber so kommt es manchmal.

Eine Übersicht über alle bisherige Beiträge findet sich HIER.

MISSBRAUCH DES PROPHETEN?

 

  1. In diesen Tagen beherrschen wieder Bilder aufgebrachter Menschen die Bildschirme. Wütende Menschen, die andere Menschen angreifen und vor Tötung nicht zurückschrecken. Laut Aussagen in die Kameras sind sie aufgebracht, weil der Prophet Mohammed beleidigt worden sein soll. Alle Befragten hatten das Video gar nicht gesehen. Und sie griffen nicht die Hersteller des Videos an, sondern die USA und andere westliche Länder. Alles ausnahmslos Länder, in denen Religionsfreiheit nicht nur auf dem Papier steht, sondern real praktiziert wird. Während in vielen Ländern Afrikas und auch Asiens, unterschiedliche sogenannte muslimische Gruppen unter z.T. grausamsten Bedingungen Krieg gegeneinander führen, dürfen in den beklagten Ländern die Menschen ihre unterschiedlichen religiösen Anschauungen frei bekennen und praktizieren, ohne das jemand deswegen verleumdet oder angegriffen wird. Zudem werden auch Botschaften von Ländern wie Deutschland und England angegriffen und verwüstet, die mit dem Video gar nichts zu tun haben. Man fragt sich also, geht es hier wirklich um Mohammed und seine Ehre, geht es hier überhaupt um Glaubensfragen?

  2. Man kann sich des Eindrucks nicht erwehren, dass die Motivatoren dieser Aufregung Menschen sind, die unter dem Vorwand Mohammed und Islam eine ‚Instrumentalisierung‘ von Menschen betreiben, die sie benutzen, um eine politische Radikalisierung von ganzen Ländern zu unterstützen. Damit nutzen sie die offensichtlich vorhandenen schlechten Gefühle gegen ‚die USA‘ und ‚den Westen‘ aus, um diese für einen unterstellten Angriff auf den muslimischen Glauben zu mobilisieren. Das würde erklären, warum Botschaften von Ländern angegriffen werden, die mit dem Video gar nichts zu tun haben.

  3. Dazu kommt auch das offensichtliche Desinteresse, was überhaupt im Video gezeigt wird bzw. an der Entstehung des Videos. Wie unterschiedliche TV-Berichte (und Presseartikel) nahelegen, wurde hier ein Video gedreht, das nachträglich von einem harmlosen Video in eine Schmähvideo verändert worden ist, in einer Weise, von der die ursprünglichen Schauspieler nichts wussten. Und alles deutet darauf hin, dass dieses Video bewusst für eine Provokation durch Beleidigung erstellt wurde, von einem Menschen, der laut Akten schon mehrfach kriminell war. Menschen, denen es um Wahrheit geht, hätten sich erst einmal informiert, was es mit dem Video überhaupt auf sich hat. Wenn sich dann herausstellt, um welch ein minderwertiges Machwerk eines einzelnen mit sehr zweifelhaften Motiven es sich handelt, wäre es nicht wert gewesen, sich damit überhaupt weiter zu befassen. Öffentlichkeit wertet solche Machwerke ja erst auf.

  4. Doch den Motivatoren der großen Aufregungen scheint es nach allem gar nicht um Wahrheit oder Erkenntnis zu gehen, sondern sie brauchten offensichtlich nur (wieder?) einen Anlass, um vorhandene Gefühle von Menschen mit mangelnden Informationen für ihre Machtinteressen zu instrumentalisieren, ihren Einfluss auf die ‚Massen‘ zu verstärken. Mit Religion oder gar Glauben hat dies überhaupt nichts zu tun.

  5. Absolut erschreckend ist, wie naiv und wenig kritisch die TV-Sender über diese Vorgänge berichten, und wie wenig die demagogische Manipulationen mit ihren zweifelhaften Machtinteressen sichtbar gemacht werden. Während es Massendemonstrationen von Menschen in Portugal gibt, weil sie ihre Gesellschaft durch Sparmaßnahmen und Politik bedroht sehen, während täglich ein grausamer Krieg in Syrien wütet, im Irak getötet wird, und und und, von all dem wird nichts berichtet. Stattdessen gibt man dem Video eines zweifelhaften Provokateurs und den Machenschaften radikaler Machtgruppen breitesten Raum.

  6. Also, halten wir fest, weder der ‚Westen‘ als ganzer noch die USA speziell greifen mit diesem Video in irgendeiner Form den Islam an, sondern ein einzelner Mensch mit einer kriminellen Vergangenheit und zweifelhaften Motiven hat eine Video produziert, in dem er aus seinen speziellen Motiven heraus versucht hat, eine Figur, die den Propheten darstellen soll (ich habe das Video selbst noch nicht gesehen und es interessiert mich auch nicht), in einer Weise zu inszenieren, die nach seiner Auffassung Muslime provozieren soll. Kein wirklich gläubiger Muslim wird sich von solch einem Menschen und solch einem Machwerk provozieren lassen. Das ist absolut lächerlich.

  7. Dieser Vorgang sollte aber auch Anlass sein, darüber nachzudenken, warum von den Fundamentalisten die Person des Propheten so hochstilisiert wird ohne zu bedenken, dass ein Mensch nur insoweit Prophet ist bzw. sein kann, insoweit er der Wahrheit und Liebe Gottes angemessen Ausdruck verleiht. Wenn wir überhaupt Gott ins Spiel bringen wollen, dann sind nicht wir Menschen der Maßstab, sondern Gott selbst! Vor Gott hat kein einzelner Mensch die Möglichkeit und das Recht, in absoluter Weise zu beurteilen, ob ein Mensch (in diesem Fall Mohammed) die wahre Liebe Gottes und seine Wahrheit so vermittelt hat, wie sie vermittelt werden sollte. Dies kann nur Gott selbst. Kein Mensch kann Gott vorschreiben, wann, wie, wo und wie viel er sich zeigt und äußert. Nicht von ungefähr gab es in der Geschichte viele Menschen, die von Gott gesprochen haben. Letztlich kann kein einzelner Mensch die Größe Gottes voll darstellen und ausschöpfen; Gott kann sich jederzeit neu zeigen und mitteilen. Kein Mensch hat ein Recht, Gott zu verbieten, sich neu zu zeigen, mit neuen Worten, mit neuen Bildern, schließlich hat sich die Welt ständig weiter verändert. Allein schon deswegen muss man sich fragen, ob diese Menschen, die von sich aus Mohammed so absolut setzen und damit gegen Gott ausspielen, wirklich ‚gottesfürchtige‘ Menschen sind. Ihre Taten sprechen gegen sie!

 

Ein Überblick über alle bisherige Themen findet sich HIER

RÄUMLICHES GEDÄCHTNIS (Neurologisch, Psychologisch, Informatorisch…)

  1. Gelegentlich gehe ich zu den interessanten Gastvorträgen des Max-Planck-Institutes (MPI) für Hirnforschung in Frankfurt. So auch wieder mal am 12.9.2012 zu einem Vortrag von Stefan Leutgeb (siehe Link). Auslöser war das Thema ‚Räumliches Gedächtnis‘.

  2. Das Hervorstechende bei diesen Vorträgen ist in der Regel der ungeheure Aufwand an Ressourcen, der notwendig ist, um die überwiegend neuro-psycholoischen Untersuchungen durchführen zu können. Das Ernüchternde ist oft die Kargheit der Ergebnisse, und nicht nur das, sondern auch die ‚methodische Verpackung‘ sowohl der Experimente selbst wie deren Auswertung. Während die Randbedingungen der Experimente (erfreulicherweise) in der Regel mit großer Akribie beschrieben werden (vgl. als Beispiel den Artikel von Amir S. Bahar et al. (2011), mit Link), sucht man einen expliziten theoretischen Rahmen vergeblich (mir ist es bislang noch nicht gelungen, einen Artikel oder Buch aus diesem Bereich zu finden, der auch nur ansatzweise die notwendigen Bestandteile eines theoretischen Modells beschreibt). Dies ist sehr bedauerlich, da viele der Artikel mit Sicherheit an Klarheit und Durchschlagskraft gewinnen würden (manche würden dann möglicherweise gar nicht mehr geschrieben werden…).

  3. In einem älteren Eintrag hatte ich mal kurz skizziert (vgl. Wissenschaftliches Denken-2), welche Elemente eine moderne wissenschaftliche Theorie ausmachen. Davon ist die Neurowissenschaft (zumindest so, wie sie sich bislang in ihren Publikationen darstellt), meilenweit entfernt. Eine grundlegende Änderung ist nicht in Sicht  (in der Ausbildung eines Neurowissenschaftlers kommt formale Logik und Wissenschaftstheorie normalerweise nicht vor).

  4. Sofern ich als Informatiker an berechenbaren Modellen von menschenähnlicher Intelligenz interessiert bin, bräuchten mich diese Defizite der Neurowissenschaften eigentlich nicht kümmern. Als Informatiker will ich primär nicht das Gehirn ‚1-zu-1‘ nachbauen, sondern bestenfalls versuche ich die Prinzipien neuronaler Maschinen zu verstehen, um sie mit ‚anderen‘ Mitteln nachzubauen. Da 98% oder mehr einer Nervenzelle nichts mit ihrer Signalfunktion im engeren Sinne zu tun haben kann ich diese 98% quasi ‚vernachlässigen‘. Ein Neurowissenschaftler kann dies nicht. Er muss die molekularen Prozesse hinreichend aufhellen, um die daraus resultierenden Funktionen mit Bezug auf diese Maschinerie zu erklären. Als Informatiker könnte ich zwar auch die verschiedenen elektronischen Bausteine eines Computers beschreiben, um deutlich zu machen, wie diese komplexen chemischen Materialien spezielle Signalfunktionen erlauben, aber normalerweise wird man dies nicht tun, da die Materialien austauschbar sind. Das Material selbst erklärt nicht die ‚Funktion‘, die damit realisiert wird. So wissen wir seit langem, dass ich einen Computer statt mit elektronischen Chips auch mit neuronalen Zellen realisieren kann oder direkt mit bestimmten Molekülen (z.B. DNA-Computing). Entscheidend ist nie das Material, sondern immer nur die Funktionen. Die Funktionen kann ich nicht aus dem Material ‚herleiten‘. Das ‚Herumstochern‘ in der molekularen Maschinerie des Gehirns ist von daher wenig geeignet, die entscheidenden Funktionen zu ‚enthüllen‘. Sehr zugespitzt könnte man formulieren „Die Neurowissenschaften wühlen im molekularen Schlamm, um das ‚Gold‘ der neuronalen Funktionen zu finden, aber es liegt nicht dort.“

  5. Dies führt zu einem grundlegenden wissenschaftsphilosophischen Problem: Im Kontext der Physik hat man sich spätestens seit Kant die Frage gestellt, wieso abstrakte mathematische Modelle die komplexen Phänomene der Natur auf einfache elegante Weise hinreichend beschreiben können? Nicht die Anhäufung noch so vieler einzelner empirischer Daten führt zur Einsicht in grundlegende Zusammenhänge, sondern die Entwicklung abstrakter theoretischer Modelle, die es dann erlauben, die vielen Einzeldaten zusammenhängend erklären zu können. Wir verstehen bis heute zwar nicht, wie wir erklärungsfähige abstrakte Modelle ‚denken‘ können, da dies ja letztlich von unserem Gehirn geleistet wird, das nur eine endliche chemische Maschine einer speziellen Art darstellt, aber Fakt ist, dass wir nur mit solchen Modellen den ‚Wust der Daten‘ sinnvoll nutzen können. Dies gilt auch für die anhaltende Datenflut in den Neurowissenschaften, die einhergeht mit einer gleichzeitigen Modellarmut.

  6. Wie gesagt, mein Interesse an dem Vortrag (und an den in diesem Zusammenhang recherchierten anderen Artikeln (siehe Quellen unten)) resultiert aus dem Interesse für Phänomene des Gedächtnis, da ich im Laufe der Jahre gelernt habe, dass es für adaptive lernende Strukturen zwei Kernelemente gibt, ohne die nichts geht: Gedächtnis und Preferenzen.

  7. Eine erste ‚Stichprobe‘ von Artikeln im Umfeld des Vortrags von Leutgeb zeigt, dass keiner dieser Artikel sich die Mühe macht, zu Beginn genau das Feld zu beschreiben, innerhalb dessen eine Aufgabenstellung definiert wird (und ich spreche hier von Artikeln in Journalen wie ‚Science‘ oder den ‚Proceedings of the National Academy of Science of the USA‘ oder dem ‚Journal of Neuroscience‘). Nach ein paar (unvollständigen!) Andeutungen zu möglichen Kontextfaktoren formulieren diese Artikel eine Aufgabenstellung, die durchgehend vage ist. Will man sich vorweg selbst einen Überblick über die Thematik verschaffen, hat man nur die Wahl zwischen anerkannten Textbüchern, deren Inhalt aber zwangsläufig fünf und mehr Jahre alt ist, oder Wikipedia-Einträgen, die zwar recht aktuell sind, dafür aber eine sehr schwankende Qualität aufweisen (es gib aber auch einige sehr gute!). Ansätze zu theoretischen Modellen finden sich aber nirgends.

  8. Da die neuronale Maschinerie ‚für sich‘ keinerlei ‚pragmatische‘ Bedeutung aufweist, sondern nur durch ihren Bezug zu Körperfunktionen und/ oder zu beobachtbarem dem Verhalten, folgen die meisten Beiträge dem Schema ‚Korrelation zwischen beobachtbarem Verhalten (Vh) und messbaren neuronalen Zuständen (NN), also CORR(Vh, NN), dies entlang einer Zeitachse. Im Prinzip handelt es sich um eine zweiseitige Abbildung. Normalerweise bedeutet dies, dass man sowohl den Bereich des Verhaltens entweder als Mengen von Eigenschaften beschreibt, die sich in einem Prozessbaum darstellen lassen, oder noch besser als theoretische Struktur VH(……); analog mit den neuronalen Zuständen NN(…..). Sofern man dies getan hat, kann man versuchen, geeignete Abbildungsbeziehungen zu formulieren. Ich sehe nicht, dass dies in irgendeinem dieser Papiere geschieht. Dazu kommt, dass zentrale theoretische Begriffe in den Artikeln (wie z.B. Netz-Zellen, Orts-Zellen, Orts-Feld, Pfadintegration, episodisches Gedächtnis,…), wenn überhaupt, nur äußerst vage definiert sind (ohne theoretisches Modell auch ziemlich schwierig).

  9. Aus all dem folgt für meine Arbeiten an evolutionären semiotischen Systemen, dass  für die Konstruktion adaptiver Systeme mit Gedächtnis diese Artikel nicht mehr als ‚Stimuli‘ auf dem Weg zu einer   besseren Theorie sein können.

  10. Im weiteren Text finden sich Kurzcharakterisierungen der verschiedenen Artikeln. Diese basieren entweder nur auf den Zusammenfassungen oder – in einigen Fällen – auf den Zusammenfassungen ergänzt um Teile aus dem Text. In einer Reihe von Fällen konnte ich Online-Versionen finden, so dass jeder sich dire Artikel im Original selbst anschauen kann. Aus Sicht des heutigen Wissenschaftsbetriebes sind wissenschaftliche Artikel, die nicht Online sind, eigentlich tote Artikel. Die Kosten für Abonnements von wissenschaftlichen Zeitschriften sind so hoch, dass eine durchschnittliche Hochschule in Deutschland nicht genügend Geld hat, um auch nur eine repräsentative Auswahl in hinreichendem Umfang und mit hinreichender Aktualität online anbieten zu können. Damit behindert sich die Wissenschaft genau da, wo ihr eigentliches Herz schlägt: in der Kommunikation. Der scheinbare wirtschaftliche Vorteil aus Sicht der Verlage erweist sich als Bumerang für die gesamte Wissenschaft (auch wenn eine Zeitung wie die FAZ dies oft anders sieht).

 

MATERIALSAMMLUNG

 

  1. Laut Ankündigung von Stefan Leutgeb (2005, 2012) versucht sein Laboratorium auf der Systemebene die neuronalen Mechanismen zu identifizieren, die verantwortlich sind für die Langzeitspeicherung von Gedächtnisinhalten. Da man aufgrund bisheriger Forschungen weiß, dass spezielle Schaltkreise des Hippocampus für viele Arten von Gedächtnis notwendig sind, haben sie die Schnittstelle zwischen dem Hippocampus und dem entorhinalen Kortex näher untersucht. An dieser Schnittstelle lassen sich Signalmuster messen. Sein Laboratorium stellte sich die Frage, ob und wie diese Signalmuster räumliche Erinnerungen beeinflussen. Bei der Signalerzeugung sind sehr viele verschiedenen Zellen beteiligt, insbesondere sogenannte ‚Gitter-Zellen‘ (‚grid cells‘). Dabei hat sein Laboratorium herausgefunden, dass die Unterdrückung von sogenannten Theta Wellen zwar die gitter-artigen räumlichen Signalmuster im entorhinalen Kortex zerstörten, nicht aber die hippocampalen räumlichen Signalmuster, sofern die Versuchstiere sich in vertrauten Umgebungen bewegten. Sein Team stellte sich von daher die Frage, ob der entorhinale Input mit den Gitter-Zellen möglicherweise nur beim Erlernen von etwas ‚Neuem‘ notwendig sei, nicht aber beim ‚Erinnern‘ von ’schon Bekanntem‘. Beim Erlernen von Neuem stellte sich die zusätzliche Frage, ob dazu auch eine zeitliche Koordinierung von entorhinalen und hippocampalen Signalen notwendig sei.

  2. György Buzsáki (2005) geht davon aus, dass der Hippocampus einen Beitrag leistet zur Repräsentation der Umwelt. Andererseits gibt es auch andere Signale, die den Hippocampus beeinflussen. Es fragt sich, wie diese unterschiedlichen Signale im Hippocampus koordiniert werden. Stefan Lautgeb et al. (2005) identifizieren unterschiedliche Signalmuster im Hippocampus, die sie mit Situationen korrelierten, die mit Raum- und episodischem Gedächtnis in Verbindung bringen lassen. James J. Knierim (2006) thematisiert sogenannte ‚Orts-Zellen‘ (‚place cells‘) die sich im Hippocampus oder in angrenzenden Regionen finden. Dazu kommen Signalmuster, die nicht ortsgebunden sind. Der genaue Mechanismus des Zusammenspiels all dieser Signale ist aber noch nicht klar. Eva Pastalkova et al. (2006) weisen nach, dass der LTP-Mechanismus, der Langzeitspeicherung unterstützt, auch bei der Speicherung räumlicher Informationen eine Rolle spielt. James A. Ainge et al. (2007) können präzisieren, dass im Hippocampus räumliche Informationen mit ‚intendierten‘ Zielen korreliert werden können. Caswell Barry et al. (2007) finden heraus, dass die sogenannten ‚Gitter-Zellen‘ (‚grid cells‘) im entorhinalen Kortex (benachbart zum Hippocampus), den Abstand zwischen benachbarten Orten repräsentieren können (und damit die Ortsinformationen der Orts-Zellen ergänzen). Daoyun Ji und Matthew A Wilson (2007) finden Hinweise, dass im Schlaf der Neokortex und der Hippocampus so zusammenwirken können, dass Signalmuster von ‚gemachten Erfahrungen‘ sich wechselseitig regenerieren. Gergely Papp et al. (2007) vergleichen Gehirnstrukturen zwischen sehr vielen Arten von Wirbeltieren und untersuchen die Anwendbarkeit unterschiedlicher neuronaler Modelle zur Simulation des messbaren Verhaltens. Sie kommen zur Vermutung, dass für den Erwerb neuer Gedächtnisrepräsentationen allgemein wie auch speziell von räumlichen Gedächtnis-Repräsentationen der CA3-Teilbereich des Hippocampus nicht ausreicht. Daoyun Ji und Matthew A. Wilson (2008) untersuchten ferner die Rolle des Hippocampus im Kontext des sequentiellen Wege-Lernens. Sie fanden heraus, dass die hippocampalen Orts-Zellen bei Wiederholungen immer mehr von den Signalmustern unmittelbar vorausgehender Ortszellen beeinflusst wurden. C. D. Clelland et al. (2009) finden Hinweise (bei Mäusen), dass der Bereich Gyrus dentatus des Hippocampus wichtig ist für die Unterscheidung räumlicher Muster. Dori Derdikman et al. (2009) fanden heraus, dass räumliche Umgebungen im entorhinalen Kortex (Umgebung des Hippocampus) repräsentiert sind als ein Mosaik diskreter Teilkarten, die der Geometrie des umgebenden Raumes entsprechen. Pamela J. Kennedy und Matthew L. Shapiro (2009) können aufzeigen, dass im Hippocampus sowohl räumliche Informationen kodiert werden wie auch innere Zustände, die Bedürfnisse repräsentieren. Sofern Bedürfnisse vorliegen beeinflussen diese die neuronalen Muster in Richtung des Auffindens geeigneter Lösungen. Joseph R. Manns und Howard Eichenbaum (2009) kamen zur Hypothese, dass Objekte der Umgebung in einer Art Wissenslandkarte (‚cognitive map‘) im Hippocampus repräsentiert (kodiert) werden, und zwar einmal als ‚Orte von Interesse‘ (‚points of interest‘) wie auch als erinnerbare Unterstützung beim Suchen nach Objekten von speziellem Interesse. Charlotte N Boccara et al. (2010) fanden einen gemeinsamen Pool von raum-sensitiven Zellen in verschiedenen Unter- und Nachbarschaftsbereichen des Hippocampus (im medialen entorhinalen Kortex (MEC) und im Prä- and Parasubiculum (zwischen Hippocampus und Kortex). Diese Zellen befanden sich ferner in der Nachbarschaft von sogenannten ‚Richtungs-‚ und ‚Kanten-Zellen‘ (‚head‘, ‚boarder‘).

  3. Laura L. Colgin et al. — mit Leutgeb — (2010) kommen in ihrer Untersuchung zu dem Schluss, dass der Bereich CA3 (Teilbereich des Hippocampus) sich nicht wie ein standardmäßiges autoassoziatives neuronales Netz verhält, das unterschiedliche Eigenschaften der Umgebung miteinander verknüpft. Diese Ergebnisse stimmen auch überein mit anderen Untersuchungen (vgl. S.48). Damit stellt sich die Frage nach der Funktion des CA3-Bereichs neu. In Übereinstimmung mit zahlreichen anderen Untersuchungen (Zitate in diesem Artikel) scheint die primäre Aufgabe des Hippocampus zu sein, Pfadinformationen zu kodieren, so, dass nach Bedarf eine günstige Route wiedergefunden werden kann. Zugleich können diese Pfadinformationen Hinweise sein für episodische Erinnerungen, die verteilt im Neokortext abgelegt sind. André A. Fenton et al. (2010) konnten bestätigen, dass der Ortskode des Hippocampus eine dynamische räumliche Repräsentation realisiert, die durch Aufmerksamkeit kontrolliert werden kann. Die Aufmerksamkeit von von den aktuellen Bedürfnissen gesteuert, die aus den verfügbaren Zeitfenstern jenes auswählen, dessen Inhalt am meisten mit den Bedürfnissen korreliert.

  4. Inah Lee und Jangjin Kim (2010) haben auch die Abhängigkeit der räumlichen Repräsentationen im Hippocampus von internen Zuständen untersucht, insbesondere im Kontext von Lernaufgaben, die von Ratten verlangten, neue Strategien zu entwickeln. Neben der Assoziationsaufgabe, Objekte mit bestimmten Orten zu verknüpfen, mussten die Ratten auch lernen, dass es aber nur an einem bestimmten Ort eine Belohnung gab. Bei Messungen an Neuronen in CA1 konnten sie feststellen, dass sich die Signalmustern entsprechend der jeweiligen Strategie änderten. Diese Ergebnisse führen die beiden zu der Annahme, dass die räumliche Information im Hippocampus als Referenzrahmen im Hippocampus dient, innerhalb dessen dann die anderen Informationen organisiert werden. In dieses Gesamtbild passen die Funde, dass Objektinformationen im Hippocampus der Ratten ausschließlich zusammen mit Rauminformationen auftreten. Ferner legen die Ergebnisse dieser Untersuchung die Annahme nahe, dass auch nichträumliche Informationen – zumindest in CA1 — nicht unabhängig von den räumlichen Informationen sind.

  5. Die Autoren Francesco Savelli und James J. Knierim (2010) sind geleitet von dem Interesse, ein bestimmtes formales Modell (hebbsches neuronales Lernen) im Kontext von ‚Gitter-‚ und ‚Orts-Zellen‘ im medialen entorhinalen Kortex (MEC) sowie im Hippocampus zu überprüfen. Speziell untersuchen sie die Übersetzung von Signalmustern von Gridzellen in die Signalmuster von Ortszellen.

  6. Annabelle C. Singer et al. (2010) mit ihrem Team geht davon aus, dass sich wiederholende Objekte eindeutig identifizieren lassen müssen, aber auch Eigenschaften der Umgebungen, in denen diese Objekt vorkommen. Ein anderer Aspekt ist die Ähnlichkeit von Wegen (‚path equivalence‘). Das Team unterstellt koordinierte gelernte Generalisierungen über verschiedene Plätze und Episoden. Untersucht wurden neuronale Aktivitäten in CA3 und CA1 während die Tiere Aufgaben abarbeiten müssen, bei denen sie zwischen ähnlichen Elementen unterscheiden müssen. Das Team meint pfad-äquivalente Neuronenensembles identifiziert zu haben.

  7. Die Untersuchung von Janina Ferbinteanu et al. (2011) beginnt bei den bisherigen Ergebnissen, dass hippocampale Neuronen sowohl aktuelle Positionen im Raum repräsentieren können (Ortsfelder – Orts-Zellen), aber sie können auch vergangene und zukünftige Positionen im Kontext einer ‚Reise‘ (‚journey‘) repräsentieren. Letzteres verweist auf andere zeitlich zusammenhängende Gedächtniseintragungen (z.B. autobiographisches [oder auch episodisches] Material). Die Bedeutung der reise-abhängigen Aktivitäten für die Repräsentationen ist aber nicht besonders gut verstanden. Zu diesem Zweck haben sie eine experimentelle Anordnung ersonnen, in der man sowohl ortsspezifische Reize zur Verfügung hat wie auch reisespezifische Anforderungen unterstellen kann. Sie unterstellten, dass der Beginn einer Reise, ein auftretender Entscheidungspunkt sowie der Restweg nach der Entscheidung unterschiedliche Anforderungen darstellen, denen unterschiedliche ‚Strategien‘ entsprechen, die sich in den Signalmustern und darin kodiert in unterschiedliche beteiligten Gedächtnisarealen manifestieren. Mit einer — für neuronale Studien typischen — sehr aufwendigen Untersuchung wurden Daten gewonnen, die das Team dahingehend interpretiert, dass sie ein ‚Umschalten‘ (’switch‘) zwischen verschiedenen Aufgaben (aktuelle Position, zu erledigende Reise) erkennen können. So kodierten die Signalmuster im Startbereich sowohl Aufgabe und Reise, während die Signalmuster im Restbereich überwiegend die Reise kodierten. Sie deuten diese Daten zusätzlich als einen Hinweis auf eine Verzahnung zwischen den aktuellen Reisedaten und einem episodenorientierten Gedächtnis. Interessant ist die Charakterisierung von ‚Reise‘. Sie sagen, dass in ihrer Interpretation eine Reise nicht einfach eine Trajektorie von verknüpften physikalischen Orten darstellt, sondern eine Verbindung zwischen einem Start-Ort und einem Ziel (‚goal‘) kodiert, wobei diese Verbindung durch interne Zustände (einschließlich Motivation) und verfügbaren Gedächtnisinhalten ‚moduliert‘ werden kann.

  8. In einer Untersuchung, die dem Aufbau von Ferbinteanu et al. (2011) ähnelt, haben Amir S. Bahar et al. (2011) versucht, herauszufinden, wie man sich den Einfluss des Gedächtnisses beim Lernen genauer vorzustellen habe. Mit Bezug auf einfache Lernaufgaben untersuchten sie insbesondere das Signalverhalten von Ortszellen-Karten in CA1 und CA3. Obgleich zwischen CA1 und CA2 deutliche Unterschiede je nach Aufgabenstellungen gefunden werden konnten, gibt es aber auch Kooperationen.

  9. Die Untersuchung von Lindsay K. Morgan et al. (2011) unterscheidet sich von den vorausgehenden dahingehend, dass als Versuchslebewesen nicht Ratten dienen, sondern Menschen. Damit sind die Messmöglichkeiten stark eingeschränkt. Ausgangshypothese ist, dass die räumliche Navigation teilweise unterstützt wird durch Bezug auf eine intern Wissenskarte (‚cognitive map‘) der Umgebung. Eine Schlüsseleigenschaft solcher angenommener Wissenskarten ist die Repräsentation von Realweltabständen. Es wird angenommen, dass man diese mit Hilfe eines funktionellen Magnetresonanstomographen (oder als Verfahren ‚functional magnetic resonance imaging (fMRI)‘) messen kann. Als Versuchslebewesen dienten Universitätstudenten, während sie Fotos von bekannten Ausschnitten des Universitätsgeländes anschauten. Aus den fMRI-Daten zog das Team den Schluss, dass im linken Hippocampus die fMRI-Antwortniveaus (‚response levels‘) mit den Realweltdistanzen ‚korrespondierten‘ (‚corresponded‘) mit jenen in den gezeigten Bildern. Dabei meinte das Team erkennen zu können, dass jene Orientierungspunkte (‚landmarks‘), die im Bild ’näher‘ (‚closer‘) waren, repräentationell (‚representationally‘) ähnlicher waren als solche, die im Bild ‚weiter entfernt‘ (‚mor distant‘) waren. In anderen Regionen wie dem retrosplenialen Kortex oder dem parahippocampalen Bereich waren laut dem Team solche Beziehungen nicht zu beobachten. Der Anteil von Wörtern wie ‚glauben‘ und ‚vermuten‘ ist sehr hoch. Zudem werden verhaltensbasierte Ergebnisse mit Messungen an physiologidschen Substraten recht freitügig kombiniert ohne große Reflexion auf die unterschiedliche Qualitäten von bildgebenden Verfahren und direkten Messungen an Zellen.

  10. David C.Rowlanda et al. (2011) gingen von der Annahme aus, dass (nach den bisherigen Erkenntnissen) der Hippocampus für Menschen und andere Säugetiere kritisch ist für episodisches Gedächtnis (‚episodic memory‘). Damit sind die autobiographischen Aufzeichnungen von Ereignissen gemeint, zu denen die Aspekte ‚wo‘ und ‚wann‘ gehören. Sie meinen, dass bei wachen, sich verhaltenden (‚behaving‘) Nagetieren (‚rodents‘) ganz offensichtlich die Signalmuster von hippocampalen Pyramidenzellen mit der aktuellen Position in einer bestimmten Umgebung ‚korreliert‘ (von daher der Name ‚Orts-Zellen‘ (‚place cells‘)). Wenn ein Tier eine neue Umgebung erkundet, dann bilden die pyramidalen Neuronen innerhalb von wenigen Minuten ihre raumbezogenen rezeptiven Felder aus, und diese sind in der Regel danach stabil. Das Team nimmt daher an, dass diese erfahrungsabhängige Stabilisierung der Orts-Felder (‚place fields‘) ein attraktiver Kandidat eines neuronalen Korrelates für die Bildung eines hippocampalen Gedächtnisses bietet. Zusätzlich wird angenommen, dass (a) raumabhängiges Feuern als solches angeboren ist (‚innate property‘) und (b), dass Ratten während Schlaf- und Ruhephasen sich Orte und Wege ‚vorstellen‘ können (‚mentally explore‘, ‚preplay‘), bevor diese physisch untersucht werden. Unklar ist hierbei, wie genau die Überführung der Erfahrung eines Tieres von einem Kontext in ein stabiles Ortsfeld vonstatten geht, z.B. weiß man nicht, ob die Beobachtung eines Raumes bzw. die rein mentale Exploration alleine für eine stabile hippocampale Repräsentation des Raumes ausreicht, da normalerweise ein Tier dafür einen bestimmten Punkt (’spot‘) physisch besuchen muss, um demonstrieren zu können, dass bestimmte Zellen dort feuern. Um diese beiden Fälle zu klären, nutzte das Team die Erkenntnis, dass NMDA-Rezeptoren neu gebildete Orts-Felder destabilisieren können. Das Team fand heraus, dass Beobachtung alleine nicht ausreicht, um Ortsfelder zu stabilisieren. Sie deuten ihre Ergebnisse dahingehend, dass die hippocampale Repräsentation von Raum so lange ‚plastisch‘ (‚plastic‘) bleibt, bis das Tier alle Bereiche der Umgebung erkundet hat. In diesem Sinne sind Ortsfelder weniger die Repräsentation des geometrischen Raumes an sich, sondern eher die Repräsentation der Erfahrung des Tieres im Raum.

  11. Das Team Junghyup Suh et al. (2011) geht von der Annahme aus, dass das entorhinale und hippocampale Netzwerk für die Formierung eines episodischen und Arbeitsgedächtnis wichtig ist. Kennzeichnend für beide Gedächtnisformen ist die Fähigkeit der Verknüpfung von zeitlich nicht zusammenhängenden Elementen. Nach Auffassung des Teams sind die genauen neuronalen Schaltkreise unbekannt, die diese Verknüpfungen ermöglichen. So beschloss das Team, zu untersuchen, ob z.B. die Input-Neuronen von der Schicht III des entorhinalen Kortex einen Beitrag leisten. Um diese Annahme zu testen hat das Team eine transgenetische (‚transgenetic‘) Maus ‚hergestellt‘ (‚generated‘), in der diese Input-Neuronen spezifisch inhibiert waren. Diese Mutanten-Mäuse zeigten dann tatsächlich signifikante Beeinträchtigungen sowohl bei Aufgaben, bei denen normalerweise das räumliche Arbeitsgedächtnis wirksam ist wie auch bei der Enkodierung von Angstreaktionen. Das Team zieht daraus den Schluss, dass die gefundenen Ergebnisse eine kritische Rolle der Input-Neuronen der Schicht III des entorhinalen Kortex in Weiterleitung zum Hippocampus für zeitliche Verknüpfungen im Gedächtnis darstellen.

  12. Ausgehend von hippocampalen Orts-Zellen, die Rauminformationen durch eine Kombination von räumlichem selektiven Feuern und Thetawellen-Phasen-Präzession auszeichnen, untersuchte das Team Steve M. Kim et al. (2012) eine mögliche Wirkung auf die Neuronen des Subiculums. Das Subiculum empfängt direkten Input von der Region CA1 (innerhalb des Hippocampus) und sendet unterschiedliche Ausgangsprojektionen zu vielen anderen Gehirnbereichen. Das Team fokussierte sich darauf, die Signalmuster von Neuronen im Subiculum von Ratten zu untersuchen. Rein aufgrund der Signalmuster (ohne korrelierte Verhaltensbeobachtungen) errechnete das Team einen höheren Informationsgehalt in den Signalmustern des Subiculums, dazu auffällig robuste Thetawellen-Phasen-Präzessionen mit ähnlichen Spike-Oszillations-Frequenzen (‚spiking oscillation frequencies‘) wie Neuronen aus CA1.

  13. Das Team Eun Joo Kim et al. (2012) geht aus von der Annahm, dass Streß ein biologischer Faktor ist, der allgegenwärtig ist. Wenn er als unkontrollierbar durch Menschen (oder Tiere) als wahrgenommen wird, kann er andauernde negativen Effekte für das Gehirn und seine kognitiven Funktionen haben. In einer früheren Untersuchung hatte das Team am Beispiel von Ratten darüber berichtet, dass diese eine Abnahme in der Stabilität von Signalraten in CA1 erkennen liesen verbunden mit Behinderungen von Langzeit-Potentialen in CA1 sowie der Konsolidierung von räumlichem Gedächtnis. Diese Ergebnisse wurden dahingehend verfeinert, dass es eher die erhöhte Aktivität der Amygdalar-Neuronen ist, die Stress auslöst, als die Konzentration von Kortikosteron, Stress, der dazu führt, dass sich die Stabilität der Signalraten der Ortszellen verändert.

  14. Ausgangspunkt für das Team Carien S. Lansink et al. (2012) ist die Annahme, dass die Verknüpfungen von Orten mit Belohnungen kritisch abhängt von der Integrität des hippocampalen-ventralen Systems. Das ventrale Striatum (VS) empfängt einen starken räumlich-kontextuellen Input vom Hippocampus (CA1), aber es ist nicht klar, wie das ventrale Striatum diese Informationen so verarbeiten kann, dass damit ein belohnungsbezogenes Verhalten entsteht. Um diese Frage zu beantworten wurde ein Verhaltensexperiment gestartet, bei dem eine konditionierte Aufgabe durch Pfadintegration zu lösen war. Dabei wurden simultan sowohl die Signale im Hippocampus (HC) wie auch im VS von Ratten gemessen. Im Gegensatz zum HC zeigten VS-Neuronen eine geringe räumliche Auflösung; dafür kodierten sie verhaltensbezogene Aufgaben-Phasen (‚task phases‘) mit Bezug auf die Erreichung von Zielorten (‚goal sites‘). Solche Schlüsselreize (‚cues‘)(z.B. Lichtreize), die einen bestimmten Ausgang voraussagen können, bewirkten eine Umprogrammierung (‚remapping‘) von Signalmustern im HC; für das Team steht dies in Übereinstimmung mit der Rolle des HC für das episodische Gedächtnis. Eine solche Umprogrammierung kann für die gleiche Aufgabe in unterschiedlichen Gehirnregionen stattfinden. Im Gesamtergebnis zeigen diese Resultate, dass einerseits zwar ein großer Unterschied im Verarbeiten räumlicher Informationen zwischen CA1 (Hyppocampus) und VS besteht, doch besteht eine Ähnlichkeit darin, dass diskrete Schlüsselreize diese Prozesse beinflussen.

 

Literaturhinweise:

2005

György Buzsáki, Similar Is Different in Hippocampal Networks, Science 309 (5734): 568-569, 2005

Stefan Leutgeb, Jill K. Leutgeb, Carol A. Barnes, Edvard I. Moser, Bruce L. McNaughton, May-Britt Moser, Independent Codes for Spatial and Episodic Memory in Hippocampal Neuronal Ensembles, Science 22 July 2005: Vol. 309 no. 5734 pp. 619-623

2006

James J. Knierim, Neural representations of location outside the hippocampus (online at http://www.learnmem.org/cgi/doi/10.1101/lm.224606 ), Copyright © 2006, Cold Spring Harbor Laboratory Press

 Eva Pastalkova, Peter Serrano, Deana Pinkhasova, Emma Wallace, André Antonio Fenton, Todd Charlton Sacktor, Storage of Spatial Information by the Maintenance Mechanism of LTP, Science 25 August 2006: Vol. 313 no. 5790 pp. 1141-1144 DOI: 10.1126/science.1128657

2007

James A. Ainge, Minija Tamosiunaite, Florentin Woergoetter, Paul A. Dudchenko, Hippocampal CA1 Place Cells Encode Intended Destination on a Maze with Multiple Choice Points, Copyright © 2007 Society for Neuroscience 0270-6474/07/27l119769-

Caswell Barry, Robin Hayman, Neil Burgess & Kathryn J Jeffery, Experience-dependent rescaling of entorhinal grids, Nature Neuroscience 10, 682 – 684 (2007)

Daoyun Ji, Matthew A Wilson, Coordinated memory replay in the visual cortex and hippocampus during sleep, Nature Neuroscience 10, 100 – 107 (2007)

Gergely Papp, Menno P Witter, Alessandro Treves, The CA3 network as a memory store for spatial representations, online at http://www.learnmem.org/cgi/doi/10.1101/lm.687407, Received July 1, 2007, Accepted September 5, 2007, Copyright © 2007, Cold Spring Harbor Laboratory Press

2008

Daoyun Ji, Matthew A. Wilson, Firing Rate Dynamics in the Hippocampus Induced by Trajectory Learning, The Journal of Neuroscience, 30 April 2008, 28(18): 4679-4689; doi: 10.1523/​JNEUROSCI.4597-07.2008

2009

C. D. Clelland, M. Choi, C. Romberg, G. D. Clemenson Jr., A. Fragniere, P. Tyers, S. Jessberger, L. M. Saksida, R. A. Barker, F. H. Gage, T. J. Bussey, A Functional Role for Adult Hippocampal Neurogenesis in Spatial Pattern Separation, Science 10 July 2009: Vol. 325 no. 5937 pp. 210-213, DOI: 10.1126/science.1173215

Dori Derdikman, Jonathan R Whitlock, Albert Tsao, Marianne Fyhn, Torkel Hafting, May-Britt Moser, Edvard Moser, Fragmentation of grid cell maps in a multicompartment environment, Nature Neuroscience 12, 1325 – 1332 (2009) Published online: 13 September 2009, doi:10.1038/nn.2396

Pamela J. Kennedy, Matthew L. Shapiro, Motivational states activate distinct hippocampal representations to guide goal-directed behaviors, approved May 6, 2009 (received for review March 26, 2009). Published online before print June 15, 2009, doi: 10.1073/pnas.0903259106 PNAS June 30, 2009 vol. 106 no. 26 10805-10810. This article contains supporting information online at www.pnas.org/cgi/content/full/0903259106/DCSupplemental.

Joseph R. Manns, Howard Eichenbaum, A cognitive map for object memory in the hippocampus, Online at http://www.learnmem.org/cgi/doi/10.1101/lm.1484509, Received May 14, 2009, accepted July 21, 2009, Copyright © 2009 by Cold Spring Harbor Laboratory Press, Supplemental material is available online at http://www.learnmem.org.

2010

Charlotte N Boccara, Francesca Sargolini, Veslemøy Hult Thoresen, Trygve Solstad, Menno P Witter, Edvard I Moser, May-Britt Moser. Grid cells in pre- and parasubiculum, Nature Neuroscience 13, 987–994,(2010) doi:10.1038/nn.2602, Received 25 March 2010

Laura L. Colgin, Stefan Leutgeb, Karel Jezek, Jill K. Leutgeb, Edvard I. Moser, Bruce L. McNaughton, May-Britt Moser, Attractor-Map Versus Autoassociation Based Attractor Dynamics in the Hippocampal Network, Published online before print May 5, 2010, doi: 10.​1152/​jn.​00202.​2010 AJP – JN Physiol July 1, 2010 vol. 104 no. 1 35-50 Submitted 25 February 2010, accepted in final form 3 May 2010,

Copyright © 2010 The American Physiological Society. Online at http://jn.physiology.org/content/104/1/35.full.pdf+html

André A. Fenton, William W. Lytton, Jeremy M. Barry, Pierre-Pascal Lenck-Santini, Larissa E. Zinyuk, Štepan Kubík, Jan Bureš, Bruno Poucet, Robert U. Muller, Andrey V. Olypher, Attention-Like Modulation of Hippocampus Place Cell Discharge, online at: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2858227/

Inah Lee, Jangjin Kim, The shift from a response strategy to object-in-place strategy during learning is accompanied by a matching shift in neural firing correlates in the hippocampus, online at: http://learnmem.cshlp.org/content/17/8/381.full.pdf+html doi: 10.1101/lm.1829110 Learn. Mem. 2010. 17: 381-393 © 2010 Cold Spring Harbor Laboratory Press

Francesco Savelli, James J. Knierim, Hebbian Analysis of the Transformation of Medial Entorhinal Grid-Cell Inputs to Hippocampal Place Fields, Submitted 16 October 2009, accepted in final form 25 March 2010. Published online before print March 31, 2010, online at: http://jn.physiology.org/content/103/6/3167.full.pdf+html, doi: 10.​1152/​jn.​00932.​2009 AJP – JN Physiol June 1, 2010 vol. 103 no. 6 3167-3183

Annabelle C. Singer, Mattias P. Karlsson, Ana R. Nathe, Margaret F. Carr, Loren M. Frank, Experience-Dependent Development of Coordinated Hippocampal Spatial Activity Representing the Similarity of Related Locations, The Journal of Neuroscience, 1 September 2010, 30(35): 11586-11604; doi: 10.1523/​JNEUROSCI.0926-10.2010, online at: http://www.jneurosci.org/content/30/35/11586.full

2011

 Janina Ferbinteanu, Prasad Shirvalkar, Matthew L. Shapiro, Memory Modulates Journey-Dependent Coding in the Rat Hippocampus, The Journal of Neuroscience, 22 June 2011, 31(25): 9135-9146; doi: 10.1523/​JNEUROSCI.1241-11.2011. Online at: http://www.jneurosci.org/content/31/25/9135.full

Amir S. Bahar, Prasad R. Shirvalkar, Matthew L. Shapiro, Memory-Guided Learning: CA1 and CA3 Neuronal Ensembles Differentially Encode the Commonalities and Differences between Situations, The Journal of Neuroscience, 24 August 2011, 31(34): 12270-12281; doi: 10.1523/​JNEUROSCI.1671-11.2011, online at: http://www.jneurosci.org/content/31/34/12270.full.pdf+html?sid=da480191-1abf-4e09-b784-7f0dca5dd10e

Lindsay K. Morgan, Sean P. MacEvoy, Geoffrey K. Aguirre, Russell A. Epstein, Distances between Real-World Locations Are Represented in the Human Hippocampus, J Neurosci. 2011 January 26; 31(4): 1238–1245. doi:10.1523/JNEUROSCI.4667-10.2011, online at: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3074276/pdf/nihms266858.pdf

David C. Rowlanda, Yelizaveta Yanovich, Clifford G. Kentrosb, A stable hippocampal representation of a space requires its direct experience, Published online before print August 18, 2011, doi: 10.1073/pnas.1105445108 PNAS August 18, 2011 online at: http://www.pnas.org/content/early/2011/08/17/1105445108.full.pdf+html?with-ds=yes

Junghyup Suh, Alexander J. Rivest, Toshiaki Nakashiba, Takashi Tominaga, Susumu Tonegawa, Entorhinal Cortex Layer III Input to the Hippocampus Is Crucial for Temporal Association Memory, Published Online November 3 2011, Science 9 December 2011:

Vol. 334 no. 6061 pp. 1415-1420, DOI: 10.1126/science.1210125, abstract online at: http://www.ncbi.nlm.nih.gov/pubmed/22052975

2012

Steve M. Kim, Surya Ganguli, Loren M. Frank, Spatial Information Outflow from the Hippocampal Circuit: Distributed Spatial Coding and Phase Precession in the Subiculum, The Journal of Neuroscience, 22 August 2012, 32(34): 11539-11558; doi: 10.1523/JNEUROSCI.5942-11.2012

Eun Joo Kim, Earnest S. Kim, Mijeong Park, Jeiwon Cho, Jeansok J. Kim, Amygdalar Stimulation Produces Alterations on Firing Properties of Hippocampal Place Cells, J Neurosci. 2012 Aug 15;32(33):11424-34.

Carien S. Lansink, Jadin C. Jackson, Jan V. Lankelma, Rutsuko Ito, Trevor W. Robbins, Barry J. Everitt, Cyriel M.A. Pennartz, Reward Cues in Space: Commonalities and Differences in Neural Coding by Hippocampal and Ventral Striatal Ensembles. Received February 7, 2012. Revision received June 14, 2012. Accepted July 12, 2012. The Journal of Neuroscience, 5 September 2012, 32(36): 12444-12459; doi: 10.1523/​JNEUROSCI.0593-12.2012

Hilfreiche zusätzliche Links:

Stefan Leutgeb: http://biology.ucsd.edu/faculty/sleutgeb.html (zuletzt 17.Sept.2012)

Gitter-Zellen: http://en.wikipedia.org/wiki/Grid_cell (zuletzt 15.Sept.2012)

Pfad Integration: http://en.wikipedia.org/wiki/Path_integration (zuletzt 15.Sept.2012)

Orts-Zellen: http://en.wikipedia.org/wiki/Place_cell (zuletzt 15.Sept.2012)

Kopf-Richtungs-Zellen: http://en.wikipedia.org/wiki/Head_direction_cells (zuletzt 15.Sept.2012)

Raum-Sicht-Zellen: http://en.wikipedia.org/wiki/Spatial_view_cells (zuletzt 15.Sept.2012)

Grenz-Zellen: http://en.wikipedia.org/wiki/Border_cell_%28brain%29 (zuletzt 15.Sept.2012)

Striatum: http://en.wikipedia.org/wiki/Striatum (zuletzt 17.Sept.2012)

 

Einen Überblick über alle bisherigen Themen findet sich HIER

Bemerkungen zu “Kampf der Habitate – Neuerfindungen des Lebens im 21. Jahrhundert”

mit Prof. Dr. Manfred Faßler, Goethe-Universität Frankfurt im Rahmen der Veranstaltung unplugged heads 2.0, am 11. September 2012, 19:30 Uhr im INM, Schmickstr.18, Frankfurt (Die Veranstaltung ‚unplugged heads‘ gibt es im INM seit Ende der 90iger Jahre und zeichnet sich aus durch sehr offene und hochkarätige Diskussionen).

  1. Anlässlich seines neuen Buches „Kampf der Habitate…“ kam Manfred Faßler, Leiter des  Instituts für Kulturanthropologie und Europäische Ethnologie, ins INM.

  2. Ich erwähne diese Veranstaltung hier, da ich den Eindruck habe, dass die Thematik sehr wohl in die Thematik des Blogs hineinreicht, und dies von einem Standpunkt aus (Soziologie, Kulturanthropologie), den ich selbst kaum vertreten kann.

  3. Was den Titel angeht, so hatte ich den Eindruck, dass der Haupttitel ‚Kampf der Habitate‘ zwar gut klingt, aber eigentlich eher einen Nebeneffekt beschreibt und nicht das, worum es tatsächlich geht,  um die  ‚Neuerfindungen des Lebens im 21. Jahrhundert‘.

  4. Manfred Faßler brachte sehr viele Beispiele, wie sich in der modernen Gesellschaft durch den Einfluss der neuen Medientechnologien bekannte Strukturen und Regelsysteme aufgelöst haben bzw. durch neue Interaktionsformen und Informationsströme an Bedeutung verloren haben (‚Habitate‘ schwächen sich ab oder gewinnen an Gewicht). Unklar ist, wer hier eigentlich der ‚Akteur‘ ist. Nicht nur einzelne, sondern ganze Gruppen und Institutionen ‚finden sich vor‘ in übergreifenden, globalen Entwicklungen, deren Wirkungen fassbar sind, deren ‚Gestaltbarkeit‘ aus Sicht der einzelnen aber immer nur Teilaspekte betrifft (facebook, youtube,…).

  5. Statt auf diese Entwicklungen die Kategorie ‚Post‘ anzuwenden bevorzugt Manfred Faßler  die Kategorie ‚Neu‘, womit sich die Frage stellt, worin das Neue besteht. Seine Antwort war nicht ganz klar, aber ging in die Richtung, dass die Tatsache von umfassenden Änderungen in hoher Geschwindigkeit empirisch manifest sei. U.a. wies er auf den Trend hin, dass sich in der Wissenschaft neue Allianzen bilden, die so vorher undenkbar waren, z.B. Biologie + Informatik + Neurowissenschaften + Nanotechnologie. Mit Anspielung auf die griechische Klassik spricht er   von dem neuen Zeitalter der ‚Digitalen Klassik‘; nur ist in dieser die Veränderungsgeschwindigkeit um ein Vielfaches Schnelller.

  6. Manfred Faßler rekurrierte mehrfach auf die biologische Evolution als grundlegendes Veränderungsmuster  und spielte die   Frage  ins Publikum hinein, ob und wie man  zwischen den gravierenden gesellschaftlichen Veränderungen und dem Phänomen der biologischen Evolution einen Zusammenhang sehen kann bzw. muss. Er selbst  wies ausdrücklich hin auf das biologische Modell von Genotyp – Phänotyp und auf die Rückkopplung über die Selektion als Kernmechanismus der biologischen Evolution. Dazu  zitierte er das moderne Schlagwort von ‚Evo – Devo – Eco‘: Von der Evolution über technische Entwicklung zu Umweltveränderungen.

  7. Im Gespräch  ergänzte ich diese Perspektive mit den Worten, dass die Phänotypen, die mit Gehirnen ausgestattet sind, über kulturelle Muster und Technik, nicht nur die Umwelt verändern können, sondern ihre eigenen genetischen Grundlagen. Damit sei für mich eine neuartige Form Rückkopplung etabliert, die sowohl die innere Logik der Evolution wie auch ihre Geschwindigkeit radikal verändert.

  8. Diese wenigen Bemerkungen geben weder den Vortrag noch die sehr lebhafte Diskussion adäquat wieder. Der ganze Eintrag soll nur ein Hinweis sein auf einen Denkzusammenhang, der für die Überlegungen in diesem Blog sehr wohl relevant erscheinen. Ich werde versuchen, das Buch von Manfred Faßler auch zu lesen und hier zu diskutieren. Er wäre auch bereit, anschliesend ein Gespräch zu führen, dass wir aufzeichnen und dann als Audio-Datei hier veröffentlichen. Letztlich wird die verfügbare Zeit darüber entscheiden, wann dies geschieht.

Literaturnachweis:

M.Faßler, Kampf der Habitate. Neuerfindung des Lebens im 21.Jahrhundert, Wien – New York: Springer, 2012

Einen Überblick über alle bisherigen Themen findet sich HIER

Bemerkung zu “Richard P.Feynman, QED. The strange theory of mind and matter, Princeton University Press, 1985 (repr. 2006 with new introduction by A.Zee 2006)”

 

(1) In meinen englischen Besprechungen bei Amazon (QED-Review) habe ich kurz das Buch QED von Richard P.Feynman besprochen. Bin dabei praktisch gar nicht auf die Details seiner Darstellung eingegangen (die sind auf jeden Fall lesenswert), sondern habe mich darauf beschränkt, herauszustellen, ob, wie und wo seine Sicht der Materie eine Hilfestellung für die Fragen geben kann, die durch das Buch von P.Davies aufgeworfen wurden.

2. Mit der Überschrift „It Starts Where The Book Ends“ wollte ich zum Ausdruck bringen, dass das, was an der Beschreibung von QED interessant ist, letztlich die ‚Grenzen‘ sind, die QED aufzeigt. Dabei ist mir natürlich klar, dass Feynman, als er seine vier Vorlesungen in Neuseeland hielt, in keiner Weise die Fragen vor Augen hatte, die von der modernen Biologie ausgehen, erst recht nicht von den Problemstellungen der ‚chemischen Evolution‘ (wenngleich er in der Vorlesung klar herausstellt, dass die gesamte Chemie letztlich nur eine Anwendung der Physik sei (was so unumschränkt sicher nicht haltbar ist)). Insofern ist meine Re-Lektüre von QED natürlich nicht die ‚typische‘ Lektüre, die er bei der Abfassung des Textes voraussetzt hatte.

3. Die Fragen, die ich von P.Davies mitgenommen habe – und die an die Physik gestellt werden müssen – sind daher eine Art Nachreflexion auf ein Thema, über das die Vertreter der Physik (von einigen Ausnahmen abgesehen) sich bislang nicht beschäftigt haben. Zusammenfassen gehe ich davon aus, dass die Biologie mit dem Begriff ‚Leben‘ operiert, der aber bis heute nicht eindeutig definiert ist. Es gibt nur eine Reihe von ‚Eigenschaften‘, die die meisten in einen Zusammenhang mit ‚Leben‘ bringen. Dazu gehört zentral die Eigenschaft, eine gegebene Struktur vervielfältigen zu können und dabei zufällige Änderungen zu ermöglichen. Diese Reproduktionsfunktionalität ist an eine komplexe Struktur von Molekülen gebunden, die selbst wiederum komplex sind. Der entscheidende Punkt ist, dass diese ‚Makroeigenschaft‘ nicht direkt aus den Eigenschaften ihrer ‚Bestandteile‘ abgeleitet werden kann (zumindest bislang nicht). Es gibt kein bekanntes Modell der ‚Materie‘, das es bislang erlauben würde, diese beobachtbaren Makrophänomene einfach ‚abzuleiten‘.

4. In diesem Zusammenhang stellt sich natürlich die Frage, ob QED grundsätzlich Ansatzpunkte liefern kann, um in den oben genannten Fragen weiter zu kommen. Immerhin stellt Feynman klar fest, dass der gegenstandsbereich von QED sind“ … all the phenomena of the physical world except the gravitational effect … and [except] radioactive phenomena…And, as I already explained, the theory behind chemistry is quantum electrodynamics“.(p.7f)

5. Liest man sich durch das Buch durch — ich fand es total spannend und habe es in zwei Tagen (nur durch Verwaltungsarbeiten unterbrochen) gelesen — , dann kann man erkennen, dass QED im aktuellen Zustand nicht nur keine direkten Antworten bietet, sondern dass QED selbst darüber hinaus selbst einige ernst Probleme hat. Das Faszinierende an Feynman ist, dass er selbst diese Probleme klar benennt. Diese beziehen sich z.B. auf das Problem der genauen Berechnung nahezu aller numerischen Werte des Modells samt der Konsistenz der gesamten Theorie (pp.128-130, 138), die geradezu mysteriöse Wiederholung von Elementen mit gleichen Eigenschaften aber jeweils größeren Massen (pp.145, 147), der große spekulative Charakter vieler Verbesserungsversuche des Modells (p.150), die Schwierigkeit, das Phänomen der Gravitation zu integrieren (p.151), das vollständige Fehlen einer Erklärung der numerischen Werte der Massenzahlen (p.152), um die wichtigsten Probleme zu nennen.

6. Man kann also erahnen, dass die Physik im Format einer QED einerseits zwar eine große geistige Leistung und auch ein Erfolg darstellt, zugleich wird im Erfolg schmerzlich bewusst, dass wir irgendwie immer noch ganz am Anfang stehen. Solange die Physyik, die komplexesten Strukturen, die wir im Universum – nach heutigem Wissensstand – kennen, die Strukturen des Lebens, noch nicht – nicht einmal ansatzweise – ‚erklären‘ kann, solange befindet sich die Physik im Stadium des A,B,C-Lernens. Der immer komplexere mathematische Apparat bei der Darstellung der physikalischen Phänomene darf uns darüber nicht hinwegtäuschen. Möglicherweise muss man die gesamte benutzte Mathematik auch mal einer Revision unterziehen; ihre Lücken und Defizite sind jedenfalls sichtbar (eine solche Revision wäre natürlich nichts, was man einfach mal so macht…).

 

Ein Überblick über alle bisherigen Themen findet sich HIER

 

VIDEOS

 

Im folgenden einige Videos, die ich auf Youtube gefunden habe, die Feynman genau bei den Vorlesungen in Auckland (New Zealand) (1979) zeigen, die dem Buch QED zugrunde liegen.

  1. Teil 1

  2. Teil 2

  3. Teil 3

  4. Teil 4

 

Feynman’s Leben

http://www.youtube.com/watch?v=Mn4_40hAAr0&feature=related

 

SUCHE NACH DEM URSPRUNG UND DER BEDEUTUNG DES LEBENS. Teil 3 (Superbugs, Steinefresser)

Paul Davies, The FIFTH MIRACLE: The Search for the Origin and Meaning of Life, New York:1999, Simon & Schuster

Start: 3.Sept.2012

Letzte Fortsetzung: 4.Sept.2012

Fortsetzung von Teil 2

 

  1. Die Entdeckung, dass RNA-Moleküle ähnliche Eigenschaften haben wie DNA-Moleküle und sie bis zu einem gewissen Grade auch als Enzyme fungieren können, die chemische Prozesse unterstützen (was sonst Proteine tun), führte zur Hypothese von der RNA-Welt, die der DNA-Welt vorausgeht. Experimente von Spiegelmann zeigten z.B., dass RNA-Genome in einer entsprechenden Lösung mit Enzymen sich reproduzieren können, allerdings mit der Tendenz, sich immer mehr zu vereinfachen (74.ter Durchlauf, 84% abgestoßen [Spiegelmann S.217]). Die Entkopplung von realen Lebensprozessen führt offensichtlich zu einer ‚Sinnentleerung‘ dergestalt, dass die Basen ihre ‚Bedeutung‘ verlieren und damit ihre ‚Notwendigkeit‘! Das vereinfachte Endprodukt bekam den Namen ‚Spiegelmanns Monster‘. (123-127) Genau gegenläufig war ein Experiment von Manfred Eigen und Peter Schuster (1967), die mit RNA-Bausteinen begannen und herausfanden, dass diese sich ‚aus sich heraus‘ zu immer komplexeren Einheiten zusammenfügten, sich reproduzierten, und den ‚Monstern von Spiegelmann‘ ähnelten. (127f) Allerdings benutze Eigen und Schuster für ihre Experimente spezialisierte Enzyme, die aus einer Zelle gewonnen waren. Die Existenz solcher Enzyme in der frühen Zeit der Entstehung gilt aber nicht als gesichert. (128f) Überlegungen zu möglichen Szenarien der frühen Koevolution von RNA-Molekülen und Proteinen gibt es, aber keine wirklichen ‚Beweise‘. (129f) Alle bisherigen Experimente haben nur gezeigt, dass die Synthese längerer RNA-Moleküle ohne spezielle Unterstützung zu fragil ist; sie funktioniert nicht. Dazu gehört auch das Detail der Chiralität: bei ‚freier‘ Erzeugung zeigen die Moleküle sowohl Links- als auch Rechtshändigkeit; die biologischen Moleküle sind aber alle linkshändig. (130f) Stammbaumanalysen zeigen ferner, dass RNA-Replikation eine spätere Entwicklung ist; die frühesten Vorläufer hatten sie so nicht. (131f) Ferner ist völlig unklar, wie sich frühere Replikatoren entwickeln konnten. (132)

  2. Aufgrund dieser Schwierigkeiten gibt es alternative Versuche, anzunehmen, dass vielleicht die Proteine zuerst da waren. Rheza Ghadiri entdeckte, dass sich Peptidketten selbst vermehren können, was auch am Beispiel der Rinderseuche BSE bestätigt wurde (133). Freeman Dyson nahm an, dass die Proteine und die replikationsfähigen Moleküle sich parallel entwickelt haben und dann erst fusionierten.(133f) Die zentrale Annahme bei Dyson ist, dass Moleküle die Produktion und Veränderung anderer Moleküle bewirken können. Damit können dann ‚Ordnungen‘ dergestalt entstehen, dass sich präferierte chemische Zyklen bilden, die verklumpen, anschwellen und sich spalten. Schon auf dieser Ebene sollte begrenzter ‚Wettbewerb‘ möglich sein, der zu einer begrenzten ‚Evolution‘ führt. (134) Solche Prozesse könnten dann von von Nukleinsäuren durchdrungen werden, die sich diese Prozesse zunutze machen. (134f) Als möglicher Ort für solche Prozesse könnte der Boden der Ozeane fungieren. Russell entwickelte ein Modell von semipermeablen- Membranen, die sich dort bilden können. (135f) Cairns-Smith generalisierte die Idee der Informationsspeicherung und entwickelte die Hypothese, dass zu Beginn Tonkristalle die Funktion von RNA und DNA gespielt haben könnten. Allerdings gibt es bislang keine experimentelle Bestätigung hierfür. (136f)

  3. Alle diese Überlegungen liefern bislang keine vollständig überzeugenden Lösungen. Klar ist nur, dass die biologische Evolution Vorläuferprozesse haben musste, denen ein Minimum an Komplexität zukommt und zwar eine ‚organisierte Komplexität‘. (137f) Unter dem Titel ‚Selbstorganisation‘ fand Prigogine Beispiele, wie sich durch Zufluss freier Energie geordnete Strukturen aus einer ‚chaotischen‘ Situation heraus bilden konnten.(138f) Kaufmann entwickelte die Idee ‚autokatalytischer‘ Prozesse, in denen ein Molekül M auf andere Moleküle als Katalysator so wirkt, dass sie Prozesse eingehen, die letztlich zur Produktion von M führen. Dies verstärkt diese Prozesse immer mehr. (139f) Allerdings fehlen auch für diese Hypothesen empirische und experimentelle Belege. (140f) Davies weist auch darauf hin, dass selbstorganisierende Prozesse in allen wesentlichen Eigenschaften von den Umgebungsbedingungen bestimmt werden; biologische Reproduktion ist aber wesentlich ‚intrinsisch‘ bestimmt durch die Informationen der DNA/ RNA-Moleküle. Alle die Modelle zur Selbstorganisation liefern keine wirklichen Hinweise, wie es zu den selbstbestimmten Formen der Reproduktion kommen konnte, zur Herausbildung der Software [zur Dekodierung?]. (141) Dabei erinnert Davies nochmals an den Aspekt der ’nicht-zufälligen‘ Ordnung, d.h. alle jene Muster, die regelmäßige Anteile enthalten (wie in den Beispielen von Autokatalyse und Selbstorganisation), sind nicht die Formen von zufälliger Informationsspeicherung, wie man sie im Falle von DNA bzw. RNA-Molekülen findet.(142)

  4. [Anmerkung: So gibt es bislang also Einsichten in das Prinzip der biologischen Selbstreproduktion, aber überzeugende Hinweise auf chemische Prozesse, wie es zur Ausbildung solcher komplexer Prozesse komme konnte, fehlen noch. ]

  5. Im Kapitel 6 ‚The Cosmic Connection‘ (SS.143 – 162) wird aufgezeigt, dass die irdische Chemie nicht losgelöst ist von der allgemeinen Chemie des Universums. Fünf chemische Elemente spielen in der erdgebundenen Biologie eine zentrale Rolle: Kohlenstoff (‚carbon‘), Sauerstoff (‚oxygen‘), Wasserstoff (‚hydrogen‘), Stickstoff (’nitrogen‘), und Phosphor (‚phosphorus‘). Dies sind zugleich die häufigsten Elemente im ganzen Universum. (143) Kohlenstoff hat die außerordentliche Fähigkeit, praktisch unendlich lange Ketten zu bilden (Nukleinsäuren und Proteine sind Beispiele dafür). (143)

  6. Kohlenstoff entsteht durch die Kernfusion in Sternen von Wasserstoff zu Helium zu Kohlenstoff.(146) Buchstäblich aus der ‚Asche‘ erloschener Sterne konnten sich dann Planeten wie die Erde bilden.(144) Kohlenstoff (‚carbon‘), Sauerstoff (‚oxygen‘), Wasserstoff (‚hydrogen‘) und Stickstoff (’nitrogen‘) werden seit Bestehen der Erde beständig in der Atmosphäre, in der Erdkruste, bei allen Verwesungsprozessen ‚recycled‘. Danach enthält jeder Körper Kohlenstoffatome von anderen Körpern, die 1000 und mehr Jahre älter sind.(146f) Mehr als hundert chemische Verbindungen konnten bislang im Universum nachgewiesen werden, viele davon organischer Natur. (147f) Nach den ersten hundert Millionen Jahren war die Oberfläche der Erde immer noch sehr heiß, die Ozeane viel tiefer, die Atmosphäre drückend (‚crushing‘), intensiver Vulkanismus, der Mond näher, die Gezeiten viel höher, die Erdumdrehung viel schneller, und vor allem andauernde Bombardements aus dem Weltall. (152) Eine ausführlichere Schilderung zeigt die vielfältigen Einwirkungen aus dem Weltall auf die Erde. Generell kann hier allerlei (auch organisches) Material auf die Erde gekommen sein. Allerdings sind die Umstände eines Eindringens und Aufprallens normalerweise eher zerstörerischer Natur was biologische Strukturen betrifft. (153-158) Das heftige Bombardement aus dem Weltall mit den verheerenden Folgen macht es schwer, abzuschätzen, wann Leben wirklich begann. Grundsätzlich ist weder auszuschließen, dass Leben mehrfach erfunden wurde noch, dass es Unterstützung aus dem Weltall bekommen haben kann. Andererseits war der ’sicherste‘ Ort irgendwo in einer Tiefe, die von dem Bombardement kaum bis gar nicht beeinträchtigt wurde. (158-161)

  7. Kapitel 7 ‚Superbugs‘ (163-186). Die weltweit auftretende Zerstörung von unterirdischen Kanalleitungen aus Metall (später 1920iger) führte zur Entdeckung eines Mikroorganismus, der ausschließlich in einer säuerlichen Umgebung lebt, Schwefel (’sulfur‘) frißt und eine schweflige Säure erzeugt, die sogar Metall zerstören kann.(163f) Man entdeckte mittlerweile viele verschiedene Mikroorganismusarten, die in Extremsituationen leben: stark salzhaltig, sehr kalt, starke radioaktive Strahlung, hoher Druck, extremes Vakuum, hohe Temperaturen. (164f) Diese Mikroorganismen scheinen darüber hinaus sehr alt zu sein. (165) Am erstaunlichsten von allen sind aber die wärmeliebenden Mikroorganismen (‚thermophiles‘, ‚hyperthermophiles‘), die bislang bis zu Temperaturen von 113C^o gefunden wurden. Von den mittlerweile mehr als Tausend entdeckten Arten sind ein großer Teil Archäen, die als die ältesten bekannten Lebensformen gelten. (166f) Noch mehr, diese thermophilen und hyperthermophylen Mikroorganismen sind – wie Pflanzen allgemein – ‚autotroph‘ in dem Sinne, dass sie kein organisches Material für ihre Versorgung voraussetzen, sondern anorganisches Material. Man nennt die unterseeischen Mikroorganismen abgrenzend von den autotrophen ‚Chemotrophs‘, da sie kein Sonnenlicht (also keine Photosynthese) benutzen, sondern einen eigenen Energiegewinnungsprozess entwickelt haben. (167f) Es dauerte etwa von 1920 bis etwa Mitte der 90iger Jahre des 20.Jahrhunderts bis der Verdacht und einzelne Funde sich zu einem Gesamtbild verdichteten, dass Mikroorganismen überall in der Erdoberfläche bis in Tiefen von mehr als 4000 m vorkommen, mit einer Dichte von bis zu 10 Mio Mikroorganismen pro Gramm, und einer Artenvielfalt von mittlerweile mehreren Tausend. (168-171) Bohrungen in den Meeresgrund erbrachten weitere Evidenz dass auch 750m unter dem Meeresboden überall Mikroorganismen zu finden sind (zwischen 1 Mrd pro cm^3 bis zu 10 Mio). Es spricht nichts dagegen, dass Mikroorganismen bis zu 7km unter dem Meeresboden leben können. (171-173) All diese Erkenntnisse unterstützen die Hypothese, dass die ersten Lebensformen eher unterseeisch und unterirdisch entstanden sind, geschützt vor der Unwirtlichkeit kosmischer Einschläge, ultravioletter Strahlung und Vulkanausbrüchen. Außerdem waren alle notwendigen Elemente wie z.B. Wasserstoff, Methan, Ammoniak, Wasserstoff-Sulfid im Überfluss vorhanden. (173f) Untersuchungen zur Energiebilanz zeigen, dass in der Umgebung von heißen unterirdischen Quellen speziell im Bereich 100-150 C^o sehr günstig ist.(174f) Zusätzlich deuten genetische Untersuchungen zur Abstammung darauf hin, dass gerade die Archäen-Mikroorganismen zu den ältesten bekannten Lebensformen gehören, die sich z.T. nur sehr wenig entwickelt haben. Nach all dem wären es dann diese hyperthermophilen Mikroorganismen , die den Ursprung aller biologischen Lebensformen markieren. Immer mehr Entdeckungen zeigen eine wachsende Vielfalt von Mikroorganismen die ohne Licht, in großer Tiefe, bei hohen Temperaturen anorganische Materialien in Biomasse umformen. (175-183)

  8. Wie Leben wirklich begann lässt sich bislang trotz all dieser Erkenntnisse nicht wirklich klären. Alle bisherigen Fakten sprechen für den Beginn mit den Archäen, die sich horizontal in den Ozeanen und in der Erdkruste in einem Temperaturbereich nicht höher als etwa 120 C^o (oder höher?) ausbreiten konnten. Irgendwann muss es dann einen Entwicklungssprung in die Richtung Photosynthese gegeben haben, der ein Leben an der Oberfläche ermöglichte. (183-186)

  9. Kap.8 ‚Mars: Red and Dead‘ (SS.187-220). Diskussion, ob es Leben auf dem Mars gab bzw. noch gibt. Gehe weiter darauf nicht ein, da es für die Diskussion zur Struktur und Entstehung des Lebens keinen wesentlichen Beitrag liefert.

  10. Kap.9 ‚Panspermia‘ (SS.221-243). Diskussion, inwieweit das Leben irgendwo im Weltall entstanden sein kann und von dort das Leben auf die Erde kam. Aber auch hier gilt, neben der Unwahrscheinlichkeit einer solchen Lösung würde es die Grundsatzfragen nicht lösen. (siehe auch Davies S.243))

  11. Kap.10 ‚A Bio-Friendly Universe‘ (SS.245-273). Angesichts der ungeheuren molekularen Komplexität , deren Zusammenspiel und deren Koevolution steht die Annahme einer rein zufälligen Entwicklung relativ schwach da. Die Annahme, dass die Komplexität durch die impliziten Gesetzmäßigkeiten aller beteiligten Bestandteile ‚unterstützt‘ wird, würde zwar ‚helfen‘, es bleibt aber die Frage, wie. (245-47) Eine andere Erklärungsstrategie‘, nimmt an, dass das Universum ewig ist und dass daher Leben und Intelligenz schon immer da war. Die sich daraus ergebenden Konsequenzen widersprechen den bekannten Fakten und erklären letztlich nichts. Davies plädiert daher für die Option, dass das Leben begonnen hat, möglicherweise an mehreren Orten zugleich. (247-250)
  12. Im Gegensatz zu Monod und den meisten Biologen, die nur reinen Zufall als Entstehungsform annehmen, gibt es mehrere Vertreter, die Elemente jenseits des Zufalls annehmen, die in der Naturgesetzen verankert sind. Diese wirken sich als ‚Präferenzen‘ aus bei der Bildung von komplexeren Strukturen. (250-254) Dem hält Davies aber entgegen, dass die normalen Naturgesetze sehr einfach sind, schematisch, nicht zufällig, wohingegen die Kodierung des Lebens und seiner Strukturen sich gerade von den chemischen Notwendigkeiten befreit haben, sich nicht über ihre materiellen Bestandteile definieren, sondern über eine frei (zufällig) sich konfigurierende Software. Der Rückzug auf die Präferenzen ist dann möglicherweise kein genügender Erklärungsgrund. Davies hält die Annahme eines ‚Kodes im Kode‘ für nicht plausibel. (254-257) Wie aber lässt sich das Problem der biologischen Information lösen? (257f) Grundsätzlich meint Davies, dass vieles dafür spricht, dass man ein ‚Gesetz der Information‘ als genuine Eigenschaft der Materie annehmen muss. (258f) Davies nennt dann verschiedene Theorieansätze zum möglichen Weiterdenken, ohne die gedanklichen Linien voll auszuziehen. Er erinnert nochmals an die Komplexitätstheorie mit ihrem logischen Charakter, erinnert an die Quantenstruktur der Materie, die Dualität von Welle (Information? Software?) und Teilchen (Hardware?) und ‚Quasikristalle‘, die auf den ersten Blick periodisch wirken, aber bei näherer Analyse aperiodisch sind. (259-263)
  13. Eine andere Frage ist die, ob man in der Evolution irgendeine Art von Fortschritt erkennen kann. Das Hauptproblem ist, wie man Fortschritt definieren kann, ohne sich in Vorurteilen zu verfangen. Vielfach wird der Begriff der Komplexität bemüht, um einen Anstieg an Komplexität zu konstatieren. Stephen J.Gould sieht solche Annahmen eines Anstiegs der Komplexität sehr kritisch. Für Christian de Duve hingegen erscheint ein Anstieg von Komplexität klar. (264-270)
  14. In den Schlussbemerkungen stellt Davies nochmals die beiden großen Interpretationsalternativen gegenüber: einmal die Annahme einer Zunahme der Komplexität am Beispiel von Gehirnen und daran sich knüpfenden Eigenschaften aufgrund von impliziten Präferenzen oder demgegenüber die Beschränkung auf reinen Zufall. Im letzteren Fall ist das Auftreten komplexer Lebensformen so hochgradig unwahrscheinlich, dass eine Wiederholung ähnlicher Lebensformen an einem anderen Ort ausgeschlossen erscheint. (270-273)
  15. [Anmerkung: Am Ende der Lektüre des Buches von Davies muss ich sagen, dass Davies hier ein Buch geschrieben hat, das auch ca. 13 Jahre später immer noch eine Aussagekraft hat, die die gewaltig ist. Im Detail der Biochemie und der Diskussion der chemischen Evolution mag sich das eine oder andere mittlerweile weiter entwickelt haben (z.B. ist die Diskussion zum Stammbaum fortgeschritten in einer Weise, dass weder die absolute Datierung noch zweifelsfrei ist noch die genauen Abhängigkeiten aufgrund von Genaustausch zwischen den Arten (vgl. Rauchfuß (326-337)]), doch zeigt Davies Querbeziehungen zwischen vielen Bereichen auf und bringt fundamentale Konzepte zum Einsatz (Information, Selbstorganisation, Autokatalyse, Komplexitätstheorie, Quantentheorie, Thermodynamik, algorithmische Berechenbarkeit ….), die in dieser Dichte und reflektierenden Einbringung sehr selten sind. Sein sehr kritischer Umgang mit allen möglichen Interpretationen ermöglicht Denkansätze, stellt aber auch genügend ‚Warnzeichen‘ auf, um nicht in vorschnelle Interpretationssackgassen zu enden. Eine weitere Diskussion des Phänomen Lebens kann an diesem Buch schwerlich vorbei gehen. Ich habe auch nicht den Eindruck, dass die neueren Ergebnisse die grundsätzlichen Überlegungen von Davies tangieren; mehr noch, ich kann mich des Gefühls nicht erwehren, dass die neuere Diskussion zwar weiter in ‚Details wühlt‘, aber die großen Linien und die grundlegenden theoretischen Modelle nicht wirklich beachten. Dies bedarf weiterer intensiver Lektüre und Diskussion ]
  16. [ Anmerkung: Ich beende hiermit die direkte Darstellung der Position von Davies, allerdings beginnt damit die Reflektion seiner grundlegenden Konzepte erst richtig. Aus meiner Sicht ist es vor allem der Aspekt der ‚logischen Strukturen‘, die sich beim ‚Zusammenwirken‘ einzelner Komponenten in Richtung einer höheren ‚funktionellen Komplexität‘ zeigen, die einer Erklärung bedürfen. Dies ist verknüpft mit dem Phänomen, dass biologische Strukturen solche übergreifenden logischen Strukturen in Form von DNA/ RNA-Molekülen ’speichern‘, deren ‚Inhalt‘ durch Prozesse gesteuert werden, die selbst nicht durch ‚explizite‘ Informationen gesteuert werden, sondern einerseits möglicherweise von ‚impliziten‘ Informationen und jeweiligen ‚Kontexten‘. Dies führt dann zu der Frage, inwieweit Moleküle, Atome, Atombestandteile ‚Informationen‘ ‚implizit‘ kodieren können, die sich in der Interaktion zwischen den Bestandteilen als ‚Präferenzen‘ auswirken. Tatsache ist, dass Atome nicht ’neutral‘ sind, sondern ’spezifisch‘ interagieren, das gleiche gilt für Bestandteile von Atomen bzw. für ‚Teilchen/ Quanten‘. Die bis heute nicht erklärbare, sondern nur konstatierbare Dualität von ‚Welle‘ und ‚Teilchen‘ könnte ein Hinweis darauf sein, dass die Grundstrukturen der Materie noch Eigenschaften enthält, die wir bislang ‚übersehen‘ haben. Es ist das Verdienst von Davies als Physiker, dass er die vielen chemischen, biochemischen und biologischen Details durch diese übergreifenden Kategorien dem Denken in neuer Weise ‚zuführt‘. Die überdimensionierte Spezialisierung des Wissens – in gewisser Weise unausweichlich – ist dennoch zugleich auch die größte Gefahr unseres heutigen Erkenntnisbetriebes. Wir laufen wirklich Gefahr, den berühmten Wald vor lauter Bäumen nicht mehr zu sehen. ]

 

Zitierte Literatur:

 

Mills,D.R.; Peterson, R.L.; Spiegelmann,S.: An Extracellular Darwinian Experiment With A Self-Duplicating Nucleic Acid Molecule, Reprinted from the Proceedings of the National Academy of Sciences, Vol.58, No.1, pp.217-224, July 1997

 

 

Rauchfuß, H.; CHEMISCHE EVOLUTION und der Ursprung des Lebens. Berlin – Heidelberg: Springer, 2005

 

Einen Überblick über alle bisherigen Themen findet sich HIER

 

Ein Video in Youtube, das eine Rede von Pauls Davies dokumentiert, die thematisch zur Buchbesprechung passt und ihn als Person etwas erkennbar macht.

 

Teil 1:
http://www.youtube.com/watch?v=9tB1jppI3fo

Teil 2:
http://www.youtube.com/watch?v=DXXFNnmgcVs

Teil 3:
http://www.youtube.com/watch?v=Ok9APrXfIOU

Teil 4:
http://www.youtube.com/watch?v=vXqqa1_0i7E

Part 5:
http://www.youtube.com/watch?v=QVrRL3u0dF4
Es gibt noch einige andere Videos mit Paul Davies bei Youtube.

 

 

SUCHE NACH DEM URSPRUNG UND DER BEDEUTUNG DES LEBENS (Paul Davies). Teil 2 (Information als Grundeigenschaft alles Materiellen?)

Paul Davies, The FIFTH MIRACLE: The Search for the Origin and Meaning of Life, New York:1999, Simon & Schuster

 Fortsetzung von Suche… (Teil 1)

Start: 27.Aug.2012

Letzte Fortsetzung: 1.Sept.2012

  1. Das dritte Kapitel ist überschrieben ‚Out of the Slime‘. (SS.69-96) Es startet mit Überlegungen zur Linie der Vorfahren (Stammbaum), die alle auf ‚gemeinsame Vorfahren‘ zurückführen. Für uns Menschen zu den ersten Exemplaren des homo sapiens in Afrika vor 100.000 Jahren, zu den einige Millionen Jahre zurückliegenden gemeinsamen Vorläufern von Affen und Menschen; ca. 500 Mio Jahre früher waren die Vorläufer Fische, zwei Milliarden Jahre zurück waren es Mikroben. Und diese Rückführung betrifft alle bekannten Lebensformen, die, je weiter zurück, sich immer mehr in gemeinsamen Vorläufern vereinigen, bis hin zu den Vorläufern allen irdischen Lebens, Mikroorganismen, Bakterien, die die ersten waren.(vgl. S.69f)

  2. [Anmerkung: Die Formulierung von einem ‚einzelnen hominiden Vorfahren‘ oder gar von der ‚afrikanischen Eva‘ kann den Eindruck erwecken, als ob der erste gemeinsame Vorfahre ein einzelnes Individuum war. Das scheint mir aber irreführend. Bedenkt man, dass wir ‚Übergangsphasen‘ haben von Atomen zu Molekülen, von Molekülen zu Netzwerken von Molekülen, von Molekülnetzwerken zu Zellen, usw. dann waren diese Übergänge nur erfolgreich, weil viele Milliarden und Abermilliarden von Elementen ‚gleichzeitig‘ beteiligt waren; anders wäre ein ‚Überleben‘ unter widrigsten Umständen überhaupt nicht möglich gewesen. Und es spricht alles dafür, dass dieses ‚Prinzip der Homogenität‘ sich auch bei den ‚komplexeren‘ Entwicklungsstufen fortgesetzt hat. Ein einzelnes Exemplar einer Art, das durch irgendwelche besonderen Eigenschaften ‚aus der Reihe‘ gefallen wäre, hätte gar nicht existieren können. Es braucht immer eine Vielzahl von hinreichend ‚ähnlichen‘ Exemplaren, dass ein Zusammenwirken und Fortbestehen realisiert werden kann. Die ‚Vorgänger‘ sind also eher keine spezifischen Individuen (wenngleich in direkter Abstammung schon), sondern immer Individuen als Mitglieder einer bestimmten ‚Art‘.]

  3. Es ist überliefert, dass Darwin im Sommer 1837, nach der Rückkehr von seiner Forschungsreise mit der HMS Beagle in seinem Notizbuch erstmalig einen irregulär verzweigenden Baum gemalt hat, um die vermuteten genealogischen Zusammenhänge der verschiedenen Arten darzustellen. Der Baum kodierte die Annahme, dass letztlich alle bekannten Lebensformen auf einen gemeinsamen Ursprung zurückgehen. Ferner wird deutlich, dass viele Arten (heutige Schätzungen: 99%) irgendwann ‚ausgestorben‘ sind. Im Falle einzelliger Lebewesen gab es aber – wie wir heute zunehmend erkennen können – auch das Phänomene der Symbiose: ein Mikroorganismus ‚frißt‘ andere und ‚integriert‘ deren Leistung ‚in sich‘ (Beispiel die Mitochondrien als Teil der heute bekannten Zellen). Dies bedeutet, dass ‚Aussterben‘ auch als ‚Synthese‘ auftreten kann.(vgl. SS.70-75)

  4. Die Argumente für den Zusammenhang auf Zellebene zwischen allen bekannten und ausgestorbenen Arten mit gemeinsamen Vorläufern beruhen auf den empirischen Fakten, z.B. dass die metabolischen Verläufe der einzelnen Zellen gleich sind, dass die Art und Weise der genetischen Kodierung und Weitergabe gleich ist, dass der genetische Kode im Detail der gleiche ist, oder ein kurioses Detail wie die molekulare Ausrichtung – bekannt als Chiralität –; obgleich jedes Molekül aufgrund der geltenden Gesetze sowohl rechts- oder linkshändig sein kann, ist die DNA bei allen Zellen ‚rechtshändig‘ und ihr Spiegelbild linkshändig. (vgl.SS.71-73)

  5. Da das DNA-Molekül bei allen bekannten Lebensformen in gleicher Weise unter Benutzung von Bausteinen aus Aminosäure kodiert ist, kann man diese Moleküle mit modernen Sequenzierungstechniken Element für Element vergleichen. Unter der generellen Annahme, dass sich bei Weitergabe der Erbinformationen durch zufällige Mutationen von Generation zur Generation Änderungen ergeben können, kann man anhand der Anzahl der verschiedenen Elemente sowohl einen ‚genetischen Unterschied‘ wie auch einen ‚genealogischen Abstand‘ konstruieren. Der genetische Unterschied ist direkt ’sichtbar‘, die genaue Bestimmung des genealogischen Abstands im ‚Stammbaum‘ hängt zusätzlich ab von der ‚Veränderungsgeschwindigkeit‘. Im Jahr 1999 war die Faktenlage so, dass man annimmt, dass es gemeinsame Vorläufer für alles Leben gegeben hat, die sich vor ca. 3 Milliarden Jahren in die Art ‚Bakterien‘ und ‚Nicht-Bakterien‘ verzweigt haben. Die Nicht-Bakterien haben sich dann weiter verzweigt in ‚Eukaryoten‘ und ‚Archäen‘. (vgl. SS.75-79)

  6. Davies berichtet von bio-geologischen Funden nach denen in de Nähe von Isua (Grönland) Felsen von vor mindestens -3.85 Milliarden Jahren gefunden wurden mit Spuren von Bakterien. Ebenso gibt es Funde von Stromatolythen (Nähe Shark Bay, Australien), mit Anzeichen für Cyanobakterien aus der Zeit von ca. -3.5 Milliarden Jahren und aus der gleichen Zeit Mikrofossilien in den Warrawoona Bergen (Australien). Nach den Ergebnissen aus 1999 hatten die Cyanobakterien schon -3.5 Mrd. Jahre Mechanismen für Photosynthese, einem höchst komplexen Prozess.(vgl. SS.79-81)

  7. Die immer weitere Zurückverlagerung von Mikroorganismen in die Vergangenheit löste aber nicht das Problem der Entstehung dieser komplexen Strukturen. Entgegen der früher verbreiteten Anschauung, dass ‚Leben‘ nicht aus ‚toter Materie‘ entstehen kann, hatte schon Darwin 1871 in einem Brief die Überlegung geäußert, dass in einer geeigneten chemischen Lösung über einen hinreichend langen Zeitraum jene Moleküle und Molekülvernetzungen entstehen könnten, die dann zu den bekannten Lebensformen führen. Aber erst in den 20iger Jahren des 20.Jahrhunderts waren es Alexander Oparin (Rußland) und J.B.S.Haldane (England) die diese Überlegungen ernst nahmen. Statt einem kleinen See,  wie bei Darwin, nahm Haldane an, dass es die Ozeane waren, die den Raum für den Übergangsprozess von ‚Materie‘ zu ‚Leben‘ boten. Beiden Forschern fehlten aber in ihrer Zeit die entscheidende Werkzeuge und Erkenntnisse der Biochemie und Molekularbiologie, um ihre Hypothesen testen zu können. Es war Harold Urey (USA) vorbehalten, 1953 mit ersten Laborexperimenten beginnen zu können, um die Hypothesen zu testen. (vgl. SS.81-86)

  8. Mit Hilfe des Studenten Miller arrangierte Urey ein Experiment, bei dem im Glaskolben eine ‚Mini-Erde‘ bestehend aus etwas Wasser mit den Gasen Methan, Hydrogen und Ammonium angesetzt wurde. Laut Annahme sollte dies der Situation um ca. -4 Millarden Jahren entsprechen. Miller erzeugte dann in dem Glaskolben elektrische Funken, um den Effekt von Sonnenlicht zu simulieren. Nach einer Woche fand er dann verschiedene Amino-Säuren, die als Bausteine in allen biologischen Strukturen vorkommen, speziell auch in Proteinen.(vgl. S.86f)

  9. Die Begeisterung war groß. Nachfolgende Überlegungen machten dann aber klar, dass damit noch nicht viel erreicht war. Die Erkenntnisse der Geologen deuteten in den nachfolgenden Jahren eher dahin, dass die Erdatmosphäre, die die sich mehrfach geändert hatte, kaum Ammonium und Methan enthielt, sondern eher reaktions-neutrales Kohlendioxyd und Schwefel, Gase die keine Aminosäuren produzieren. (vgl.S.87)

  10. Darüber hinaus ist mit dem Auftreten von Aminosäuren als Bausteine für mögliche größere Moleküle noch nichts darüber gesagt, ob und wie diese größere Moleküle entstehen können. Genauso wenig wie ein Haufen Ziegelsteine einfach so ein geordnetes Haus bilden wird, genauso wenig formen einzelne Aminosäuren ‚einfach so‘ ein komplexes Molekül (ein Peptid oder Polypeptid). Dazu muss der zweite Hauptsatz überwunden werden, nach dem ’spontane‘ Prozesse nur in Richtung Energieabbau ablaufen. Will man dagegen komplexe Moleküle bauen, muss man gegen den zweiten Hauptsatz die Energie erhöhen; dies muss gezielt geschehen. In einem angenommenen Ozean ist dies extrem unwahrscheinlich, da hier Verbindungen eher aufgelöst statt synthetisiert werden.(vgl.87-90)

  11. Der Chemiker Sidney Fox erweiterte das Urey-Experiment durch Zufuhr von Wärme. In der Tat bildeten sich dann Ketten von Aminosäurebausteinen die er ‚Proteinoide‘ nannte. Diese waren eine Mischung aus links- und rechts-händigen Molekülen, während die biologisch relevanten Moleküle alle links-händig sind. Mehr noch, die biologisch relevanten Aminosäureketten sind hochspezialisiert. Aus der ungeheuren Zahl möglicher Kombinationen die ‚richtigen‘ per Zufall zu treffen grenzt mathematisch ans Unmögliche.(vgl.S.90f) Dazu kommt, dass eine Zelle viele verschiedene komplexe Moleküle benötigt (neben Proteinen auch Lipide, Nukleinsäuren, Ribosomen usw.). Nicht nur ist jedes dieser Moleküle hochkomplex, sondern sie entfalten ihre spezifische Wirkung als ‚lebendiges Ensemble‘ erst im Zusammenspiel. Jedes Molekül ‚für sich‘ weiß aber nichts von einem Zusammenhang. Wo kommen die Informationen für den Zusammenhang her? (vgl.S.91f) Rein mathematisch ist die Wahrscheinlichkeit, dass sich die ‚richtigen‘ Proteine bilden in der Größenordnung von 1:10^40000, oder, um ein eindrucksvolles Bild des Physikers Fred Hoyle zu benutzen: genauso unwahrscheinlich, wie wenn ein Wirbelsturm aus einem Schrottplatz eine voll funktionsfähige Boeing 747 erzeugen würde. (vgl.S.95)

  12. Die Versuchung, das Phänomen des Lebens angesichts dieser extremen Unwahrscheinlichkeiten als etwas ‚Besonderes‘, als einen extrem glücklichen Zufall, zu charakterisieren, ist groß. Davies plädiert für eine Erklärung als eines ’natürlichen physikalischen Prozesses‘. (S.95f)

  13. Im Kapitel 4 ‚The Message in the Machine‘ (SS.97-122) versucht Davies mögliche naturwissenschaftliche Erklärungsansätze, beginnend bei den Molekülen, vorzustellen. Die Zelle selbst ist so ungeheuerlich komplex, dass noch ein Niels Bohr die Meinung vertrat, dass Leben als ein unerklärbares Faktum hinzunehmen sei (vgl.Anmk.1,S.99). Für die Rekonstruktion erinnert Davies nochmals daran, dass diejenigen Eigenschaften, die ‚lebende‘ Systeme von ’nicht-lebenden‘ Systemen auszeichnen, Makroeigenschaften sind, die sich nicht allein durch Verweis auf die einzelnen Bestandteile erklären lassen, sondern nur und ausschließlich durch das Zusammenspiel der einzelnen Komponenten. Zentrale Eigenschaft ist hier die Reproduktion. (vgl.SS.97-99)

  14. Reproduktion ist im Kern gebunden an das Kopieren von drei-dimensional charakterisierten DNA-Molekülen. Vereinfacht besteht solch ein DNA-Molekül aus zwei komplementären Strängen, die über eine vierelementiges Alphabet von Nukleinsäurebasen miteinander so verbunden sind, dass es zu jeder Nukleinsäurebase genau ein passendes Gegenstück gibt. Fehlt ein Gegenstück, ist es bei Kenntnis des Kodes einfach, das andere Stück zu ergänzen. Ketten von den vierelementigen Basen können ‚Wörter‘ bilden, die ‚genetische Informationen‘ kodieren. Ein ‚Gen‘ wäre dann solch ein ‚Basen-Wort‘. Und das ganze Molekül wäre dann die Summe aller Gene als ‚Genom‘. Das ‚Auftrennen‘ von Doppelsträngen zum Zwecke des Kopierens wie auch das wieder ‚Zusammenfügen‘ besorgen spezialisierte andere Moleküle (Enzyme). Insgesamt kann es beim Auftrennen, Kopieren und wieder Zusammenfügen zu ‚Fehlern‘ (Mutationen) kommen. (vgl.SS.100-104)

  15. Da DNA-Moleküle als solche nicht handlungsfähig sind benötigen sie eine Umgebung, die dafür Sorge trägt, dass die genetischen Informationen gesichert und weitergegeben werden. Im einfachen Fall ist dies eine Zelle. Um eine Zelle aufzubauen benötigt man Proteine als Baumaterial und als Enzyme. Proteine werden mithilfe der genetischen Informationen in der DNA erzeugt. Dazu wird eine Kopie der DNA-Informationen in ein Molekül genannt Boten-RNA (messenger RNA, mRNA) kopiert, dieses wandert zu einem komplexen Molekülnetzwerk genannt ‚Ribosom‘. Ribosomen ‚lesen‘ ein mRNA-Molekül als ‚Bauanleitung‘ und generieren anhand dieser Informationen Proteine, die aus einem Alphabet von 20 (bisweilen 21) Aminosäuren zusammengesetzt werden. Die Aminosäuren, die mithilfe des Ribosoms Stück für Stück aneinandergereiht werden, werden von spezialisierten Transportmolekülen (transfer RNA, tRNA) ‚gebracht‘, die so gebaut sind, dass immer nur dasjenige tRNA-Molekül andocken kann, das zur jeweiligen mRNA-Information ‚passt‘. Sobald die mRNA-Information ‚abgearbeitet‘ ist, liegt eines von vielen zehntausend möglichen Proteinen vor. (vgl.SS. 104-107) Bemerkenswert ist die ‚Dualität‘ der DNA-Moleküle (wie auch der mRNA) sowohl als ‚Material/ Hardware‘ wie auch als ‚Information/ Software‘. (vgl.S.108)

  16. Diese ‚digitale‘ Perspektive vertieft Davies durch weitere Betrachtung und führt den Leser zu einem Punkt, bei dem man den Eindruck gewinnt, dass die beobachtbaren und messbaren Materialien letztlich austauschbar sind bezogen auf die ‚impliziten Strukturen‘, die damit realisiert werden. Am Beispiel eines Modellflugzeugs, das mittels Radiowellen ferngesteuert wird, baut er eine Analogie dahingehend auf, dass die Hardware (das Material) des Flugzeugs wie auch der Radiowellen selbst als solche nicht erklären, was das Flugzeug tut. Die Hardware ermöglicht zwar grundsätzlich bestimmte Flugeigenschaften, aber ob und wie diese Eigenschaften genutzt werden, das wird durch ‚Informationen‘ bestimmt, die per Radiowellen von einem Sender/ Empfänger kommuniziert werden. Im Fall einer Zelle bilden komplexe Molekülnetzwerke die Hardware mit bestimmten verfügbaren chemischen Eigenschaften, aber ihr Gesamtverhalten wird gesteuert durch Informationen, die primär im DNA-Molekül kodiert vorliegt und die als ‚dekodierte‘ Information alles steuert.(vgl. SS.113-115)

  17. [Anmerkung: Wie schon zuvor festgestellt, repräsentieren Atome und Moleküle als solche keine ‚Information‘ ‚von sich aus‘. Sie bilden mögliche ‚Ereignisse‘ E ‚für andere‘ Strukturen S, sofern diese andere Strukturen S auf irgendeine Weise von E ‚beeinflusst‘ werden können. Rein physikalisch (und chemisch) gibt es unterschiedliche Einwirkungsmöglichkeiten (z.B. elektrische Ladungen, Gravitation,…). Im Falle der ‚Information‘ sind es aber nicht nur solche primären physikalisch-chemischen Eigenschaften, die benutzt werden, sondern das ‚empfangende‘ System S befindet sich in einem Zustand, S_inf, der es dem System ermöglicht, bestimmte physikalisch-chemische Ereignisse E als ‚Elemente eines Kodes‘ zu ‚interpretieren. Ein Kode ist minimal eine Abbildungsvorschrift, die Elemente einer Menge X (die primäre Ereignismenge) in eine Bildmenge Y (irgendwelche anderen Ereignisse, die Bedeutung) ‚übersetzt‘ (kodiert), also CODE: X —> Y. Das Materiell-Stoffliche wird damit zum ‚Träger von Informationen‘, zu einem ‚Zeichen‘, das von einem Empfänger S ‚verstanden‘ wird. Im Falle der zuvor geschilderten Replikation wurden ausgehend von einem DNA-Molekül (= X, Ereignis, Zeichen) mittels mRNA, tRNA und Ribosom (= Kode, CODE) bestimmte Proteine (=Y, Bedeutung) erzeugt. Dies bedeutet, dass die erzeugten Proteine die ‚Bedeutung des DNA-Moleküls‘ sind unter Voraussetzung eines ‚existierenden Kodes‘ realisiert im Zusammenspiel eines Netzwerkes von mRNA, tRNAs und Ribosom. Das Paradoxe daran ist, das die einzelnen Bestandteile des Kodes, die Moleküle mRNA, tRNA und Ribosom (letzteres selber hochkomplex) ‚für sich genommen‘ keinen Kode darstellen, nur in dem spezifischen Zusammenspiel! Wenn also die einzelnen materiellen Bestandteile, die Atome und Moleküle ‚für sich gesehen‘ keinen komplexen Kode darstellen, woher kommt dann die Information, die alle diese materiell hochkomplexen Bestandteile auf eine Weise ‚zusammenspielen‘ lässt, die weit über das hinausgeht, was die Bestandteile einzeln ‚verkörpern‘? ]

  18. "Zelle und Turingmaschine"
    zelle_tm

    [Anmerkung: Es gibt noch eine andere interssante Perspektive. Das mit Abstand wichtigste Konzept in der (theoretischen) Informatik ist das Konzept der Berechenbarkeit, wie es zunächst von Goedel 1931, dann von Turing in seinem berühmten Artikel von 1936-7 vorgelegt worden ist. In seinem Artikel definiert Turing das mathematische (!) Konzept einer Vorrichtung, die alle denkbaren berechenbaren Prozesse beschreiben soll. Später gaben andere dieser Vorrichtung den Namen ‚Turingmaschine‘ und bis heute haben alle Beweise immer nur dies eine gezeigt, dass es kein anderes formales Konzept der intuitiven ‚Berechenbarkeit‘ gibt, das ’stärker‘ ist als das der Turingmaschine. Die Turingmaschine ist damit einer der wichtigsten – wenn nicht überhaupt der wichtigste — philosophischen Begriff(e). Viele verbinden den Begriff der Turingmaschine oft mit den heute bekannten Computern oder sehen darin die Beschreibung eines konkreten, wenngleich sehr ‚umständlichen‘ Computers. Das ist aber vollständig an der Sache vorbei. Die Turingmaschine ist weder ein konkreter Computer noch überhaupt etwas Konkretes. Genau wie der mathematische Begriff der natürlichen Zahlen ein mathematisches Konzept ist, das aufgrund der ihm innewohnenden endlichen Unendlichkeit niemals eine reale Zahlenmenge beschreibt, sondern nur das mathematische Konzept einer endlich-unendlichen Menge von abstrakten Objekten, für die die Zahlen des Alltags ‚Beispiele‘ sind, genauso ist auch das Konzept der Turingmaschine ein rein abstraktes Gebilde, für das man konkrete Beispiele angeben kann, die aber das mathematische Konzept selbst nie erschöpfen (die Turingmaschine hat z.B. ein unendliches Schreib-Lese-Band, etwas, das niemals real existieren kann).
    ]

  19. [Anmerkung: Das Interessante ist nun, dass man z.B. die Funktion des Ribosoms strukturell mit dem Konzept einer Turingmaschine beschreiben kann (vgl. Bild). Das Ribosom ist jene Funktionseinheit von Molekülen, die einen Input bestehend aus mRNA und tRNAs überführen kann in einen Output bestehend aus einem Protein. Dies ist nur möglich, weil das Ribosom die mRNA als Kette von Informationseinheiten ‚interpretiert‘ (dekodiert), die dazu führen, dass bestimmte tRNA-Einheiten zu einem Protein zusammengebaut werden. Mathematisch kann man diese funktionelle Verhalten eines Ribosoms daher als ein ‚Programm‘ beschreiben, das gleichbedeutend ist mit einer ‚Funktion‘ bzw. Abbildungsvorschrift der Art ‚RIBOSOM: mRNA x tRNA —> PROTEIN. Das Ribosom stellt somit eine chemische Variante einer Turingmaschine dar (statt digitalen Chips oder Neuronen). Bleibt die Frage, wie es zur ‚Ausbildung‘ eines Ribosoms kommen kann, das ’synchron‘ zu entsprechenden mRNA-Molekülen die richtige Abbildungsvorschrift besitzt.
    ]
  20. Eine andere Blickweise auf das Phänomen der Information ist jene des Mathematikers Chaitin, der darauf aufmerksam gemacht hat, dass man das ‚Programm‘ eines Computers (sein Algorithmus, seine Abbildungsfunktion, seine Dekodierungsfunktion…) auch als eine Zeichenkette auffassen kann, die nur aus Einsen und Nullen besteht (also ‚1101001101010..‘). Je mehr Wiederholungen solch eine Zeichenkette enthalten würde, um so mehr Redundanz würde sie enthalten. Je weniger Wiederholung, um so weniger Redundanz, um so höher die ‚Informationsdichte‘. In einer Zeichenkette ohne jegliche Redundanz wäre jedes einzelne Zeichen wichtig. Solche Zeichenketten sind formal nicht mehr von reinen zufallsbedingten Ketten unterscheidbar. Dennoch haben biologisch nicht alle zufälligen Ketten eine ’nützliche‘ Bedeutung. DNA-Moleküle ( bzw. deren Komplement die jeweiligen mRNA-Moleküle) kann man wegen ihrer Funktion als ‚Befehlssequenzen‘ als solche binär kodierten Programme auffassen. DNA-Moleküle können also durch Zufall erzeugt worden sein, aber nicht alle zufälligen Erzeugungen sind ’nützlich‘, nur ein verschwindend geringer Teil.  Dass die ‚Natur‘ es geschafft hat, aus der unendlichen Menge der nicht-nützlichen Moleküle per Zufall die herauszufischen, die ’nützlich‘ sind, geschah einmal durch das Zusammenspiel von Zufall in Gestalt von ‚Mutation‘ sowie Auswahl der ‚Nützlichen‘ durch Selektion. Es stellt sich die Frage, ob diese Randbedingungen ausreichen, um das hohe Mass an Unwahrscheinlichkeit zu überwinden. (vgl. SS. 119-122)
  21. [Anmerkung: Im Falle ‚lernender‘ Systeme S_learn haben wir den Fall, dass diese Systeme einen ‚Kode‘ ‚lernen‘ können, weil sie in der Lage sind, Ereignisse in bestimmter Weise zu ‚bearbeiten‘ und zu ’speichern‘, d.h. sie haben Speichersysteme, Gedächtnisse (Memory), die dies ermöglichen. Jedes Kind kann ‚lernen‘, welche Ereignisse welche Wirkung haben und z.B. welche Worte was bedeuten. Ein Gedächtnis ist eine Art ‚Metasystem‘, in dem sich ‚wahrnehmbare‘ Ereignisse E in einer abgeleiteten Form E^+ so speichern (= spiegeln) lassen, dass mit dieser abgeleiteten Form E^+ ‚gearbeitet‘ werden kann. Dies setzt voraus, dass es mindestens zwei verschiedene ‚Ebenen‘ (layer, level) im Gedächtnis gibt: die ‚primären Ereignisse‘ E^+ sowie die möglichen ‚Beziehungen‘ RE, innerhalb deren diese vorkommen. Ohne dieses ‚Beziehungswissen‘ gibt es nur isolierte Ereignisse. Im Falle multizellulärer Organismen wird diese Speicheraufgabe durch ein Netzwerk von neuronalen Zellen (Gehirn, Brain) realisiert. Der einzelnen Zelle kann man nicht ansehen, welche Funktion sie hat; nur im Zusammenwirken von vielen Zellen ergeben sich bestimmte Funktionen, wie z.B. die ‚Bearbeitung‘ sensorischer Signale oder das ‚Speichern‘ oder die Einordnung in eine ‚Beziehung‘. Sieht man mal von der spannenden Frage ab, wie es zur Ausbildung eines so komplexen Netzwerkes von Neuronen kommen konnte, ohne dass ein einzelnes Neuron als solches ‚irgend etwas weiß‘, dann stellt sich die Frage, auf welche Weise Netzwerke von Molekülen ‚lernen‘ können.  Eine minimale Form von Lernen wäre das ‚Bewahren‘ eines Zustandes E^+, der durch ein anderes Ereignis E ausgelöst wurde; zusätzlich müsste es ein ‚Bewahren‘ von Zuständen geben, die Relationen RE zwischen primären Zuständen E^+ ‚bewahren‘. Solange wir es mit frei beweglichen Molekülen zu tun haben, ist kaum zu sehen, wie es zu solchen ‚Bewahrungs-‚ sprich ‚Speicherereignissen‘ kommen kann. Sollte es in irgend einer Weise Raumgebiete geben, die über eine ‚hinreichend lange Zeit‘ ‚konstant bleiben, dann wäre es zumindest im Prinzip möglich, dass solche ‚Bewahrungsereignisse‘ stattfinden. Andererseits muss man aber auch sehen, dass diese ‚Bewahrungsereignisse‘ aus Sicht eines möglichen Kodes nur möglich sind, wenn die realisierenden Materialien – hier die Moleküle bzw. Vorstufen zu diesen – physikalisch-chemische Eigenschaften aufweisen, die grundsätzlich solche Prozesse nicht nur ermöglichen, sondern tendenziell auch ‚begünstigen‘, und dies unter Berücksichtigung, dass diese Prozesse ‚entgegen der Entropie‘ wirken müssen. Dies bedeutet, dass — will man keine ‚magischen Kräfte‘ annehmen —  diese Reaktionspotentiale schon in den physikalisch-chemischen Materialien ‚angelegt‘ sein müssen, damit sie überhaupt auftreten können. Weder Energie entsteht aus dem Nichts noch – wie wir hier annehmen – Information. Wenn wir also sagen müssen, dass sämtliche bekannte Materie nur eine andere Zustandsform von Energie ist, dann müssen wir vielleicht auch annehmen, dass alle bekannten ‚Kodes‘ im Universum nichts anderes sind als eine andere Form derjenigen Information, die von vornherein in der Energie ‚enthalten‘ ist. Genauso wie Atome und die subatomaren Teilchen nicht ’neutral‘ sind sondern von vornherein nur mit charakteristischen (messbaren) Eigenschaften auftreten, genauso müsste man dann annehmen, dass die komplexen Kodes, die wir in der Welt und dann vor allem am Beispiel biologischer Systeme bestaunen können, ihre Wurzeln in der grundsätzlichen ‚Informiertheit‘ aller Materie hat. Atome formieren zu Molekülen, weil die physikalischen Eigenschaften sie dazu ‚bewegen‘. Molkülnetzwerke entfalten ein spezifisches ‚Zusammenspiel‘, weil ihre physikalischen Eigenschaften das ‚Wahrnehmen‘, ‚Speichern‘ und ‚Dekodieren‘ von Ereignissen E in einem anderen System S grundsätzlich ermöglichen und begünstigen. Mit dieser Annahme verschwindet ‚dunkle Magie‘ und die Phänomene werden ‚transparent‘, ‚messbar‘, ‚manipulierbar‘, ‚reproduzierbar‘. Und noch mehr: das bisherige physikalische Universum erscheint in einem völlig neuen Licht. Die bekannte Materie verkörpert neben den bislang bekannten physikalisch-chemischen Eigenschaften auch ‚Information‘ von ungeheuerlichen Ausmaßen. Und diese Information ‚bricht sich selbst Bahn‘, sie ‚zeigt‘ sich in Gestalt des Biologischen. Das ‚Wesen‘ des Biologischen sind dann nicht die ‚Zellen als Material‘, das Blut, die Muskeln, die Energieversorgung usw., sondern die Fähigkeit, immer komplexer Informationen aus dem Universum ‚heraus zu ziehen, aufzubereiten, verfügbar zu machen, und damit das ‚innere Gesicht‘ des Universums sichtbar zu machen. Somit wird ‚Wissen‘ und ‚Wissenschaft‘ zur zentralen Eigenschaft des Universums samt den dazugehörigen Kommunikationsmechanismen.]

  22. Fortsetzung Teil 3

Einen Überblick über alle bisherigen Themen findet sich HIER

Zitierte  Literatur:

Chaitin, G.J. Information, Randomness & Incompleteness, 2nd ed.,  World Scientific, 1990

Turing, A. M. On Computable Numbers with an Application to the Entscheidungsproblem. In: Proc. London Math. Soc., Ser.2, vol.42(1936), pp.230-265; received May 25, 1936; Appendix added August 28; read November 12, 1936; corr. Ibid. vol.43(1937), pp.544-546. Turing’s paper appeared in Part 2 of vol.42 which was issued in December 1936 (Reprint in M.DAVIS 1965, pp.116-151; corr. ibid. pp.151-154).

 Interessante Links:

Ein Video in Youtube, das eine Rede von Pauls Davies dokumentiert, die thematisch zur Buchbesprechung passt und ihn als Person etwas erkennbar macht.

Teil 1:
http://www.youtube.com/watch?v=9tB1jppI3fo

Teil 2:
http://www.youtube.com/watch?v=DXXFNnmgcVs

Teil 3:
http://www.youtube.com/watch?v=Ok9APrXfIOU

Teil 4:
http://www.youtube.com/watch?v=vXqqa1_0i7E

Part 5:
http://www.youtube.com/watch?v=QVrRL3u0dF4
Es gibt noch einige andere Videos mit Paul Davies bei Youtube.

SUCHE NACH DEM URSPRUNG UND DER BEDEUTUNG DES LEBENS. Reflexionen zum Buch von Paul Davies “The fifth Miracle”

Paul Davies, The FIFTH MIRACLE: The Search for the Origin and Meaning of Life, New York:1999, Simon & Schuster

 Start: 20.Aug.2012

Letzte Fortsetzung: 26.Aug.2012

  1. Mein Interesse an der Astrobiologie geht zurück auf das wundervolle Buch von Peter Ward und Donald Brownlee (2000) „Rare Earth: Why Complex Life is Uncommon in the Universe“. Obwohl ich zum Thema aus verschiedenen Gebieten schon einiges gelesen hatte war es doch dieses Buch, das all die verschiedenen Fakten für mich in einen Zusammenhang stellte, der das Phänomen ‚Leben‘ in einen größeren Zusammenhang erscheinen lies, der Zusammenhang mit der Geschichte des ganzen Universums. Dinge, die zuvor merkwürdig und ungereimt erschienen, zeigten sich in einem neuen Licht. Neben anderen Büchern war es dann das berühmte Büchlein „What Is Life?“ von Erwin Schroedinger (1944), das half, manche Fragen zu verschärfen Neben anderen Publikationen fand ich hier das Buch von von Horst Rauchfuß (2005) „Chemische Evolution und der Ursprung des Lebens“ sehr erhellend (hatte früher dazu andere Bücher gelesen wie z.B. Manfred Eigen (1993, 3.Aufl.) „Stufen zum Leben. Die frühe Evolution im Visier der Molekularbiologie“). Einen weiteren Schub erhielt die Fragestellung durch das – nicht so gut lesbare, aber faktenreiche – Buch von J. Gale (2009) „Astrobiology of Earth: The Emergence, Evolution and Future of Life on a Planet in Turmoil“. Gegenüber ‚Rare Earth‘ ergibt es keine neuen grundsätzlichen Erkenntnisse, wohl aber viele aktuelle Ergänzungen und z.T. Präzisierungen. Dass ich bei diesem Sachstand dann noch das Buch von Paul Davies gelesen habe, war eher systematische Neugierde (parallel habe ich noch angefangen Christian de Duve (1995) „Vital Dust. The origin and Evolution of Life on Earth“ sowie Jonathan I.Lunine (2005) „Astrobiology. A multidisciplinary Approach“).

  2. Der Titel des Buchs „Das fünfte Wunder“ (The 5th Miracle) wirkt auf den ersten Blick leicht ‚esoterisch‘ und für sachlich orientierte Leser daher eher ein wenig abschreckend, aber Paul Davies ist ein angesehener Physiker und hat hier ein Buch geschrieben, das auf der Basis der Physik und Chemie die grundlegende Frage zum Ursprung und der Bedeutung des Lebens systematisch und spannend aufrollt. Hier wird man nicht einfach mit Fakten überschüttet (obgleich er diese hat), sondern anhand von Beobachtungen, daraus sich ergebenden Fragen und Hypothesen beschreibt er einen gedanklichen Prozess, der über Fragen zu Antworten führt, die wiederum neue Fragen entstehen lassen. Es gibt wenige wissenschaftliche Bücher, die so geschrieben sind. Ich halte es für ein glänzendes Buch, wenngleich manche Hypothesen sich durch die weitere Forschung als nicht so ergiebig erwiesen haben. Seine grundsätzlichen Überlegungen bleiben davon unberührt.

  3. Den leicht irritierenden Titel erklärt Davies auf S.22 als Anspielung auf den biblischen Schöpfungsbericht, wo in Vers 11 vom ersten Buch Mose (= Buch Genesis) (abgekürzt Gen 1:11) beschrieben wird, dass Gott die Pflanzen geschaffen habe. Nach Davies war dies das fünfte Wunder nachdem zuvor laut Davies das Universeum (universe), das Licht (light), der Himmel (firmament) und das trockene Land (dry land) geschaffen worden seien. Einer bibelwissenschaftlichen Analyse hält diese einfache Analyse von Davies sicher nicht stand. Sie spielt auch für den gesamten restlichen Text überhaupt keine Rolle. Von daher erscheint mir dieser Titel sehr unglücklich und wenig hilfreich. Für mich beschreibt der Untertitel des Buches den wahren Inhalt am besten: „Die Suche nach dem Ursprung und der Bedeutung des Lebens“.

  4. Im Vorwort (Preface, pp.11-23) formuliert Davies seine zentralen Annahmen. Mit einfachen Worten könnte man es vielleicht wie folgt zusammen fassen: Das Phänomen des Lebens zu definieren bereitet große Schwierigkeiten. Es zu erklären übersteigt die bisher bekannten physikalischen Gesetze. Dass Leben irgendwann im Kosmos aufgetreten ist und der ungefähre Zeitraum wann, das ist Fakt. Nicht klar ist im Detail, wie es entstehen konnte. Ferner ist nicht klar, ob es ein außergewöhnlicher Zufall war oder ob es im Raum der physikalischen Möglichkeiten einen favorisierten Pfad gibt, der durch die ‚inhärenten‘ Eigenschaften von Energie (Materie) dies ‚erzwingt‘. Nur im letzteren Fall wäre es sinnvoll, anzunehmen, dass Leben überall im Universum entstehen kann und – höchstwahrscheinlich – auch entstanden ist.

  5. Dies sind dürre trockene Worte verglichen mit dem Text von Davies, der mit den zentralen Aussagen auch gleich ein bischen Forschungs- und Ideengeschichte rüberbringt (verwoben mit seiner eigenen Lerngeschichte) und der einen exzellenten Schreibstil hat (von daher kann ich jedem nur empfehlen, das Buch selbst zu lesen).

  6. Für Davies ist die Frage der Entstehung des Lebens (Biogenese, engl. Biogenesis) nicht ‚irgend ein anderes‘ Problem, sondern repräsentiert etwas ‚völlig Tieferes‘, das die Grundlagen der gesamten Wissenschaft und des gesamten Weltbildes herausfordert (vgl. S.18). Eine Lösung verlangt radikal neue Ideen, neue Ansätze gegenüber dem Bisherigen (vgl. S.17). Das Phänomen des Lebens entzieht sich eindeutig dem zweiten Hauptsatz der Thermodynamik (der einen Ausgleich aller Energieunterschiede impliziert) und seine Besonderheiten ergeben sich nicht einfach durch bloßen Aufweis seiner chemischen Bestandteile (vgl. S.19). Er vermutet die Besonderheit des Phänomen Lebens in der ‚Organisation von Information‘, was dann die Frage aufwirft, wo diese Information herkommt (vgl.S.19). Als informationsgetriebene Objekte entziehen sich die Phänomene des Lebens allen bekannten Gesetzen der Physik und Chemie (und der Biologie, sofern sie diesen Aspekt nicht als Leitthema hat?).

  7. Davies zieht aus diesen Annahmen den Schluß, dass kein bekanntes Naturgesetz solche hochkomplexe Strukturen von zusammenhanglosen chemischen Bestandteilen induzieren konnte. Er sieht in dem ganzen Entstehungsprozess ein ‚atemberaubendes geniales (ingeniuos)‘ lebens-freundliches Universum, das zu verstehen, wir ganz am Anfang stehen. (vgl. S.20).

  8. Dass Davies aufgrund der atemberaubenden Komplexität von lebensfreundlichen Strukturen eine Interaktion der Erde mit anderen Planeten (z.B. dem Mars) in früheren Phasen nicht ausschließt und im weiteren Verlauf auch akribisch das Für und Wider untersucht, sei hier nur angemerkt. Ein eindeutiges Ergebnis gibt es aufgrund der komplizierten Zusammenhänge – soweit ich sehe – bis heute nicht. Ob spezielle Moleküle, die Bestandteile von lebenskonstituierenden Strukturen geworden sind, teilweise von außerhalb der Erde gekommen sind oder nicht, berührt die wichtigen Grundfragen nach der Struktur und der ‚Bedeutung‘ von Leben im Universum nicht.

  9. Das erste Kapitel (SS.25-47) überschreibt er mit ‚Die Bedeutung des Lebens‘. Er beginnt nochmals mit der Feststellung, dass die Wissenschaft bislang nicht mit Sicherheit weiß, wie das Phänomen des Lebens tatsächlich begann (auf der Erde? mit Unterstützung aus dem Weltall,… ?)(vgl. S.26), um dann nochmals an die bekannten Fakten zu erinnern, wann in der zurückliegenden Zeit Lebensphänomene dokumentiert sind: das älteste gut dokumentierte Tierfossil datiert auf -560 Mio Jahren und findet sich in Australien (Flinders Ranges, nördlich von Adelaide). Etwa 15 Mio Jahre später findet man eine Artenexplosion, die vom Meer ausgehend das Land mit Pflanzen und Tieren ‚kolonisierte‘. Davor aber, ab etwa -1 Milliarde Jahre rückwärts, gab es nur einzellige Organismen. Alle Evidenzen sprechen nach Davies dafür, dass alle späteren komplexen Lebensformen sich aus diesen einfachen, einzelligen Formen entwickelt haben.(vgl.S.29)

  10. Von diesen einzelligen Lebewesen (‚Mikroorganismen‘, ‚Bakterien‘ genannt) weiß man, dass Sie seit mindestens -3.5 Milliarden Jahre existieren [Ergänzung, kein Zitat bei Davies: nach Christian de Duve gibt es auf der ganzen Erde aus allen Zeiten Ablagerungen von Mikroorganismen, die sich versteinert haben und als Stromatolithen Zeugnis geben von diesen Lebensformen, vgl. Duve S.4f] (vgl. S.45)(laut Davies kann ein Löffel Erde bester Qualität 10 Billionen (10*10^12) Mikroorganismen enthalten, die 10.000 verschiedene Arten repräsentieren!(vgl. S.45). Die Verbindungen zwischen den verschiedenen Lebensformen werden durch Vergleiche ihrer Biochemie (auch Metabolismus) und über ihr genetisches Material identifiziert.(vgl. S.46) Von den heute bekannten Mikroorganismen leben diejenigen, die den ältesten Formen von Mikroorganismen am ähnlichsten sind, in großen Meerestiefen am Fuße unterseeischer Vulkane.(vgl. S.47)

  11. Zugleich weiß man nach Davies, dass die lebenden Zelle in ihrer Größe das komplexeste System darstellen, was wir Menschen kennen. (vgl.S.29) Und genau dies bereitet ihm Kopfzerbrechen: Wie ist es möglich, dass ‚geistlose Moleküle‘, die letztlich nur ihre unmittelbaren Nachbarn ’stoßen und ziehen‘ können, zu einer ingeniösen Kooperation zusammenfinden, wie sie eine lebende Zelle verkörpert? (vgl. S.30)

  12. Welche Eigenschaften sind letztlich charakteristisch für eine lebende Zelle? Davies listet oft genannte Eigenschaften auf (Autonomie, Reproduktion, Metabolismus, Ernährung , Komplexität, Organisation, Wachstum und Entwicklung, Informationsgehalt, Hardware/ Software Einheit , Permanenz und Wechsel (vgl.SS.33-36)) und stellt dann fest, dass es offensichtlich keine einfache Eigenschaft ist, die ‚Lebendes‘ von ‚Nicht-Lebendem‘ trennt. (vgl. S.36) Auch scheint eine ‚rein mechanistische‘ Erklärung der chemischen Kausalketten nicht ausreichend zu sein. Es gibt das Moment der ‚Selbstbestimmung‘ (self-determination) bei jeder Zelle, eine Form von ‚Autonomie‘, die sich von keinen physikalischen Eigenschaften herleiten lassen. (vgl. S.33) Biologische Komplexität ist offensichtlich ‚instruierte Komplexität‘, die auf Information basiert (information-based). (vgl. S.31)

  13. Damit würde sich andeuten, dass die beiden Eigenschaften ‚Metabolismus‘ und ‚Reproduktion‘ zwei Kerneigenschaften darstellen (vgl. S.36f), die sich in dem Vorstellungsmodell ‚Hardware (= Metabolismus)‘ und ‚Software (= Reproduktion)‘ wiederfinden.

  14. An dieser Stelle lenkt Davies den Blick nochmals auf ein zentrales Faktum des ganzen Phänomen Lebens, auf das außergewöhnlichste Molekül, das wir kennen, bestehend aus vielen Milliarden sequentiell angeordneten Atomen, bezeichnet als Desoxyribonukleinsäure (deoxyribonucleic acid) (DNA), eine Ansammlung von ‚Befehlen‘, um damit Organismen (Pflanzen, Tiere inklusiv Menschen) ‚hervorbringen‘ zu können. Und dieses Molekül ist unvorstellbar alt, mindestens 3.5 Milliarden Jahre. (vgl. S.41)

  15. Wenn Davies dann weiter schreibt, dass diese DNA die Fähigkeit hat, sich zu Vervielfältigen (to replicate) (vgl. S.41f), dann ist dies allerdings nicht die ganze Wahrheit, denn das Molekül als solches kann strenggenommen garnichts. Es benötigt eine spezifische Umgebung, damit ein Vervielfältigungsprozess einsetzen kann, an den sich dann ein höchst komplexer Umsetzungsprozeß anschliesst, durch den die DNA-Befehle in irgendwelche dynamischen organismischen Strukturen überführt werden. D.h. dieses ‚Wunder‘ an Molekül benötigt zusätzlich eine geeignete ebenfalls höchst komplexe Umgebung an ‚Übersetzern‘ und ‚Machern, die aus dem ‚Bauplan‘ (blueprint) ein lebendes Etwas generieren. Das zuvor von Davies eingeführte Begriffspaar ‚Hardware’/ ‚Software‘ wäre dann so zu interpretieren, dass die DNA eine Sequenz von Ereignissen ist, die als ‚Band‘ einer Turingmaschine einen möglichen Input darstellen und die Umgebung einer DNA wäre dann der ausführende Teil, der einerseits diese DNA-Ereignisse ‚lesen‘ kann, sie mittels eines vorgegebenen ‚Programms‘ ‚dekodiert‘ und in ‚Ausgabeereignisse‘ (Output) überführt. Folgt man dieser Analogie, dann ist der eigentliche ‚berechnende‘ Teil, die ‚rechnende Maschine‘ eine spezifisch beschaffene ‚Umgebung‘ eines DNA-Moleküls (COMPUTER_ENV)! In der ‚Natur‘ ist diese rechnende Maschine realisiert durch Mengen von spezifischen Molekülen, die miteinander so interagieren können, dass ein DNA-Molekül als ‚Input‘ eine Ereigniskette auslöst, die zum ‚Aufbau‘ eines Organismus führt (minimal einer einzelnen Zelle (COMPUTER_INDIVIDUAL)), der dann selbst zu einer ‚rechnenden Maschine‘ wird, also (vereinfacht) COMPUTER_ENV: DNA x ENV —> COMPUTER_INDIVIDUAL.

  16. Die von Davies erwähnte Vervielfältigung (Replikation) wäre dann grob eine Abbildung entweder von einem individuellen System (COMPUTER_INDIVIDUAL) zu einem neuen DNA-Molekül, das dann wieder zu einem Organismus führen kann, oder – wie später dann weit verbreitet – von zwei Organismen, die ihre DNA-Informationen ‚mischen‘ zu einer neuen DNA, vereinfachend REPLICATION: COMPUTER_INDIVIDUAL [x COMPUTER_INDIVIDUAL] x ENV —> DNA.

  17. Sobald in der Entwicklung des Lebens die Brücke von ‚bloßen‘ Molekülen zu einem Tandem aus (DNA-)Molekül und Übersetzer- und Bau-Molekülen – also COMPUTER_ENV und COMPUTER_INDIVUDAL — geschlagen war, ab dann begann die ‚biologische Evolution‘ (wie Darwin und Vorläufer) sie beschrieben haben ‚zu laufen‘. Dieser revolutionäre Replikationsmechanismus mit DNA-Molekülen als Informationsformat wurde zum Generator aller Lebensformen, die wir heute kennen. (vgl.S.42)

  18. Aus der Kenntnis dieses fundamentalen Replikationsmechanismus folgt aber keinerlei Hinweis, wie es zu diesem hochkomplexen Mechanismus überhaupt kommen konnte, und das vor mehr als 3.5 Milliarden Jahren irgendwo unter der Erdoberfläche [Eigene Anmerkung: eine Frage, die auch im Jahr 2012 noch nicht voll befriedigend beantwortet ist!]. (vgl.S.44)

  19. Im Kapitel 2 ‚Against the Tide‘ (S.49-67) greift Davies nochmals den Aspekt des zweiten Hauptsatzes der Thermodynamik auf, nachdem in einem geschlossenen System die Energie erhalten bleibt und vorhandene Ungleichheiten in der Verteilung der Energie (geringere Entropie, geringere Unordnung = höhere Ordnung) auf Dauer ausgeglichen werden, bis eine maximale Gleichverteilung vorliegt (maximale Entropie, maximale Unordnung, minimale Ordnung). [Anmerkung: Dies setzt implizit voraus, dass Energieverdichtungen in einer bestimmten Region des geschlossenen Systems prinzipiell ‚auflösbar‘ sind. Materie als einer Zustandsform von Energie realisiert sich (vereinfacht) über Atome und Verbindungen von Atomen, die unter bestimmten Randbedingungen ‚auflösbar‘ sind. Verbindungen von Atomen speichern Energie und stellen damit eine höhere ‚Ordnung‘ dar als weniger verbundene Atome.]

  20. Wie oben schon festgestellt, stellt die Zusammenführung von Atomen zu komplexen Molekülen, und eine Zusammenfügung von Molekülen zu noch komplexeren Strukturen, wie sie das Phänomen des Lebens auszeichnet, lokal begrenzt eine ‚Gegenbewegung‘ zum Gesetz der Zunahme von Entropie dar. Das Phänomen des Lebens widersetzt sich darin dem allgemeinen Trend (‚against the tide‘). Dies ist nur möglich, weil die biologischen Strukturen (Moleküle, Molekülverbände, Zellen, Replikation…) für ihre Zwecke Energie einsetzen! Dies bedeutet, sie benötigen ‚frei verfügbare Energie‘ (free energy) aus der Umgebung. Dies sind entweder Atomverbindungen, deren Energie sich mittels eines geringen Energieaufwandes teilweise erschließen lässt (z.B. Katalyse mittels Enzymen), oder aber die Nutzung von ‚Wärme‘ (unterseeische Vulkane, Sonnenlicht,…). Letztlich ist es die im empirischen Universum noch vorhandene Ungleichverteilungen von Energie, die sich partiell mit minimalem Aufwand nutzen lässt, die biologische Strukturen ermöglicht. Aufs Ganze gesehen führt die Existenz von biologischen Strukturen auf Dauer aber doch auch zum Abbau eben dieser Ungleichheiten und damit zum Anwachsen der Entropie gemäß dem zweiten Hauptsatz. (vgl. 49-55) [Anmerkung: durch fortschreitende Optimierungen der Energienutzungen (und auch der organismischen Strukturen selbst) kann die Existenz von ‚Leben‘ im empirischen Universum natürlich ’sehr lange‘ andauern.]

  21. Davies weist an dieser Stelle ausdrücklich darauf hin, dass die scheinbare Kompatibilität des Phänomens Leben mit dem zweiten Hauptsatz der Thermodynamik nicht bedeutet, dass die bekannten Gesetze der Physik damit auch schon ‚erklären‘ würden, wie es überhaupt zur Ausbildung solcher komplexer Ordnungen im Universum kommen kann, wie sie die biologischen Strukturen darstellen. Sie tun es gerade nicht.(vgl. S.54) Er zitiert hier u.a. auch Erwin Schroedinger mit den Worten ‚Wir müssen damit rechnen, einen neuen Typ von physikalischem Gesetz zu finden, das damit klarkommt‘ (vgl. S.52)

  22. Davies macht hier auch aufmerksam auf die strukturelle Parallelität zwischen dem physikalischen Begriff der Entropie, dem biologischen Begriff der Ordnung und dem von Shannon geprägten Begriff der Information. Je mehr ‚Rauschen‘ (noise) wir in einer Telefonverbindung haben, um so weniger können wir die gesprochenen Worte des Anderen verstehen. Rauschen ist ein anderes Wort für ‚Unordnung = Entropie‘. Je geringer die Entropie heißt, d.h. umso höher die ‚Ordnung‘ ist, um so höher ist der Informationsgehalt für Sender und Empfänger. Shannon hat daher ‚Information‘ als ‚Negentropie‘, als ’negative Entropie‘ definiert. Biologische ‚Ordnung‘ im Sinne von spezifisch angeordneten Atomen und Molekülen würde im Sinne der Shannonschen Informationstheorie dann einen hohen Informationsgehalt repräsentieren, wie überhaupt jede Form von Ordnung dann als ‚Information‘ aufgefasst werden kann, da diese sich von einer ‚gleichmachenden Unordnung‘ ‚abhebt‘.(vgl. S.56)

  23. Wie kann aus einem Rauschen (Unordnung) Information (Ordnung) entstehen? Davies (im Einklang mit Schroedinger) weist darauf hin, dass die Ordnung aus der frei verfügbaren Energie aus der Umgebung stammt.(vgl. S.56f). Das DNA-Molekül repräsentiert in diesem Sinne als geordnete Struktur auch Information, die durch ‚Mutationen‘ (= Rauschen!) verändert werden kann. Es werden aber nur jene Organismen in einer bestimmten Umgebung überleben, deren in der DNA-gespeicherten Information für die jeweilige Umgebung ‚hinreichend gut‘ ist. D.h. in der Interaktion zwischen (DNA, Replikationsmechanismus, Umgebung) filtert die Umgebung jene Informationen heraus, die ‚geeignet‘ sind für eine fortdauernde Interaktion [Anmerkung: salopp könnte man auch sagen, dass die Umgebung (bei uns die Erde) sich genau jene biologischen Strukturen ‚heranzüchtet‘, die für eine Kooperation ‚geeignet‘ sind, alle anderen werden aussortiert.](vgl. S.57)

  24. Ein anderer Aspekt ist der Anteil an ‚Fehlern‘ in der DNA-Bauanleitung bzw. während des Replikationsprozesses. Ab einem bestimmten Anteil können Fehler einen funktionstüchtigen Organismus verhindern. Komplexe Organismen setzen entsprechend leistungsfähige Fehlervermeidungsmechanismen voraus. (vgl. SS.58-60)

  25. Weiterhin ist zu beachten, dass ‚Information‘ im Sinne von Shannon eine rein statistische Betrachtung von Wahrscheinlichkeiten im Auftreten von bestimmten Kombinationen von Elementen einer Grundmenge darstellt. Je ’seltener‘ eine Konfiguration statistisch auftritt, umso höher ist ihr Informationsgehalt (bzw.  ‚höhere Ordnungen‘ sind ’seltener‘). Dies Betrachtungsweise lässt die Dimension der ‚Bedeutung‘ ganz außer Acht.

  26. Eine Bedeutung liegt immer dann vor, wenn ein Sender/ Empfänger von einer Entität (z.B. von einem DNA-Molekül oder von einem Abschnitt eines DNA-Moleküls) auf eine andere Entität (z.B. anderen Molekülen) ’schließen‘ kann. Im Falle der biologischen Strukturen wäre dies z.B. der Zusammenhang zwischen einem DNA-Molekül und jenen organismischen Strukturen, die aufgrund der Information im DNA-Molekül ‚gebaut‘ werden sollen. Diese zu bauenden organismischen Strukturen würden dann die ‚Bedeutung‘ darstellen, die mit einem DNA-Molekül zu verbinden wäre.

  27. Shannonsche Information bzw. biologische Ordnung haben nichts mit dieser ‚(biologischen) Bedeutung‘ zu tun. Die biologische Bedeutung in Verbindung mit einem DNA-Molekül wäre damit in dem COMPUTER_ENV zu lokalisieren, der den ‚Input‘ DNA ‚umsetzt/ verwandelt/ übersetzt/ transformiert…‘ in geeignete biologische Strukturen.(vgl.S.60) [Anmerkung: Macht man sich hier die Begrifflichkeit der Semiotik zunutze, dann könnte man auch sagen, dass die spezifische Umgebung COMPUTER_ENV eine semiotische Maschine darstellt, die die ‚Syntax‘ der DNA übersetzt in die ‚Semantik‘ biologischer Organismen. Diese semiotische Maschine des Lebens ist ‚implementiert‘ als ein ‚chemischer Computer‘, der mittels diverser chemischer Reaktionsketten arbeitet, die auf den Eigenschaften unterschiedlicher Moleküle und Umgebungseigenschaften beruhen.]

  28. Mit den Begriffen ‚Entropie‘, ‚Ordnung‘ und ‚Information‘ erwächst unweigerlich die Frage, wie konnte Ordnung bzw. Information im Universum entstehen, wo doch der zweite Hauptsatz eigentlich nur die Entropie favorisiert? Davies lenkt den Blick hier zurück auf den Ursprung des bekannten Universums und folgt dabei den Eckwerten der Big-Bang Theorie, die bislang immer noch die überzeugendste empirische Beschreibung liefert. In seiner Interpretation fand zu Beginn eine Umwandlung von Energie sowohl in die uns bekannte ‚Materie‘ statt (positive Energie), zugleich aber auch in ‚Gravitation‘ (negative Energie). Beide Energien heben sich gegenseitig auf. (vgl. S.61f)

  29. Übernimmt man die übliche Deutung, dass die ‚kosmische Hintergrundstrahlung‘ einen Hinweis auf die Situation zu Beginn des Universums liefert, dann war das Universum zu Beginn ’nahezu strukturlos‘, d.h. nahe bei der maximalen Entropie, mit einer minimale Ordnung, nahezu keiner Information. (vgl. S.62f) Wie wir heute wissen, war es dann die Gravitation, die dazu führte, dass sich die fast maximale Entropie schrittweise abbaute durch Bildung von Gaswolken und dann von Sternen, die aufgrund der ungeheuren Verdichtung von Materie dann zur Rückverwandlung von Materie in Energie führte, die dann u.a. als ‚freie Energie‘ verfügbar wurde. [Anmerkung: der andere Teil führt zu Atomverbindungen, die energetisch ‚höher aufgeladen‘ sind. Diese stellt auch eine Form von Ordnung und Information dar, also etwa INF_mat gegenüber der INF_free.] Davies sieht in dieser frei verfügbare Energie die Quelle für Information. (vgl. S.63)

  30. Damit wird auch klar, dass der zweite Hauptsatz der Thermodynamik nur eine Seite des Universums beschreibt. Die andere Seite wird von der Gravitation bestimmt, und diese arbeitet der Entropie diametral entgegen. Weil es die Gravitation gibt, gibt es Ordnung und Information im Universum. Auf dieser Basis konnten und können sich biologische Strukturen entwickeln. (vgl. S.64)

  31.  [Anmerkung: In dieser globalen Perspektive stellt die Biogenese letztlich eine folgerichtige Fortsetzung innerhalb der ganzen Kosmogenese dar. Aktuell bildet sie die entscheidende Phase, in der die Information als freie Energie die Information als gebundene Energie zu immer komplexeren Strukturen vorantreibt, die als solche einer immer mehr ‚verdichtete‘ (= komplexere) Information verkörpern. Biologische Strukturen bilden somit eine neue ‚Zustandsform‘ von Information im Universum.]

  32. Mit den Augen der Quantenphysik und der Relativitätstheorie zeigt sich noch ein weiterer interessanter Aspekt: die einzelnen Teilchen, aus denen sich die bekannte Materie konstituiert, lassen ‚an sich‘, ‚individuell‘ keine ‚Kontexte‘ erkennen; jedes Teilchen ist wie jedes andere auch. Dennoch ist es so, dass ein Teilchen je nach Kontext etwas anderes ‚bewirken‘ kann. Diese ‚Beziehungen‘ zwischen den Teilchen, charakterisieren dann ein Verhalten, das eine Ordnung bzw. eine Information repräsentieren kann. D.h. Ordnung bzw. Information ist nicht ‚lokal‘, sondern eine ‚globale‘ Eigenschaft. Biologische Strukturen als Repräsentanten von Information einer hochkomplexen Art sind von daher wohl kaum durch physikalische Gesetze beschreibbar, die sich auf lokale Effekte beschränken. Man wird sicher eine neue Art von Gesetzen benötigen. (vgl. S.67)

  33. [Anmerkung: Eine strukturell ähnliche Situation haben wir im Falle des Gehirns: der einzelnen Nervenzelle im Verband von vielen Milliarden Zellen kann man als solche nicht ansehen, welche Funktion sie hat. Genauso wenig kann man einem einzelnen neuronalen Signal ansehen, welche ‚Bedeutung‘ es hat. Je nach ‚Kontext‘ kann es von den Ohren kommen und einen Aspekt eines Schalls repräsentieren, oder von den Augen, dann kann es einen Aspekt des Sehfeldes repräsentieren, usw. Dazu kommt, dass durch die immer komplexere Verschaltung der Neuronen ein Signal mit zahllosen anderen Signalen ‚vermischt‘ werden kann, so dass die darin ‚kodierte‘ Information ’semantisch komplex‘ sein kann, obgleich das Signal selbst ‚maximal einfach‘ ist. Will man also die ‚Bedeutung‘ eines neuronalen Signals verstehen, muss man das gesamte ‚Netzwerk‘ von Neuronen betrachten, die bei der ‚Signalverarbeitung‘ zusammen spielen. Und das würde noch nicht einmal ausreichen, da der komplexe Signalfluss als solcher seine eigentliche ‚Bedeutung‘ erst durch die ‚Wirkungen im Körper‘ ‚zeigt‘. Die Vielzahl der miteinander interagierenden Neuronen stellen quasi nur die ‚Syntax‘ eines neuronalen Musters dar, dessen ‚Bedeutung‘ (die semantische Dimension) in den vielfältigen körperlichen Prozessen zu suchen ist, die sie auslösen bzw. die sie ‚wahrnehmen‘. Tatsächlich ist es sogar noch komplexer, da für die ‚handelnden Organismen‘ zusätzlich noch die ‚Umgebung‘ (die Außenwelt zum Körper) berücksichtigen müssen.]

  34. Davies erwähnt im Zusammenhang der Gravitation als möglicher Quelle für Information auch Roger Penrose und Lee Smolin. Letzterer benutzt das Konzept der ‚Selbstorganisation‘ und sieht zwischen der Entstehung von Galaxien und biologischen Populationen strukturelle Beziehungen, die ihn zum Begriff der ‚eingebetteten Hierarchien von selbstorganisierenden Systemen führen. (vgl. S.65)

     

Fortsetzung Teil 2

Einen Überblick über alle bisherigen Themen findet sich HIER