Archiv der Kategorie: Bedeutung – wesentliche

AVICENNAS ABHANDLUNG ZUR LOGIK – Teil 15

VORGESCHICHTE

Für einen Überblick zu allen vorausgehenden Beiträgen dieser rekonstruierenden Lektüre von Avicennas Beitrag zur Logik siehe AVICENNAS ABHANDLUNG ZUR LOGIK – BLITZÜBERSICHT.

Übersicht zum Wissen K bestehend aus Ausdrücken E, Objekten O sowie Bedeutungsbeziehungen M
Übersicht zum Wissen K bestehend aus Ausdrücken E, Objekten O sowie Bedeutungsbeziehungen M

WAHR UND FALSCHE AUSSAGEN

1. Nach dem Blogeintrag Avicenna 14b gibt es jetzt Ausdrücke A, B, …, die ‚wahr‘ oder ‚falsch‘ sein können und die wir deshalb ‚Aussagen‘ (auch ‚Propositionen‘) nennen. Aussagen können mittels aussagenlogischer Operatoren wie ‚NEGATION‘, ‚UND‘, ‚IMPLIKATION‘ usw. zu komplexeren Ausdrücken so verknüpft werden, dass jederzeit ermittelt werden kann, wie der Wahrheitswert des komplexen Ausdrucks lautet, wenn die Wahrheitswerte der Teilausdrücke bekannt sind. Ob im Einzelfall eine Aussage A ‚wahr‘ oder ‚falsch‘ ist, muss durch Rückgriff auf ihre Bedeutungsbeziehung M(A) geklärt werden. Bislang ist nur klar, dass die Bedeutungsbeziehung M nur allgemein eine Beziehung zu den (kognitiven) Objekten O herstellt (siehe Grafik oben).

2. Avicenna spricht aber nicht nur von Aussagen A allgemein, sondern unterscheidet die Teilausdrücke ‚Subjekt‘ S und ‚Prädikat‘ P, zusätzlich oft noch ‚Quantoren‘ Q.

FEINSTRUKTUR DER BEDEUTUNG VON AUSDRÜCKEN

3. Man kann und muss dann die Frage stellen, ob und wie sich auf der Bedeutungsseite die Unterscheidung in S und P auf der Ausdrucksseite widerspiegelt?

ECHTE UND UNECHTE OBJEKTE

4. In vorausgehenden Blogeinträgen zu Avicenna (Avicenna 4, 5, 7 und 11) wurde schon unterschieden zwischen ‚echten‘ und ‚unechten‘ Objekten. ‚Unechte Objekte‘ sind solche Wissenstatbestände, die man zwar identifizieren und unterscheiden kann, die aber immer nur im Kontext von ‚echten Objekten‘ auftreten. ‚Unechte‘ Objekte werden meistens als ‚Eigenschaften‘ bezeichnet. Beispiel: die Farbe ‚Rot‘ können wir wahrnehmen und z.B. von der Farbe ‚Blau‘ unterscheiden, die Farbe ‚Rot‘ tritt aber nie alleine auf so wie z.B. Gegenstände (Tassen, Stühle, Früchte, Blumen, …) alleine auftreten.

5. Hier wird davon ausgegangen, dass die Objekthierarchie O primär von echten Objekten gebildet wird; unechte Objekte als Eigenschaften treten nur im Kontext eines echten Objekts auf.

GATTUNG UND ART; KATEGORIEN

6. Ein Objekt kann viele Eigenschaften umfassen. Wenn es mehr als ein Objekt gibt – also O1, O2, … — die sowohl Eigenschaften Ex gemeinsam haben wie auch Eigenschaften Ey, die unterschiedlich sind, dann kann man sagen, dass alle Objekte, die die Eigenschaften Ex gemeinsam haben, eine ‚Gattung‘ (‚genus‘) bilden, und dass man anhand der ‚unterscheidenden Eigenschaften Ey‘ unterschiedliche ‚Arten‘ (’species‘) innerhalb der Gattung unterscheiden kann.

7. Gattungen, die keine Gattungen mehr ‚über sich‘ haben können, sollen hier ‚Kategorien‘ genannt werden.

ONTOLOGISCHE UND DEFINITORISCHE (ANALYTISCHE) WAHRHEIT

8. Bislang ist der Wahrheitsbegriff $latex \top, \bot$ in dieser Diskussion an der hinreichenden Ähnlichkeit eines vorgestellten/ gedachten kognitiven) Objekts $latex a \in Oa$ mit sinnlichen wahrnehmbaren Eigenschaften $latex s \subseteq Os$ festgemacht worden. Ein ‚rein gedachtes Objekt $latex a \in Oa$ ist in diesem Sinne weder ‚wahr‘ $latex \top$ noch ‚falsch‘ $latex \bot$.

9. Setzt man allerdings eine Objekthierarchie O voraus, in der man von einem beliebigen individuellem Objekt a immer sagen kann, zu welchem Objekt Y es als seiner Gattung gehört, dann kann man eine Aussagen der Art bilden ‚a ist eine Tasse‘.

10. Wenn man zuvor in einer Definition vereinbart haben sollte, dass zum Begriff der ‚Tasse‘ wesentlich die Eigenschaften Ex gehören, und das Objekt a hätte die Eigenschaften $latex Ex \cup Ey$, dann würde man sagen, dass die Aussage ‚a ist eine Tasse‘ ‚wahr‘ ist, unabhängig davon, ob es zum kognitiven Objekt a ein ’sinnliches‘ ‚Pendant‘ geben würde oder nicht. Die Aussage ‚a ist eine Tasse‘ wäre dann ‚rein definitorisch‘ (bzw. ‚rein analytisch‘) ‚wahr.

11. Im Gegensatz zu solch einer rein definitorischen (analytischen) Wahrheit eines Objekts a, die als solche nichts darüber sagt, ob es das Objekt a ‚tatsächlich‘ gibt, soll hier die ursprünglich vereinbarte ‚Wahrheit‘ durch Bezug auf eine ’sinnliche Gegebenheit‘ $latex s \subseteq Os$ ‚ontologische‘ Wahrheit genannt werden, also einer Wahrheit, die sich auf das ‚real Seiende‘ in der umgebenden Welt W bezieht.

12. [Anmerkung: Dieses – auch im Alltagsdenken – unterstellte ‚Sein‘, die unterstellte übergreifende ‚Realität‘ ist nicht nur eine ‚Extrapolation‘ aufgrund sinnlicher Gegebenheiten ‚im‘ wissenden System, sondern ist in seiner unterstellten ‚Realität‘ auch nur eine sehr spezifische Form von Realität. Wie wir heute aufgrund immer komplexerer Messprozeduren wissen, gibt es ‚Realitäten‘, die weit jenseits aller sinnlichen Qualitäten liegen. Es fällt uns nur nicht so auf, weil diese gemessenen Eigenschaften X durch allerlei Prozeduren für unsere Sinnesorgane ‚umgerechnet‘, ‚transformiert‘ werden, so dass wir etwas ‚Sehen‘ oder ‚Hören‘, obgleich das gemessene X nicht zu sehen oder zu hören ist.]

13. Solange wir uns in unseren Aussagen auf das Enthaltensein eines Objektes a in einem Gattungsobjekts X beschränken ‚a ist ein X‘ oder das Feststellen von Eigenschaften der Art ‚a hat b‘ kann man sagen, dass eine Aussagestruktur wie (S P) wie folgt interpretiert werden kann: Es gibt einen Ausdruck A=(AsAp), bei dem ein Ausdrucksteil As sich auf ein echtes Objekt M(As) = $latex a \in Oa$ bezieht und der andere Ausdrucksteil Ap bezieht sich auf die Beziehung zwischen dem Objekt a und entweder einem Gattungsobjekt X (Ap = ‚ist ein X‘) oder auf eine Eigenschaft Y (Ap = ‚hat Y‘).

14. Derjenige Ausdrucksteil As, der sich auf das echte Objekt a bezieht, ‚von dem‘ etwas ausgesagt werden soll (‚ist ein…‘, ‚hat …‘), dieser Ausdrucksteil wird als ‚Subjekt‘ S bezeichnet, und der Ausdrucksteil Ap, mittels dem etwas über das Subjekt ausgesagt wird, wird ‚Prädikat‘ P genannt.

15. Hierbei ist eine gewisse ‚Asymmetrie‘ zu beachten. Die Bedeutung vom Ausdrucksteil As – M(As) – bezieht sich auf eine ‚konkrete‘ Eigenschaftsstruktur innerhalb der Objekthierarchie. Die Bedeutung vom Ausdrucksteil Ap – M(Ap) – bezieht sich auf eine ‚Beziehung‘ / ‚Relation’/ ein ‚Verhältnis‘ [R] zwischen dem bezeichneten Bedeutungsobjekt M(As) = a und einem anderen bezeichneten Bedeutungsobjekt M(Ap), also R(M(As), M(Ap)). Die Beziehung R ist selbst kein ‚Objekt‘ so wie das Objekt a oder das implizit angenommene ‚Bezugsobjekt‘ X bzw. Y von a. Eine solche Beziehung R setzt – um prozessural ‚hantierbar‘ zu sein – eine zusätzliche ‚Objektebene‘ voraus, auf der es ein R-Objekt gibt, das die Beziehung zwischen dem a-Objekt und dem X-Y-Objekt ‚repräsentiert.

16. [Anmerkung: Bei ’neuronalen Netzen‘ wäre das R-Objekt jenes Neuron, das die Verbindung zwischen zwei anderen Neuronen ‚realisiert‘.]

17. Fassen wir zusammen: Bei einem Ausdruck A der Art A=’Hans ist ein Mensch‘ gibt es den Ausdrucksteil As=’Hans‘ und den Ausdrucksteil Ap=’ist ein Mensch‘. Die Bedeutung des Ausdrucksteils As M(As) als M(‚Hans‘) ist ein Objekt h in der unterstellten Bedeutungshierarchie O des Sprechers, das gewisse Eigenschaften E(h) besitzt. Die Bedeutung des Ausdrucksteils Ap als M(Ap) bzw. M(‚ist ein Mensch‘) ist sowohl ein Objekt M mit Eigenschaften E(M) als auch eine Beziehung R_ist zwischen dem Objekt h und dem Objekt M, also R_ist(h,M). Die Beziehung ist definitorisch/ analytisch ‚wahr‘ wenn es gilt, dass die definierenden Eigenschaften E(M) des Objekts Mensch M auch bei den Eigenschaften E(h) von Hans zu finden sind, also $latex E(M) \subset E(h)$ .

BEZIEHUNGSRAUM – TRANSZENDENTALE BEDINGUNGEN

18.

Fortsetzung folgt

QUELLEN

  • Avicenna, ‚Avicennas Treatise on Logic‘. Part One of ‚Danesh-Name Alai‘ (A Concise Philosophical Encyclopedia) and Autobiography, edited and translated by Farang Zabeeh, The Hague (Netherlands): Martinus Nijhoff, 1971. Diese Übersetzung basiert auf dem Buch ‚Treatise of Logic‘, veröffentlicht von der Gesellschaft für Nationale Monumente, Serie12, Teheran, 1952, herausgegeben von M.Moien. Diese Ausgabe wiederum geht zurück auf eine frühere Ausgabe, herausgegeben von Khurasani.
  • Digital Averroes Research Environment
  • Nicholas Rescher (1928 – ),The Development of Arabic Logic. University of Pittsburgh Press, 1964
  • Hans-Jörg Sandkühler (Hg.) unter Mitwirkung von Dagmar Borchers, Arnim Regenbogen, Volker Schürmann und Pirmin Stekeler-Weithofer, ‚Enzyklopädie Philosophie‘, 3 Bd., Hamburg: FELIX MEINER VERLAG, 2010 (mit CD-ROM)
  • Stanford Encyclopedia of Philosophy, Aristotle’s Logic
  • Whitehead, Alfred North, and Bertrand Russell, Principia Mathematica, 3 vols, Cambridge University Press, 1910, 1912, and 1913; Second edition, 1925 (Vol. 1), 1927 (Vols 2, 3). Abridged as Principia Mathematica to *56, Cambridge University Press, 1962.
  • Alfred North Whitehead; Bertrand Russell (February 2009). Principia Mathematica. Volume One. Merchant Books. ISBN 978-1-60386-182-3.
  • Alfred North Whitehead; Bertrand Russell (February 2009). Principia Mathematica. Volume Two. Merchant Books. ISBN 978-1-60386-183-0.
  • Alfred North Whitehead; Bertrand Russell (February 2009). Principia Mathematica. Volume Three. Merchant Books. ISBN 978-1-60386-184-7

Eine Übersicht über alle bisherigen Blogeinträge nach Titeln findet sich HIER

AVICENNAS ABHANDLUNG ZUR LOGIK – BLITZÜBERSICHT

(Letzte Änderung 14.Okt.2014, 06:11h )

Da die rekonstruierende Lektüre zu Avicennas Abhandlung zur Logik ein immer größeres Ausmaß annimmt, erweist sich die Methode, jeden einzelnen Beitrag mit einem Überblick über die vorausgehenden Beiträge einzuleiten, als immer weniger praktikabel. Deswegen wird jetzt ein eigener Blogeintrag als Referenzpunkt für diesen Überblick gewählt. Dies bedeutet, dass künftig alle nachfolgenden Beiträge einleitend (für die ‚Vorgeschichte‘), auf diesen Blogeintrag verweisen werden. Es ist zu beachten, dass diese Übersicht nur eine Übersicht über die wichtigsten Begriffe und Themen ist ohne alle Details und normalerweise auch ohne die ausführliche Diskussion von Avicennas Gedanken. Diese finden sich nur in den Blogeinträgen selbst, auf die verwiesen wird.

1. In einem ersten Beitrag AVICENNAS ABHANDLUNG ZUR LOGIK – Teil 1 hatte ich geschildert, wie ich zur Lektüre des Textes von Avicenna gekommen bin und wie der Text grob einzuordnen ist.

2. In einem zweiten Beitrag AVICENNAS ABHANDLUNG ZUR LOGIK – Teil 2 ging es um die Frage, warum überhaupt Logik? Avicenna führt erste Unterscheidungen zu verschiedenen Wissensformen ein, lässt aber alle Detailfragen noch weitgehend im Dunkeln.

3. Im Teil AVICENNAS ABHANDLUNG ZUR LOGIK – Teil 3 ging es um einfache und zusammengesetzte Begriffe, und bei den einfachen Begriffen um ‚individuelle‘ und ‚universelle‘. Schon hier zeigt sich der fundamentale Unterschied zwischen der antiken und der modernen-formalen Logik. In der antiken Logik wird die Ausdrucksebene E – und einer sich daran manifestierenden Folgerungslogik – immer in Verbindung mit einer zugehörigen Bedeutungsstruktur gesehen, die sich an einer Objektstruktur O festmacht. Die moderne formale Logik kennt zwar auch ‚Semantiken‘ und ‚Ontologien‘, diese sind aber ’sekundär‘, d.h. es werden nur solche ‚formalen Semantiken‘ betrachtet, die zum vorausgesetzten syntaktischen Folgerungsbegriff ‚passen‘. Dies sollte dann später an konkreten Beispielen diskutiert werden. Hier liegt der Fokus auf der antiken Logik im Sinne Avicennas.

4. Im Abschnitt AVICENNAS ABHANDLUNG ZUR LOGIK – Teil 4 knüpft Avicenna an den zuvor eingeführten Begriff des ‚universellen‘ Begriffs an und betrachtet jetzt solche als ‚universell‘ bezeichneten Ausdrücke in einem Ausdruckskontext von aufeinanderfolgenden Ausdrücken. Alle diese Ausdrücke könnte man im Sinne der antiken Logik auch als ‚Urteile‘ bezeichnen, durch die einem bestimmten Ausdruck durch andere Ausdrücke bestimmte Bedeutungen (Eigenschaften) zu- oder abgesprochen werden. Hier unterscheidet er die Fälle eines ‚wesentlichen‘ Zusammenhanges zwischen zwei Begriffen und eines ’nicht wesentlichen‘ – sprich ‚akzidentellen‘ – Zusammenhangs.

5. Im Abschnitt AVICENNAS ABHANDLUNG ZUR LOGIK – Teil 5 führt Avicenna eine Reihe von neuen technischen Begriffen ein, die sich nicht alle in ihrer Bedeutung widerspruchsfrei auflösen lassen. Es handelt sich um die Begriffe ‚Genus‘, ‚Spezies‘, Differenz, allgemeine und spezielle Akzidens, den Begriff ‚Kategorie(n)‘ mit den Kategorien ‚Substanz‘, ‚Qualität‘ und ‚Quantität‘. Die Rekonstruktion führt dennoch zu spannenden Themen, z.B. zu einem möglichen Einstieg in das weltverändernde Phänomen der kognitiven Evolution.

6. Im Abschnitt AVICENNAS ABHANDLUNG ZUR LOGIK – Teil 6 geht es um die Begriffe ‚Definition‘ und ‚Beschreibung‘. Im Verhältnis zwischen beiden Begriffen geht die Beschreibung der Definition voraus. In der ‚Definition‘, die Avicenna vorstellt, wird ein neuer Ausdruck e mittels anderer Ausdrücke <e1, …, ek>, die sich auf schon bekannte Sachverhalte beziehen, ‚erklärt‘. Die von Avicenna dann vorgenommene Erklärung, was eine ‚Definition‘ sei, hängt u.a. stark ab von dem Begriff der ‚Bekanntheit‘ und dem Begriff des ‚wahren Wesens‘. Für die Tatsache, dass ein Mensch A bestimmte Ausdrücke <e1, …, ek> einer Sprache L ‚kennt‘ oder ’nicht kennt‘, dafür gibt es keine allgemeinen Regeln oder Kriterien. Von daher macht die Verwendung der Ausdrücke ‚bekannt’/ ’nicht bekannt‘ eigentlich nur Sinn in solch einem lokalen Kontexten W* (z.B. einem Artikel, ein Buch, ein Vortrag, …), in dem entscheidbar ist, ob ein bestimmter Ausdruck e einer Sprache L schon mal vorkam oder nicht. Schwierig wird es mit dem Begriff des ‚wahren Wesens‘. In meiner Interpretation mit der dynamischen Objekthierarchie gibt es ‚das wahre Wesen‘ in Form von Objekten auf einer Stufe j, die Instanzen auf Stufen kleiner als j haben. Dazu gab es weitere Überlegungen.

7. Im folgenden Abschnitt AVICENNAS ABHANDLUNG ZUR LOGIK – Teil 7 beschreibt Avicenna syntaktisch zusammengesetzte, aber semantisch einfache Ausdrücke. Innerhalb der Ausdrücke unterscheidet er die Teileausdrücke ‚Name‘, ‚Verb‘ und ‚Präposition‘. Die unterschiedliche Charakterisierung erfolgt nicht aufgrund der syntaktischen Form, sondern aufgrund der semantischen Eigenschaften, die mit diesen Ausdrücken verbunden werden. Neben dem Objektbezug, der die eigentliche Bedeutung fundiert, gibt es im Bedeutungsraum auch noch den zeitlichen und den räumlichen Aspekt. Das Zusammenspiel von Bedeutung und Ausdruck wird angerissen.

8. Im Abschnitt AVICENNAS ABHANDLUNG ZUR LOGIK – Teil 8 geht es um solche Ausdrücke E, die ‚Aussagen‘ P sind, von denen man sagt, dass sie ‚wahr‘ oder ‚falsch‘ seien. Aussagen sind eine echte Teilmenge aller Ausdrücke, $latex P \subset E$. Avicenna unterscheidet drei Arten von Aussagen: ‚kategorische‘ Aussagen, ‚Disjunktiv-konditionelle‘ und ‚Konjunktiv-konditionelle‘. Es wird ausführlich eine mögliche Wahrheitstheorie für die Zuschreibung ‚wahr’/ ‚falsch‘ diskutiert. Dann werden nochmals die Aussagetypen näher untersucht. Ein Zusammenhang mit der modernen Aussagenlogik wird hergestellt. Disjunktion, Konjunktion (und ergänzend) Implikation) sind Aussagetypen, die aus zwei Teilausdrücken A und B bestehen, die selbst wieder Aussagen sind, die wahr oder falsch sein können. Die beiden Teilausdrücke A und B werden dann durch die Teilausdrücke (oder), (und) sowie (wenn)-(dann)- verknüpft. Sie unterscheiden sich dadurch, wie der Wahrheitswert des Gesamtausdrucks von der Verteilung der Wahrheitswerte auf die Teilausdrücke festgelegt ist. Die Teilausdrücke (oder), (und) sowie (wenn)-(dann)- nennt man später dann auch ‚aussagenlogische Operatoren‘. Der Aussagetyp ‚kategorisierend‘ passt nicht in dieses Schema. Der Aussagetyp ‚kategorisierend‘ ist eine Aussage A, die wahr oder falsch sein kann unabhängig von irgendeinem aussagenlogischen Operator. Auch wird die Verneinung/ Negation diskutiert. Ausdrücke wie (Etwas)(ist nicht)(dies)(oder)(jenes) wurden rekonstruiert als $latex \neg(A)(oder)(B)$ mit dem Zeichen $latex \neg$ für ’nicht‘ oder ‚es ist nicht der Fall, dass‘.

9. Im Abschnitt AVICENNAS ABHANDLUNG ZUR LOGIK – Teil 9 kommt Avicenna auf mehrere Begriffspaare zu sprechen, die sich z.T. mit Themen berühren, die er schon vorher besprochen hat, z.T. neue Aspekte thematisieren, die nicht so ohne weiteres mit dem bisher Gesagten harmonieren. Es handelt sich z.B. um die Begriffe ‚Kategorisch‘, ‚Negation‘, ‚Universal‘, ‚Partikulär‘, die aber jetzt mit neuen Randbedingungen nochmals diskutiert werden. So stellt er die Frage, wann ‚kategorischen‘ (‚kategorisierenden‘) Aussagen ‚affirmativ‘ und wann sie ’negativ‘ sind. Ferner führt er neben den bisherigen die semantisch motivierten Begriffe ‚Name‘, ‚Verb‘ (auch ‚Term‘ genannt), sowie ‚Präposition‘ nun auch das Begriffspaar ‚Subjekt‘ und ‚Prädikat‘. Auch diese sind ’semantisch‘ motiviert, d.h. nur durch Rückgriff auf die Bedeutung kann man zur Klassifikation ‚Subjekt‘ bzw. ‚Prädikat‘ kommen. In den soeben erwähnten Kontexten wie auch in nachfolgenden Beispielen diskutiert Avicenna auch die Begriffe ‚affirmativ‘ und ’negativ‘. Zwischendrin bemerkt er auch mal, dass das Treffen einer Feststellung, eigentlich nur Sinne mache, wenn dasjenige, von dem etwas ausgesagt wird, auch existiere. Doch wird dieser Punkt nicht weiter diskutiert. Vom Subjekt einer Aussage sagt Avicenna, dass es partikulär‘ oder ‚universell‘ sein kann. Falls universell, dann kann man unterscheiden, ob sie ‚unbestimmt‘ (engl.: ‚indeterminate‘) ist – wie viele genau involviert sind — oder eben ‚bestimmt‘ (engl.: ‚determinate‘). Ferner illustriert er am Beispiel der kategorisierenden Aussagen auch die Begriffe ’notwendig‘ und ‚kontingent‘. Diese Verwendung der Begriffe stimmt überein mit den zuvor eingeführten Begriffe ‚wesentlich‘ und ‚akzidentell‘. Auch erwähnt Avicenna den Begriff ‚möglich‘. Er sieht mindestens zwei Verwendungsweisen von ‚möglich‘: In der Diskussion dieses Abschnitts werden einerseits einige Widersprüchlichkeiten in den Ausführungen Avicennas sichtbar gemacht, andererseits wird die Rekonstruktion einer möglichen systematischen Theorie zur Logik Avicennas fortgesetzt. Die wichtigsten Kritikpunkte kreisen um das Begriffspaar ‚affirmativ – negativ‘ mit der Kritik, dass beide Begriffe auf unterschiedlichen semantischen Ebenen liegen. Ferner widerspricht die Handhabung der Quantoren durch Avicenna der allgemeinen Verwendung.

10. Im Abschnitt AVICENNAS ABHANDLUNG ZUR LOGIK – Teil 10 diskutiert Avicenna seine Begriffe ‚Konjunktives‘ und ‚Disjunktives Konditional‘ unter verschiedensten Aspekten. Einige davon sind die Quantoren (wobei er auch Quantoren über die Zeit benutzt!), das Begriffspaar ‚Antezedenz – Konsequenz‘, der Begriff der ‚Harmonie‘, und wiederholt die Aspekte ‚Existenz‘, ‚Affirmation‘ sowie ‚Bestimmt/ Unbestimmt‘. Alle diese Aspekte werden in diesem Blogeintrag schon ein wenig ‚vorsortiert‘, um dann im nachfolgenden Blogeintrag weiter rekonstruierend diskutiert zu werden.

11. Im Abschnitt AVICENNAS ABHANDLUNG ZUR LOGIK – Teil 11 erfolgt eine ‚rekonstruierende Diskussion‘ von Avicennas Überlegungen aus Blogeintrag 10. Seine Überlegungen werden aufgegriffen und in einen theoretischen Rahmen eingeordnet, der es erlaubt, die Begriffe schärfer zu fassen und sie dadurch besser voneinander abzugrenzen. Nach einer Übersicht über die Struktur der Aussagen erfolgt dann eine Rekonstruktion von Bedeutungszuordnungen und eine Erklärung von Begriffen wie ‚wahr’/ ‚falsch‘, ‚Existenz‘, und ‚möglich‘.

12. Im Abschnitt AVICENNAS ABHANDLUNG ZUR LOGIK – Teil 12 diskutiert Avicenna den Fall widersprüchlicher Aussagen. Gemessen an dem bisher Gesagten bringt er in diesem Abschnitt keine neuen Aspekte ins Spiel. Wohl aber bietet dieser Abschnitt weitere Beispiele für sein Auffassung des Sachverhalts. Sie belegen, wie schwer er sich durchgängig damit tut, in dem unscharfen Wechselspiel von Ausdrucksseite und Bedeutungsseite eine konstante Verwendungsweise seiner Begriffe durchzuhalten. In diesem Blogeintrag erfolgt die Diskussion seines Textes immer unmittelbar hinter jedem Punkt in Form einer Anmerkung.

13. Im Abschnitt AVICENNAS ABHANDLUNG ZUR LOGIK – Teil 13 diskutiert Avicenna die Möglichkeit der Konvertierung von Aussagen mit Quantoren in solche, deren Bedeutung trotz Veränderung von Ausdruckselementen ‚erhalten‘ bleibt. In einigen Beispielen widerspricht er sich selbst; manche Stellen sind unklar. Es zeigt sich allgemein: (i) die Formulierung von Konvertierungsregeln greift beständig auf bestimmte unterstellte Bedeutungen zurück und (ii) genau diese unterstellten Bedeutungen werden nicht hinreichend klar definiert. Daraus entsteht die Forderung, diese unterstellte Bedeutung klar zu definieren und auf dieser Basis alle logischen Ausdruckselemente eindeutig zu definieren (was im nachfolgenden Abschnitt dann unternommen wird).

14/14b. In den Blogeinträgen AVICENNAS ABHANDLUNG ZUR LOGIK – Teil 14 sowie AVICENNAS ABHANDLUNG ZUR LOGIK – Teil 14b geht es darum, erstmalig einen theoretischen Rahmen für eine Semantik zu formulieren, mit der man die Logik Avicennas konsistent entwickeln kann. Abschnitt 14b stellt eine Überarbeitung des Eingangsteils von Abschnitt 14 dar. Es hat sich gezeigt, dass die in 14b gewählte Begrifflichkeit für das weitere Vorgehen ‚günstiger‘ wirkt. Aber wir befinden uns noch in der Phase der ‚Annäherung‘ an das ‚Neue‘.

15. In dem Blogeintrag AVICENNAS ABHANDLUNG ZUR LOGIK – Teil 15 geht es um die Feinstruktur von Aussagen. Avicenna unterteilt ja Ausdrücke anhand inhaltlicher Kriterien nach Subjekt S, Prädikat P und ergänzend nach Quantoren Q. Es fragt sich, wie man diesen Ausdrucksteilen eine ‚Bedeutung‘ im Objektraum O zuordnen kann. Wichtig ist hier die schon früher getroffene Unterscheidung zwischen ‚echten‘ und ‚unechten‘ Objekten. ‚Unechte‘ Objekte wurden als ‚Eigenschaften‘ bezeichnet. Mit dieser Terminologie kann man sagen, dass die Objekthierarchie O primär von echten Objekten gebildet wird; unechte Objekte als Eigenschaften treten nur im Kontext eines echten Objekts auf. Damit kann man die begriffe ‚Gattung‘ und ‚Art‘ einführen. Gattungen, die keine Gattungen mehr ‚über sich‘ haben können, sollen hier ‚Kategorien‘ genannt werden. Setz man Definitionen von Worten voraus, dann kann man ach erklären, warum eine Aussage wie ‚a ist eine Tasse‘ ‚rein definitorisch‘ (bzw. ‚rein analytisch‘) ‚wahr ist, unabhängig davon, ob diesem gedanklichen Sachverhalt etwas Sinnliches entspricht. Im Gegensatz zu solch einer rein definitorischen (analytischen) Wahrheit eines Objekts a soll hier die ursprünglich vereinbarte ‚Wahrheit‘ durch Bezug auf eine ’sinnliche Gegebenheit‘ $latex s \subseteq Os$ ‚ontologische‘ Wahrheit genannt werden. Solange wir uns in unseren Aussagen auf das Enthaltensein eines Objektes a in einem Gattungsobjekts X beschränken ‚a ist ein X‘ oder das Feststellen von Eigenschaften der Art ‚a hat b‘ kann man sagen, dass eine Aussagestruktur wie (S P) wie folgt interpretiert werden kann: Es gibt einen Ausdruck A=(AsAp), bei dem ein Ausdrucksteil As sich auf ein echtes Objekt M(As) = $latex a \in Oa$ bezieht und der andere Ausdrucksteil Ap bezieht sich auf die Beziehung zwischen dem Objekt a und entweder einem Gattungsobjekt X (Ap = ‚ist ein X‘) oder auf eine Eigenschaft Y (Ap = ‚hat Y‘). Hierbei ist eine gewisse ‚Asymmetrie‘ zu beachten. Die Bedeutung vom Ausdrucksteil As – M(As) – bezieht sich auf eine ‚konkrete‘ Eigenschaftsstruktur innerhalb der Objekthierarchie. Die Bedeutung vom Ausdrucksteil Ap – M(Ap) – bezieht sich auf eine ‚Beziehung‘ / ‚Relation’/ ein ‚Verhältnis‘ [R] zwischen dem bezeichneten Bedeutungsobjekt M(As) = a und einem anderen bezeichneten Bedeutungsobjekt M(Ap), also R(M(As), M(Ap)). Die Beziehung R ist selbst kein ‚Objekt‘ so wie das Objekt a oder das implizit angenommene ‚Bezugsobjekt‘ X bzw. Y von a. Eine solche Beziehung R setzt – um prozessural ‚hantierbar‘ zu sein – eine zusätzliche ‚Objektebene‘ voraus, auf der es ein R-Objekt gibt, das die Beziehung zwischen dem a-Objekt und dem X-Y-Objekt ‚repräsentiert.

16. In dem Blogeintrag AVICENNAS ABHANDLUNG ZUR LOGIK – Teil 16 wird die Analyse der vorausgesetzten Objekthierarchie O und der damit interagierenden Ausdrucksstruktur E weiter analysiert. Nach der Analyse der Feinstruktur von (S P) werden die Aspekte Anzahl, Raum und Zeit betrachtet. Es wird gezeigt, wie man für diese Aspekte sowohl ‚globale Quantoren‘ wie auch ‚lokale Relationen‘ einführen kann; zudem ist die Wechselwirkung zwischen diesen Aspekten konfliktfrei, da sie voneinander unabhängig sind.

17. In dem Blogeintrag AVICENNAS ABHANDLUNG ZUR LOGIK – Teil 17 geht es um die Frage, wie man Aussagen über Veränderungen in der hypothetisch angenmmenen Bedeutungsstruktur nachzeichnen kann. Es lässt sich erkennen, dass die Kodierung von Veränderungen mittels Ausdruckselementen innerhalb eines Prädikates P mittels ‚Veränderungsausdrücken‘ V (‚Verben‘) oft nicht nur die beteiligten Objekte Y benennt, sondern zusätzlich zahlreiche weitere Ausdruckselemente aktiviert, die räumliche Gegebenheiten R_r bezeichnen, zeitliche Relationen R_t, zusätzliche Eigenschaften At an den Veränderungen; dazu ferner spezielle kulturelle Relationen R_x einbeziehen können sowie mit zusätzlichen Subjektrepräsentationen operieren. Auch kann man beobachten, wie die Aneinanderreihung von unterschiedlichen Sachverhalten (S P) mit logischen Operatoren (S P) UND (S2 P2) auch zu speziellen Verkürzungen führen kann wie (S P1 UND P2). Dies lässt erahnen, dass eine vollständige Analyse auch nur einer einzigen Alltagssprache von ihrer logisch relevanten Semantik her eine schier unendliche Aufgabe ist. Diese wird weder ein einzelner Mensch alleine noch viele Menschen über viele Genrationen hinweg jemals vollständig erfüllen können. Was aber möglich erscheint, das ist die Analyse des grundlegenden Mechanismus, der sich mit Hilfe von evolvierenden Computermodellen experimentell untersuchen und mit realen semiotischen Systemen überprüfen lässt.

18. In dem Blogeintrag AVICENNAS ABHANDLUNG ZUR LOGIK – Teil 18 weitet sich nun der Blick Avicennas auf das Wissen allgemein, und konzentriert sich im Wissen auf das schlussfolgernde Denken in Form von ‚beweisenden Syllogismen‘. Nach einer Definition von ‚Syllogismus‘ unterscheidet er dann zwei Arten von Syllogismen ‚Konjunktiver‘ Syllogismen und ‚Disjunktiver‘ Syllogismus. Am Beispiel des ‚Konjunktiven Syllogismus‘ führt Avicenna dann eine Reihe von technischen Begriffen ein. Dann stellt Avicenna zusätzliche Beschränkungen vor, um die 256 möglichen Figuren/ Muster auf nur 27 mögliche Muster einzuschränken. Alle seine Festlegungen geschehen ohne eigentliche Begründung.

19. In dem Blogeintrag AVICENNAS ABHANDLUNG ZUR LOGIK – Teil 19 beginnt die Diskussion um die Interpretation der syllogistischen Schlussfiguren am Beispiel der ersten Figur (A F B), (A B H) und (A F H) mit der Quantorenbelegung ‚AAA‘. In einzelnen Schritten wird dann eine erste Skizze zu einer Logik auf der Basis einer dynamischen Objektstruktur erarbeitet. Zentrale Begriffe sind hier OBJEKTIFIZIERUNG, ENTHALTENSEIN, ZUSCHREIBUNG und VERERBUNG. In dieser Skizze werden auch ‚Aktivitäten‘ berücksichtigt, die in dem Muster zur ersten Figur nicht vorkommen, zusätzlich werden neben den Anzahlquantoren auch Raum- und Zeitquantoren berücksichtigt.

20. In dem Blogeintrag AVICENNAS ABHANDLUNG ZUR LOGIK – Teil 20 geht es um die Interpretation des zweiten Musters der ersten syllogistischen Schlussfigur ‚A F ist B‘, ‚A B ist nicht H‘ (als ‚Kein A ist B‘), ‚A F ist nicht H‘ (als ‚Kein F ist H‘), dazu die Beispiele ‚Jeder ausgedehnte Körper ist farbig‘, ‚Kein farbiger Körper ist unerschaffen‘, ‚Kein ausgedehnter Körper ist unerschaffen‘. Wir treffen in diesem Muster wieder auf den Prozess der Objektifizierung, tatsächlich sogar in impliziten Formen mit der expliziten Angabe von Eigenschaften und der stillschweigenden Annahme einer daraus sich ergebenden Mengenbildung. Zusätzlich finden sich wieder Enthaltensbeziehungen einerseits anhand von Eigenschaftszuschreibungen, andererseits durch Benutzung von Anzahlquantoren. Die Zuschreibung von Eigenschaften wird explizit vorgenommen. Eine Vererbung von Eigenschaften von einer Menge zur anderen tritt nur implizit über eine Enthaltensbeziehung auf. Es tritt nur eine Sorte von Quantoren auf. Auch sei angemerkt, dass außer der Negation kein weiterer aussagenlogischer Operator auftritt.

21. In dem Blogeintrag AVICENNAS ABHANDLUNG ZUR LOGIK – Teil 21 geht es um die Interpretation der Muster 3-4 der Schlussfigur 1. Dabei entsteht die Vermutung, dass viele der Unterscheidungen von Avicenna (die weitgehend auf Aristoteles zurückgehen!) möglicherweise ‚redundant‘ sind, d.h. mit anderen Formulierungen letztlich doch ‚das Gleiche‘ sagen. Der Ansatzpunkt für diese Vermutung liegt darin begründet, dass die Unterscheidung von einem Term als ‚Subjekt‘ (S) und als ‚Prädikat‘ (P) auf Seiten der abstrakten Bedeutungsstruktur als Bedeutungsrepräsentation jeweils ein ‚echtes‘ oder ein ‚unechtes‘ Objekt haben können, und zwar so, dass diese Strukturen ‚fließend‘ sind: jedes ‚echte‘ Objekt kann als ‚unechtes‘ interpretiert werden und umgekehrt. Weitere Vereinfachungen deuten sich an. Diese sollen im Folgenden überprüft werden.

Fortsetzung folgt …

QUELLEN

  • Avicenna, ‚Avicennas Treatise on Logic‘. Part One of ‚Danesh-Name Alai‘ (A Concise Philosophical Encyclopedia) and Autobiography, edited and translated by Farang Zabeeh, The Hague (Netherlands): Martinus Nijhoff, 1971. Diese Übersetzung basiert auf dem Buch ‚Treatise of Logic‘, veröffentlicht von der Gesellschaft für Nationale Monumente, Serie12, Teheran, 1952, herausgegeben von M.Moien. Diese Ausgabe wiederum geht zurück auf eine frühere Ausgabe, herausgegeben von Khurasani.
  • Digital Averroes Research Environment
  • Immanuel Kant, Critik der reinen Vernunft‘, Riga, 1781
  • Konrad Lorenz, 1973, ‚Die Rückseite des Spiegels. Versuch einer Naturgeschichte des menschlichen Erkennens‘, München, Zürich: Piper
  • Günther Patzig, ‚Die Aristotelische Syllogistik‘, 3,verb.Aufl., Göttingen: Vandenhoeck & Rupprecht, 1969
  • Nicholas Rescher (1928 – ),The Development of Arabic Logic. University of Pittsburgh Press, 1964
  • Hans-Jörg Sandkühler (Hg.) unter Mitwirkung von Dagmar Borchers, Arnim Regenbogen, Volker Schürmann und Pirmin Stekeler-Weithofer, ‚Enzyklopädie Philosophie‘, 3 Bd., Hamburg: FELIX MEINER VERLAG, 2010 (mit CD-ROM)
  • Stanford Encyclopedia of Philosophy, Aristotle’s Logic
  • Whitehead, Alfred North, and Bertrand Russell, Principia Mathematica, 3 vols, Cambridge University Press, 1910, 1912, and 1913; Second edition, 1925 (Vol. 1), 1927 (Vols 2, 3). Abridged as Principia Mathematica to *56, Cambridge University Press, 1962.
  • Alfred North Whitehead; Bertrand Russell (February 2009). Principia Mathematica. Volume One. Merchant Books. ISBN 978-1-60386-182-3.
  • Alfred North Whitehead; Bertrand Russell (February 2009). Principia Mathematica. Volume Two. Merchant Books. ISBN 978-1-60386-183-0.
  • Alfred North Whitehead; Bertrand Russell (February 2009). Principia Mathematica. Volume Three. Merchant Books. ISBN 978-1-60386-184-7

Eine Übersicht über alle bisherigen Blogeinträge nach Titeln findet sich HIER.

AVICENNAS ABHANDLUNG ZUR LOGIK – Teil 5

VORGESCHICHTE

1. In einem ersten Beitrag AVICENNAS ABHANDLUNG ZUR LOGIK – Teil 1 hatte ich geschildert, wie ich zur Lektüre des Textes von Avicenna gekommen bin und wie der Text grob einzuordnen ist.
2. In einem zweiten Beitrag AVICENNAS ABHANDLUNG ZUR LOGIK – Teil 2 ging es um die Frage, warum überhaupt Logik? Avicenna führt erste Unterscheidungen zu verschiedenen Wissensformen ein, lässt aber alle Detailfragen noch weitgehend im Dunkeln.
3. Im Teil AVICENNAS ABHANDLUNG ZUR LOGIK – Teil 3 ging es um einfache und zusammengesetzte Begriffe, und bei den einfachen Begriffen um ‚individuelle‘ und ‚universelle‘. Schon hier zeigt sich der fundamentale Unterschied zwischen der antiken und der modernen-formalen Logik. In der antiken Logik wird die Ausdrucksebene E – und einer sich daran manifestierenden Folgerungslogik – immer in Verbindung mit einer zugehörigen Bedeutungsstruktur gesehen, die sich an einer Objektstruktur O festmacht. Die moderne formale Logik kennt zwar auch ‚Semantiken‘ und ‚Ontologien‘, diese sind aber ’sekundär‘, d.h. es werden nur solche ‚formalen Semantiken‘ betrachtet, die zum vorausgesetzten syntaktischen Folgerungsbegriff ‚passen‘. Dies sollte dann später an konkreten Beispielen diskutiert werden. Hier liegt der Fokus auf der antiken Logik im Sinne Avicennas.
4. Im nächsten Abschnitt VICENNAS ABHANDLUNG ZUR LOGIK – Teil 4 knüpft Avicenna an den zuvor eingeführten Begriff des ‚universellen‘ Begriffs an und betrachtet jetzt solche als ‚universell‘ bezeichneten Ausdrücke in einem Ausdruckskontext von aufeinanderfolgenden Ausdrücken . Alle diese Ausdrücke könnte man im Sinne der antiken Logik auch als ‚Urteile‘ bezeichnen, durch die einem bestimmten Ausdruck durch andere Ausdrücke bestimmte Bedeutungen (Eigenschaften) zu- oder abgesprochen werden. Hier unterscheidet er die Fälle eines ‚wesentlichen‘ Zusammenhanges zwischen zwei Begriffen und eines ’nicht wesentlichen‘ – sprich ‚akzidentellen‘ – Zusammenhangs.

BEGRIFFSINFLATION

5. Im nächsten Abschnitt führt er mindestens fünf neue technische Begriffe ein, deren Erklärung partiell unvollständig bleibt. Dies ist sehr schade. Aber, versuchen wir zu verstehen, was noch verstehbar ist.
6. Es sind die Begriffe ‚Genus‘ (Gattung?), ‚Spezies‘ (Art?), Differenz, allgemeine und spezielle Akzidens, und den Begriff ‚Kategorie(n)‘.
7. Er beginnt die Diskussion mit der ‚universellen Bedeutung‘, von der er behauptet, man könne hier 5 Typen unterscheiden (ohne sie direkt anzugeben). Drei Typen von universellen Bedeutungen seien ‚wesentlich‘ und zwei ’nicht-wesentlich‘, also ‚akzidentell‘.
8. Seine Erklärungen zu den ‚wesentlich universellen‘ Bedeutungen wiederholt in gewisser Weise das bislang Gesagte, indem er das Klassifizierungsmerkmal als Frage formuliert: ‚Zu welcher Art Y von Dingen gehört eine Entität X‘? Die Antwort wäre allgemein: ‚X ist ein Y‘, eventuell noch ergänzt um charakteristische Eigenschaften wie ‚Y ist/ hat/kann … Z‘. Letztlich ist dies, wie Avicenna feststellt, eine Definition, bei der etwas Neues (das X) durch Bezugnahme auf etwas schon Bekanntes (Y) erklärt wird. Y ist eine notwendige Voraussetzung für X.
9. Als Beispiel führt er u.a. an, Frage: ‚Was ist ein X=Mensch?‘, Antwort: ‚X=Mensch ist ein Y=Lebewesen‘ (‚animal‘).
10. Allerdings benutzt er auch Beispiele, die von dem ‚üblichen‘ Konzept eines Dings (einer ‚Entität‘ (engl.: ‚entity‘)) abweichen. Statt von ‚Mensch‘, ‚Kuh‘ und ‚Pferd‘ spricht er auch von ‚Schwarzheit‘, ‚Rotheit‘ und ‚Weisheit‘ bzw. auch von ‚Drei‘, ‚Fünf‘ und ‚Zehn‘.
11. Bedeutungen X = {‚Schwarzheit‘, ‚Rotheit‘, ‚Weisheit‘} beantwortet er mit Y=Qualitäten. Bedeutungen X = {‚Drei‘, ‚Fünf‘, ‚Zehn‘} beantwortet er mit Y=Zahlen.
12. Etwas später benutzt der die Bedeutungen ‚Substanz‘, ‚Qualität‘ und ‚Quantität‘ als universelle Begriffe für die ersten Beispiele, so dass man lesen kann/ muss Wenn X= {‚Mensch‘, ‚Kuh‘ und ‚Pferd‘}, dann Y= ‚Substanz‘, wenn X = {‚Schwarzheit‘, ‚Rotheit‘, ‚Weisheit‘} dann Y=Qualität, wenn X = {‚Drei‘, ‚Fünf‘, ‚Zehn‘} dann Y=Quantität.
13. Von den ‚wesentlichen universellen‘ Begriffen ‚Substanz‘, ‚Qualität‘ und ‚Quantität‘ sagt Avicenna, dass sie sich nicht weiter verallgemeinern lassen, d.h. wenn X=Substanz, dann gibt es kein allgemeineres Y, auf das sich dieser universelle Begriff zurückführen lässt (und entsprechend für X=Qualität‘ und X=Quantität). Deshalb nennt Avicenna diese universellen Begriffe, die wesentlich keinen anderen universellen Begriff mehr ‚über sich‘ haben, ‚Kategorien‘, ohne dass er diesen Zusammenhang explizit benennt; er tut es einfach.
14. Als Beispiele für ‚akzidentelle universelle‘ Begriffe führt er an, dass ‚fest‘ (engl.: ’solid‘) allgemeiner sei als ‚Lebewesen‘, aber spezieller als ‚Substanz‘; entsprechend sei ‚Zahl‘ allgemeiner als ‚gleich‘ (engl.: ‚even‘), aber spezieller als ‚Quantität‘. ‚Gleichheit (engl.: ‚eveness‘) sei allgemeiner als ‚vier‘, doch spezieller als ‚Quantität‘.
15. Dann führt er die Begriffe ‚Genus‘ und ‚Spezies‘ ein mit der Formulierung, dass dasjenige, das allgemeiner ist, die speziellere Spezies sei, und umgekehrt, dass dasjenige, was das speziellere Universelle ist, ist die allgemeinere Spezies. Diese Formulierungen sind nicht eindeutig.
16. Später sagt er noch, dass es Dinge gibt, die sowohl Genus und Spezies sein können oder Dinge, die nur Genus sind, und nicht unter irgendeiner Spezies sind.
17. Dann folgt die Feststellung, dass die Begriffe ‚Substanz‘, ‚Qualität‘ und ‚Quantität‘ kein Genus einer Spezies seien; unter ihnen befinden sich nur Instanzen wie ‚Mensch‘, ‚Schwarzheit‘ und ‚vier‘.
18. Aus diesen Beispielen folge die Natur einer Spezies, die kein Genus sein kann, sondern nur Spezies von allen Spezies, die ‚unter‘ ihr kommen.
19. Instanzen eines wesentlichen universellen Begriffs können sich durch akzidentelle Eigenschaften unterscheiden (z.B. angenommen {X1, X2} sind beide Y und X1 ist ’schwarz‘ und X2 ‚weiß‘ und ’schwarz‘. Dann ist die Eigenschaft ’schwarz‘ allgemeiner als X1 und X2, ’schwarz‘ kommt X1 und X2 nicht wesentlich, sondern akzidentell zu, kann aber differenzierend wirken.
20. Abschließend führt Avicenna noch folgende Beispiele an: Jeder universelle Begriff ist entweder Genus, so wie ‚Lebewesen‘, oder Spezies, so wie ‚Mensch‘, oder Differenz, so wie ‚die Fähigkeit zu Sprechen‘, oder ‚allgemein akzidentell‘ so wie ‚Bewegung‘, ‚Schwarzheit‘, ‚Weisheit‘.

INTERPRETATION- ANMERKUNGEN

21. War die Re-Lektüre und einsetzende Interpretation von Avicennas Text bis zu dieser Stelle relativ einfach, so zeigen sich jetzt erste Problemstellungen, die man nicht mehr so einfach ‚verworten‘ kann.
22. Einmal gibt es das Phänomen, dass er Begriffe einführt und benutzt, die nicht – zumindest auf einen ersten Blick – direkt erklärbar sind. Dann werden Zusammenhänge thematisiert, wo man sich die Frage stellen kann, ob er dies wirklich ‚gemeint‘ haben kann oder, falls ja, wie man damit umgehen will.
23. Dies gibt Gelegenheit, kurz ein paar Worte zum ‚Interpretieren‘ zu sagen. Ich werde dabei nicht auf die sehr umfangreiche Literatur zu diesem Thema eingehen (im Bereich Philosophie, Literatur und wissenschaftliche Bibelauslegung gibt es dazu nicht hunderte, sondern sicher tausende von Artikeln und Büchern. Einiges davon musste ich zu früheren Zeiten durcharbeiten). Ich beschränke mich hier auf jene Grundprinzipien, die ich hier anwenden möchte.
24. Die philologischen Fragen, ob die englische Übersetzung hier den arabischen Text korrekt wiedergibt, oder ob gar der arabische Text Überlieferungsfehler aufweist, kann ich hier nicht behandeln. Ich muss den Text nehmen, wie ich ihn vorfinde, und wenn sich für mich Unklarheiten ergeben, kann ich sie nur benennen und versuchen sie zu interpretieren.
25. Was die ‚Interpretation‘ (Auslegung, Deutung, …) des Textes angeht, so gibt es ja mindestens zwei verschiedene Ansprüche: (i) man will die ‚Bedeutung‘ rekonstruieren, die der Autor selbst mit dem verknüpft hatte (also eine Art ‚konservierende‘ Interpretation), oder (ii) man will die Bedeutung des Autors (des Textes) in einem anderen/ neuen Bedeutungsrahmen ‚rekonstruieren‘, ihn quasi von Bedeutungsraum R_Autor in den Bedeutungsraum R_Leser ‚übersetzen‘.
26. Beide Vorgehensweisen haben ihr Recht. Die ‚konservierende‘ Rekonstruktion ist idealerweise eigentlich der erste Schritt und die Voraussetzung für die ‚Neuinterpretation‘. Es ist aber eine offene Frage, ob ein Leser immer und überall über genau die Voraussetzungen in seinem Denken verfügt, dass er den ursprünglichen Bedeutungsraum R_Autor überhaupt eins-zu-eins rekonstruieren kann. Nach ca. 1000 Jahren, die uns von Avicenna trennen, ist es sogar ziemlich unwahrscheinlich, dass wir dies überhaupt noch können.
27. Hier, in dieser Rekonstruktion, werde ich erst gar nicht versuchen, den ursprünglichen Bedeutungsraum R_Autor zu rekonstruieren, da ich niemals wüsste, ob ich mit meinen Überlegungen ‚richtig‘ liege oder nicht. Dies Referenzproblem haben alle wissenschaftlichen Rekonstruktionen alter Texte (dies gilt natürlich auch für das hebräische Alte Testament, das griechische Neue Testament und den arabischen Koran).
28. Im weiteren Verlauf werde ich also die bisherigen Rekonstruktionsannahmen weiter verfolgen. Letztlich ist es eine Art ‚Test‘, ob und wie sich der Text von Avicenna in einem modernen erkenntnistheoretischen Modell ’neu lesen‘ lässt.

DISKUSSION

29. Bisher haben wir folgende allgemeine Annahmen bei der Rekonstruktion des Textes von Avicenna getroffen:
30. Die Ausdruckselemente E einer Sprache L sind nur ‚Zeiger‘, die auf irgendwelche kognitiven Objekte O hindeuten, die im Rahmen der generierten Zeigebeziehung M für die Ausdruckselemente E zu dem werden, was wir ihre Bedeutung nennen.
31. Die kognitiven Objekte O entstehen in einem Erzeugungsprozess, der Eigenschaften X der umgebenden Welt W über sinnliche Wahrnehmungsprozesse perc() und interne Abstraktionsprozesse $latex \alpha$ als irgendwelche Objekte O klassifiziert. Man könnte von daher auch sagen $latex \kappa = perc \otimes \alpha$, oder $latex \kappa(X, O) = O$.
32. Wir hatten ferner noch unterschieden zwischen ‚echten‘ Objekten, d.h. solchen Bündelungen von Objekten, die als solche in der umgebenden Welt W ‚vorkommen‘ und und solchen ‚unechten‘ Objekten, die zwar gebildet werden können, die aber immer nur ‚als Teil anderer Objekte‘ auftreten können. Die Definition von ‚wesentlich universellen Objekten‘ von Avicenna deckt sich mit dem Konzept ‚echter Objekte‘ und Avcennas Definition von ‚akzidentellen universellen‘ Objekten deckt sich mit den unechten Objekten, die anderen Objekten zukommen können, aber nicht müssen.

DISKUSSION – KATEGORIEN

33. Avicenna führt dann indirekt das Konzept von ‚(wesentlichen universellen) Kategorien‘ ein, die ich indirekt rekonstruiert habe als solche ‚wesentlich universellen Objekte‘, ‚über die‘ es keine weiteren Verallgemeinerungen mehr gibt. Da er es nur bei einzelnen Beispielen belässt ohne wirkliche Argumentationen bleibt hier einiges offen.
34. Die genannten drei Kategorien erscheinen wie eine Art ‚Meta-Klassifikation‘ über allen möglichen Objekten, so eine Art ‚Typisierung‘ der verschiedenen möglichen Objektbildungen. Versucht man im Bereich der Objektklassifikationen kriterien zu finden, welches Objekt zu welcher Kategorie gehört, wird es aber schnell schwierig.
35. Kategorie ‚Substanz‘: Wann ist ein Objekt eine ‚Substanz‘ und wann ‚Qualität‘ oder ‚Quantität‘? Ein erster Ansatzpunkt wäre zu sagen, dass alle ‚echten‘ Objekte ‚Substanzen‘ sind und alle ‚unechten‘ Objekte ‚Qualitäten‘. Was aber wäre dann mit den ‚Quantitäten‘? Die ‚Anzahl‘ von Objekten (echten wie unechten) ist ja keine ‚Eigenschaft an sich‘, sondern ist eher eine ‚Metaeigenschaft‘, die man vorhandenen (real oder gedachten) Objekten zuordnen kann. Im Vergleich zu Farben, Formen, Tönen usw., die auf Sinneseigenschaften aufsetzen, ist ‚Quantität‘ als Metaeigenschaft eine abgeleitete, sekundäre, abstrakte Eigenschaft, so wie z.B. auch ‚größer/ kleiner‘, ‚vorher/ nachher‘, ‚vorne/ hinten, ‚oben/ unten‘, usw. In allen genannten Fällen gibt es schon irgendwelche Objekte, zwischen denen räumliche, zeitliche – oder sonstige – allgemeine Beziehungen erkennbar sind. Diese indirekten, sekundären, abgeleiteten Beziehungen bilden dann eine eigene Klasse von ‚abstrakten‘ Eigenschaften, von denen die ‚Quantitäten‘ nur eine Teilmenge wären. Wenn also Avicenna schon die Kategorie ‚Quantität‘ bemüht, warum nicht auch ‚Raum‘ und ‚Zeit‘?
36. Alle diese Überlegungen zu ‚Kategorien‘ als zusätzliche Meta-Klassifikationen der generierbaren Objekte setzen allerdings voraus, dass es möglich ist, im Bereich der Objekthierarchie für alle Objekte O solche ‚Kontexte‘ annehmen zu können, durch die sie bzgl. ‚Substanz‘, ‚Qualität‘, ‚Quantität‘, ‚Raum‘ und ‚Zeit‘ charakterisierbar werden. Im bisher verfolgten Modell würde dies bedeuten, dass Objekte nicht nur über ihre ‚direkten‘ sensorischen Eigenschaften $latex K_{s}$ generiert werden, sondern sie werden von vornherein auch mit minimalen ‚Raumanteilen‘ bzw. in bestimmten ‚Abfolgen‘ ‚gespeichert‘ bzw. sind sensitiv bzgl. Abfolgen ‚erinnerbar‘.

DENKEN ALS KOGNITIVE EVOLUTION

37. Oder, wenn schon, dann noch allgemeiner: der gesamte Objekterzeugungsprozess $latex \kappa$ mus so beschaffen sein, dass er die fundamentalen Eigenschaften X der umgebenden Welt so in die Objekthierarchie übersetzt, dass (i) echte und unechte Objekteigenschaften hinreichend erhalten bleiben können, dass (ii) räumliche und zeitliche Verhältnisse hinreichend repräsentiert werden können, dass (iii) quantitative Verhältnisse erzeugt werden können (z.B. Aufzählungen und Äquivalenzklassen), dass (iv) neben den Eigenschaften, die ‚gegeben‘ sind (IST, real), auch ’neue‘ Kombinationen erzeugt werden können (Möglichkeit, Potenz, kombinatorischer Raum), und dass (v) neue Kombinationen (Möglichkeiten) mit dem ‚realen Raum‘ verglichen werden können.
38. Sofern dies möglich ist (und alles, was wir über das menschliche Denken heute wissen, bestätigt dies), kann man dann diese Art von Denken als Fortsetzung der biologischen Evolution im Bereich des Denkens (quasi als kognitive Evolution) betrachten, d.h. die biologische Evolution hat – mit ihrem kombinatorischen genetischen Mechanismus – Strukturen geschaffen (Körper mit Gehirn), die in der Lage sind, die an die materiellen Strukturen gebundene Kombinatorik neuer Lebensformen über die Neuronennetze zu dynamisieren, zu beschleunigen, zu flexibilisieren. Mit der Kombinatorik des neuronalen Denkens konnte die biologische Evolution der Entwicklung neuer, leistungsfähigerer Lebensformen einen gewaltigen Schub im einzelnen Organismus verleihen; durch die Möglichkeit symbolischer Kombination können sich die neurologisch erzeugbaren neuen Denkräume zusätzlich direkt miteinander verschränken und die Entwicklung neuer Lebensformen in bis dahin ungeahnte Dimensionen katapultieren.
39. Doch zurück zur vorliegenden Interpretationsaufgabe.

GENUS – SPEZIES

40. Bislang haben wir ansatzweise eine Rekonstruktion des Konzeptes von ‚Kategorien‘ als Meta-Klassifikationen im Bereich der dynamischen Objekthierarchie.
41. Unklar, da widersprüchlich, bleibt bei Avicenna die Verwendung der Begriffe ‚Genus‘ und Spezies‘. Eine erste, einfache, und nachvollziehbare Interpretation wäre die, jedes Objekt als ein ‚Genus‘ zu bezeichnen, das ‚Instanzen‘ besitzt, denen ‚differenzierende‘ Eigenschaften zukommen (wie auch die verschiedenen Genus-Objekte sich voneinander durch Eigenschaften unterscheiden). ‚Spezies‘ wären dann jene voneinander abgrenzbaren Instanzen (vgl. auch Carl von Linné (1707 – 1778), sein Werk ‚Systema Naturae‘), die einem Genus ‚untergeordnet‘ wären. Allerdings kommen die Begriffe ‚Genus‘ und ‚Spezies‘ im Text mehrfach in Verwendungen vor (z.B. auch als ‚Spezies der Spezies‘), die sich – aus meiner Sicht – einer schlüssigen Interpretation entziehen.

ALLGEMEINE UND SPEZIELLE AKZIDENZ

42. Mit den Begriffen ‚allgemeine‘ und ’speziellen‘ Akzidenzien verhält es sich ähnlich: es gäbe eine einfache, nachvollziehbare Interpretation, aber diese deckt nicht alle Verwendungsweisen dieser Begriffe ab.
43. Ausgangspunkt sind ja nicht-zusammengesetzte Ausdrücke mit einer universellen Bedeutung, bei der zwischen ‚wesentlichen‘ und ‚akzidentellen‘ unterschieden wurde. Die ‚akzidentellen universellen Begriffe wurden zuvor schon als ‚unechte Objekte‘ rekonstruiert, die niemals isoliert auftreten können, sondern immer nur als Teile von echten (wesentlichen universellen) Objekten. Insofern sind sie ‚akzidentell‘ und eine informelle abkürzende Redeweise könnte sie als ‚Akzidentien‘ bezeichnen, verstanden als Eigenschaften, die bei einem Objekt auftreten können, aber nicht müssen.
44. Wäre zu klären, was ‚allgemeine‘ von ’speziellen‘ Akzidenzien unterscheidet. Hier nochmals die Beispiele aus dem Text, wonach ‚fest‘ (engl.: ’solid‘) allgemeiner sei als ‚Lebewesen‘, aber spezieller als ‚Substanz‘; entsprechend dass ‚Zahl‘ allgemeiner sei als ‚gleich‘ (engl.: ‚even‘), aber spezieller als ‚Quantität‘, und schließlich dass ‚Gleichheit (engl.: ‚eveness‘) allgemeiner sei als ‚vier‘, doch spezieller als ‚Quantität‘.
45. Die Eigenschaft ‚fest‘ ist nach bisheriger Rekonstruktion klar ein unechtes Objekt, d.h. eine akzidentelle Eigenschaft, die als Teil von echten Objekten auftreten kann. Zu sagen, dass diese akzidentelle Eigenschaft allgemeiner sei als ‚Lebewesen‘, aber spezieller als ‚Substanz‘, macht nicht unbedingt Sinn, genauso wenig wie es Sinn machen würde, Hühner mit Grashalmen zu vergleichen. Es sei denn, es gäbe einen ‚übergreifenden Aspekt‘, auf den sich beide, die Hühner und die Grashalme, beziehen lassen würden.
46. Ich kann in diesem Zusammenhang keinen solchen übergreifenden Gesichtspunkt erkennen. Bestimmte akzidentelle Eigenschaften können bei Objekten auf verschiedenen Stufen der Objekthierarchie auftreten. Hier ein Beziehungsgeflecht zwischen den Eigenschaften konstruieren zu wollen überzeugt mich nicht.

ALLGEMEINE EINSCHÄTZUNG

47. Schon an dieser Stelle der Relektüre von Avicennas Logik deutet es sich an, dass Avicenna viele seiner technischen Begriffe nur unzulänglich erklärt und voneinander abgrenzt. Ein Grund dafür kann sein, dass er die das Konzept der Objekterstehung und der Objekthierarchie als Gegenpol zu den Ausdrücken offenbar nicht als eigenständiges System systematisch entwickelt. In anderen Interpretationsprojekten (z.B. bei Nicolai Hartmann) musste ich die Rekonstruktion irgendwann einfach abbrechen, da der Text in sich irgendwann so widersprüchlich war, dass ein sinnvolles Weiterlesen nicht mehr möglich erschien.

Fortsetzung folgt …

QUELLEN

  • Avicenna, ‚Avicennas Treatise on Logic‘. Part One of ‚Danesh-Name Alai‘ (A Concise Philosophical Encyclopedia) and Autobiography, edited and translated by Farang Zabeeh, The Hague (Netherlands): Martinus Nijhoff, 1971. Diese Übersetzung basiert auf dem Buch ‚Treatise of Logic‘, veröffentlicht von der Gesellschaft für Nationale Monumente, Serie12, Teheran, 1952, herausgegeben von M.Moien. Diese Ausgabe wiederum geht zurück auf eine frühere Ausgabe, herausgegeben von Khurasani.
  • Digital Averroes Research Environment
  • Stanford Encyclopedia of Philosophy, Aristotle’s Logic
  • Whitehead, Alfred North, and Bertrand Russell, Principia Mathematica, 3 vols, Cambridge University Press, 1910, 1912, and 1913; Second edition, 1925 (Vol. 1), 1927 (Vols 2, 3). Abridged as Principia Mathematica to *56, Cambridge University Press, 1962.
  • Alfred North Whitehead; Bertrand Russell (February 2009). Principia Mathematica. Volume One. Merchant Books. ISBN 978-1-60386-182-3.
  • Alfred North Whitehead; Bertrand Russell (February 2009). Principia Mathematica. Volume Two. Merchant Books. ISBN 978-1-60386-183-0.
  • Alfred North Whitehead; Bertrand Russell (February 2009). Principia Mathematica. Volume Three. Merchant Books. ISBN 978-1-60386-184-7

Eine Übersicht über alle bisherigen Blogeinträge nach Titeln findet sich HIER.

AVICENNAS ABHANDLUNG ZUR LOGIK – Teil 4

VORGESCHICHTE

1. In einem ersten Beitrag AVICENNAS ABHANDLUNG ZUR LOGIK – Teil 1 hatte ich geschildert, wie ich zur Lektüre des Textes von Avicenna gekommen bin und wie der Text grob einzuordnen ist.
2. In einem zweiten Beitrag AVICENNAS ABHANDLUNG ZUR LOGIK – Teil 2 ging es um die Frage, warum überhaupt Logik? Avicenna führt erste Unterscheidungen zu verschiedenen Wissensformen ein, lässt aber alle Detailfragen noch weitgehend im Dunkeln.
3. Im Teil AVICENNAS ABHANDLUNG ZUR LOGIK – Teil 3 ging es um einfache und zusammengesetzte Begriffe, und bei den einfachen Begriffen um ‚individuelle‘ und ‚universelle‘. Schon hier zeigt sich der fundamentale Unterschied zwischen der antiken und der modernen-formalen Logik. In der antiken Logik wird die Ausdrucksebene E – und einer sich daran manifestierenden Folgerungslogik – immer in Verbindung mit einer zugehörigen Bedeutungsstruktur gesehen, die sich an einer Objektstruktur O festmacht. Die moderne formale Logik kennt zwar auch ‚Semantiken‘ und ‚Ontologien‘, diese sind aber ’sekundär‘, d.h. es werden nur solche ‚formalen Semantiken‘ betrachtet, die zum vorausgesetzten syntaktischen Folgerungsbegriff ‚passen‘. Dies sollte dann später an konkreten Beispielen diskutiert werden. Hier liegt der Fokus auf der antiken Logik im Sinne Avicennas.

WESENTLICHE UND NICHT-WESENTLICH (AKZIDENTIELL, KONTINGENT…)

4. Im nächsten Abschnitt knüpft Avicenna an den zuvor eingeführten Begriff des ‚universellen‘ Begriffs an, das sind jene, die zwar eine Bedeutung haben, diese Bedeutung kann aber verschiedene konkreten ‚Instanzen‘, ‚Realisierungen‘, ‚Beispiele‘ umfassen (also: der Ausdruck ‚Tasse‘ kann sich auf viele verschiedene konkrete Tassenobjekte beziehen).
5. Er betrachtet jetzt solche als ‚universell‘ bezeichneten Ausdrücke in einem Ausdruckskontext von aufeinanderfolgenden Ausdrücken mit den folgende Kombinationen von Ausdrücken (hier in deutscher Übersetzung): (i) ‚Der Mensch ist ein Lebewesen‘, (ii) ‚Vier ist eine Zahl‘, (iii) ‚Der Mensch existiert‘, (iv) ‚Zahlen existieren‘, (v) ‚Der Mensch ist weiß‘, (vi) ‚Der Mensch ist nicht weiß‘, (vii) ‚Der Mensch lacht‘, (viii) ‚Zid sitzt‘, (ix) ‚Zid schläft‘, (x) ‚Zid ist alt‘, (xi) ‚Zid ist jung‘.
6. Alle diese Ausdrücke könnte man im Sinne der antiken Logik auch als ‚Urteile‘ bezeichnen, durch die einem bestimmten Ausdruck durch andere Ausdrücke bestimmte Bedeutungen (Eigenschaften) zu- oder abgesprochen werden (z.B. wird in (v) dem Objekt (der Mensch) die Eigenschaft (weiß) zugesprochen).
7. Er nimmt folgende interessante Unterscheidung vor: (i) er betrachtet sowohl ‚universelle‘ Ausdrücke wie ‚Mensch‘, ‚Zahl‘, ‚Lebewesen‘, Vier‘ und einen ‚individuellen‘ Ausdruck wie ‚Zid‘ als Bezeichnung eines konkreten Objektes, das als Instanz eines ‚Menschen‘ genommen wird, und (ii) sagt dann, dass die Bedeutung (‚meaning‘) dieser Ausdrücke sich aus dem ‚Wesen‘ des Objektes ergibt. D.h. dasjenige, was wir aufgrund unserer sinnlichen Wahrnehmung in Verbindung mit unseren Denkprinzipien als Objekt ‚Mensch‘ oder ‚Vier‘ oder ‚Zahl‘ oder ‚Zid‘ abstrahierend erkennen können, das ergibt sich nicht einfach so, nicht zufällig, nicht kontingent, nicht akzidentiell, sondern dies ergibt sich aus dem ‚Wesen‘ des Objektes, und zwar notwendig, zwingend, eben ‚essentiell‘, ‚wesenhaft‘.
8. In der Ausdrucksfolge (Der Mensch) (ist) (weiß) wird eine Beziehung zwischen der Bedeutung des Ausdrucks (der Mensch) und (weiß) durch Verwendung des Ausdrucks (ist) hergestellt. In der ’normalen Verwendung‘ bedeutet dies, dass die Bedeutung von (weiß) der Bedeutung von (der Mensch) zugesprochen wird.
9. Doch aus der Kenntnis der Bedeutung des Ausdrucks (der Mensch) folgt nach Avicenna nicht notwendigerweise die Kenntnis der Bedeutung des Ausdrucks (weiß) als Teil von (der Mensch). Die Begründung von Avicenna: zum ‚Wesen‘ des Menschen gehört es nicht, dass er ‚weiß‘ ist; er kann ‚weiß‘ sein, aber er muss nicht.
10. Das ist die entscheidende Argumentationsfigur: charakteristisch für ‚wesentliche‘ Ausdrücke ist es, dass deren Bedeutung sich auf Objekte bezieht, denen aufgrund ihres ‚Wesens‘ bestimmte Eigenschaften notwendig zukommen, andere aber nicht.
11. Doch lassen die Sätze von Avicenna noch eine weitere Deutung zu. Im Fall von ‚universellen‘ Ausdrücken unterscheidet er ja die universelle (eine) Bedeutung von den möglichen ‚Instanzen‘ (in der englischen Übersetzung wird ‚Instanz‘ als ein ‚particular‘ bezeichnet). Die Frage ist, ob und inwieweit sich die Eigenschaften der universellen Bedeutung auf die Instanzen überträgt.
12. Hier benutzt Avicenna zwei Gedanken: (i) Er sagt, dass die ‚Existenz‘ der universellen Bedeutung die Voraussetzung (‚prerequisite‘) für die ‚Existenz‘ der besonderen Bedeutung ist und (ii) dass die besondere Bedeutung aus der universellen Bedeutung folgt.
13. Also, wenn der Ausdruck (der Mensch) (ist) (ein Lebewesen) Sinn machen soll, dann muss die allgemeine Bedeutung von ‚Lebewesen‘ gegeben sein und es muss klar sein, dass ‚Mensch‘ eine Instanz (in der englischen Übersetzung ein ‚particular‘) von der allgemeinen (wesentlichen) Bedeutung ‚Lebewesen‘ ist; entsprechend setzt der Name ‚Zid‘ die Existenz der allgemeinen Bedeutung von ‚Mensch‘ voraus.
14. Interessant ist noch das Detail, dass Avicenna die ‚Seele‘ als wesentlich zur Bedeutung von ‚Mensch‘ gehörig ansieht. Bedenkt man, wie schwierig (bis unmöglich?) es ist, die Bedeutung von ‚Seele‘ zu klären, kann es zumindest verwundern, wie apodiktisch er behaupten kann, dass die ‚Seele‘ eine wesentliche Eigenschaft der Bedeutung (und damit des Objektes) ‚Mensch‘ sei.

DISKUSSION

15. Mit diesem Abschnitt über ‚wesentliche‘ und ’nicht wesentliche‘ gleich ‚akzidentiellen‘ / ‚kontingenten‘ / ‚arbiträren‘ Eigenschaften eines Bedeutungsobjektes O sind wir schon in den tiefsten Abgründen einer Ontologie bzw. einer Metaphysik gelandet.
16. Dazu muss man sich nochmals bewusst machen, dass die Ausdrücke E (die selbst sinnliche Muster der Wahrnehmung sind und die auch Abstraktionsprozessen unterliegen; man denke nur an die ‚type’/ ‚token‘ Unterscheidung der Linguisten) in Beziehung gesetzt werden zu Bedeutungselementen, die gegeben sind als aus der sinnlichen Wahrnehmung $latex K_{s}$ abstrahierte Objekte O, die in verschiedenen Abstraktionsstufen organisiert sind. Alle (!) diese Objekte setzen Wahrnehmungsprozesse voraus, die mit einer elementaren Form von Lernen verknüpft sind.
17. Wenn also ein Mensch A zu einem bestimmten Zeitpunkt t durch seine individuellen Lernprozesse in einer bestimmten Sprachgemeinschaft mit Sprache L ‚gelernt‘ hat, dass ein Ausdruck e sich mit bestimmten – aus der Wahrnehmung gewonnenen – Objekten O verbindet – als m(o,e) –, dann kann man folgende Unterscheidung treffen: (i) sofern sich diese Wahrnehmungsobjekte O auf Eigenschaften der umgebenden Welt W beziehen, die im Zeitraum des Lernens von Mensch A mehr oder weniger ‚konstant‘ / ‚unveränderlich‘ waren, dann ‚existiert‘ die ‚erlernte Bedeutung‘ O für den Menschen A und die gelernten Bestandteile von O sind für diesen Menschen A ‚wesentlich‘; ebenso für alle anderen Menschen, die mit diesem Aspekt der umgebenden Welt W in Berührung gekommen sind. Wenn (ii) die gelernten Eigenschaften O der umgebenden Welt aber ‚variabel‘ sind, mal so und mal so, also akzidentiell/ kontingent/ arbiträr, dann ‚kennt‘ der lernende Mensch A zwar diese möglichen Bedeutungen O‘, sie aber mit einem anderen Objekt O in Verbindung zu bringen, ist nicht notwendig, ist nicht zwingend, sondern muss sich aus der aktuellen kontingenten Situation ‚ergeben‘. Wenn üblicherweise ein Mensch nicht weiß ist (weil alle anderen in der Umgebung schwarz sind), dann wäre das Ereignis, dass ein Mensch auftritt, der weiß ist, ein ‚interessantes‘ Ereignis, das zu berichten lohnen würde.
18. Ein Mensch B mit einer anderen Sprache L‘ wird die Ausdrücke der Sprache L von Mensch A zunächst nicht verstehen (z.B. sei L= Arabisch und L’=Hebräisch). Wenn aber der Mensch A sich auf einen Aspekt X der umgebenden Welt W bezieht, den auch der Mensch B wahrnehmen kann, dann haben A und B die leise Chance, aufgrund der gemeinsamen Kenntnisnahme von X die hinreichend ‚gleichen Wahrnehmungen O(X)‘ zu haben, und dann kann B eventuell ‚begreifen‘, dass der arabische Ausdruck von A sich auf dieses gemeinsam wahrnehmbare O(X) bezieht, und er dann aufgrund seiner Kenntnis des L’=Hebräischen weiß, wie er den L= arabischen Ausdruck für O(X) im Hebräischen wiedergeben würde.
19. Wichtig ist hier, dass die ‚Existenz‘ einer Bedeutung O(X) generell von ‚existierenden Eigenschaften X in der umgebenden Welt W‘ abhängt UND (!!!) von den daran anknüpfenden Wahrnehmungsprozessen, die – stimuliert von X – zu den entsprechenden Bedeutungsobjekten O(X) führen. Existieren in diesem Sinne Bedeutungen O(X), dann kann man von ihren Eigenschaften sagen, dass sie ‚wesentlich‘ sind, wenn sie ’normalerweise immer‘ so vorkommen.
20. Solange man sich der sinnlichen Herkunft aller Bedeutungen bewusst ist, solange hat man auch keine Probleme damit, dass ‚Menschen‘ aufgrund ihrer genetischen Basis im Laufe der Zeiten zu ganz unterschiedlichen Erscheinungsweisen kommen können: verschiedene Hautfarben, verschiedene Körperformen, verschiedene Deformationen (keine Arme, verkrüppelte Beine, anders geformte Köpfe, …), unterschiedliche Intelligenzen, usw. Heute zusätzlich erweitert durch medizinische Operationen, Schönheitsoperationen, allerlei Prothesen und Implantate. Dass der Begriff ‚Mensch‘ vor diesem Hintergrund unterschiedliche Bedeutungen O aufgrund unterschiedlicher Gegebenheiten X in der Welt annehmen kann, sollte dann kein Problem sein.
21. Schwieriger wird es, wenn man – was in der Vergangenheit ständig geschah – glaubte, aus den empirisch gewonnenen Bedeutungen O(X) auf ‚allgemeine Strukturen‘ schließen zu können, die ‚hinter‘ den empirischen Eigenschaften in dem Sinne liegen, dass sie den empirischen Ereignissen ‚zeitlich und logisch vorausgehen‘. In diesen Zusammenhang gehört der populäre Geist-Materie-Dualismus, nach dem die materiellen Erscheinungen ‚Ausfluss‘ geistiger Strukturen sind, die als solche die ‚wesentlichen‘ Eigenschaften repräsentieren.
22. Psychologisch sind solche Denkfiguren verständlich, da sich die Antike auch die Frage gestellt hat, wie die vielfältigen empirischen Formen der umgebenden Welt trotz allem nicht ganz arbiträr sind, sondern offensichtlich gewissen ‚Regeln‘ / ‚Gesetzen‘ folgen. In Unkenntnis der modernen Physik und Biologie konnte man nur sehr allgemeine Annahmen machen, meist sehr statische. Heute beginnen wir zu verstehen, dass die Vielfalt der Formen auf spezifische Erzeugungsprozesse zurückgehen, die wiederum allgemeinen Gesetzen folgen. Diese Gesetze erlauben in der Umsetzung viel Variabilität, so dass Vielfalt und Regelhaftigkeit keinen Widerspruch darstellen.
23. Die Kernaussagen von Avicenna zu der Begriffslogik bis zu dieser Stelle kann man aber wohl aufrecht erhalten. Erst wenn man aufgrund von Erfahrungen anlässlich X Bedeutungen O(X) ausbilden konnte kann man mit diesen Bedeutungen Urteile der Art bilden ‚Etwas X existiert‘ oder ‚Ein Etwas X ist ein Etwas Y‘.
24. Wichtig ist hier aber, zu sehen, dass das ‚Denknotwendige‘ der Alltagslogik sich nicht aus den Ausdrücken E als solchen ergibt, sondern aus den Eigenschaften der mit den Ausdrücken verknüpften Bedeutungen O(X).
25. Bislang wurde hier nur angenommen, dass die Bedeutungsobjekte O ‚Hierarchien‘ bilden können. Dies erklärt, wieso eine Bedeutung ‚universell‘ sein kann im Sinne von Allgemeinbegriff – Instanzen. Im Fall von (Zid) (ist) (ein Mensch) wäre ‚Zid‘ eine Instanz von Mensch; oder im Fall von (Der Mensch) (ist) (ein Lebewesen) wäre (der Mensch) eine Instanz von (Lebewesen). Entsprechend wäre (Zid) (schläft) ein Urteil, in dem von Zid (als Instanz von Mensch) gesagt würde, er habe die Eigenschaft zu schlafen. Sofern man ’schlafen‘ als ‚typisch‘ für Menschen ansehen würde, wäre dies eine ‚wesentliche‘ Aussage, da es normalerweise so ist. Würde man sagen, der Mensch schläft nur gelegentlich, dann wäre es eine akzidentelle/ kontingente Eigenschaft, eben nicht wesentlich.
26. Diese Beispiele mit (ist)(weiß), (schläft), (sitzt) legen den Schluss nahe, dass die Bedeutung O(X) nicht nur ein gleichförmiges Etwas ist, sondern aus einer Menge von ‚unterscheidbaren Eigenschaften‘ [PROP] bestehen kann.
27. Daraus würde folgen, das z.B. die Instanz ‚Zid‘ und die Instanz ‚Hans‘ von der Bedeutung ‚Mensch‘ jeweils bestimmte Eigenschaften PROP_Hans und PROP_Zid aufweisen, die so sind, dass der Oberbegriff ‚Mensch‘ solche Eigenschaften PRP_Mensch aufweist, die sowohl Zid und Hans gemeinsamen haben; Zid und Hans können aber auch Eigenschaften aufweisen, die sie voneinander unterscheiden und die nicht in im universellen Begriff ‚Mensch‘ vorkommen.
28. Also $latex PROP_{Mensch} = PROP_{Zid} \cap PROP_{Hans}$ würde sowohl die Menge der gemeinsamen Eigenschaften der beiden Instanzen ‚Zid‘ und ‚Hans‘ bezeichnen als auch die Verbindung zwischen dem universellem Begriff und seinen Instanzen herstellen.
29. Stellt sich noch die Frage, was denn dann die ‚Eigenschaften‘ sind? Setzen wir den bisherigen Zusammenhang voraus, dann haben wir die Annahme einer umgebenden Welt W mit ‚Welteigenschaften‘ X und einen Menschen als ein System, das mittels seiner Sinnesorgane eine Wahrnehmung (‚perception‘) als Abbildung von bestimmten dieser Welteigenschaften X auf innere sensorische Muster $latex K_{s}$ realisieren kann ($latex perc: X \longrightarrow K_{s}$). Aus diesen Mustern $latex K_{s}$ lassen sich dann mittels Abstraktion unterschiedlichste Objekte O generieren ($latex \alpha: K_{s} \cup K_{p} \longrightarrow O$) (unterstellt, dass dabei implizite Denkprinzipien $latex K_{p}$ nach Avicenna mitwirken können (was nahezu alle Philosophen ähnlich angenommen haben)). Aus diesen Annahmen ergibt sich, dass jedwede Eigenschaft auch solch ein abstrahiertes Objekt aufgrund von Sinneseindrücken sein muss.
30. Fragt sich dann, ob sich Objekte und Eigenschaften von Objekten unterscheiden, und wie?
31. Intuitiv würde man sagen: Ja. Aber wie genau?
32. Hier könnte man Avicennas Begriffe ‚universell‘ und ‚wesentlich‘ bemühen: ein ‚echtes‘ Objekt umfasst andere Objekte (als Eigenschaften), die ihm ‚wesentlich‘ zukommen, d.h. ’normalerweise‘, ‚regelhaft‘; ein ‚unechtes‘ Objekt ist ein solches, das zwar als ‚Teil von einem echten Objekt‘ auftreten kann, normalerweise aber nicht alleine vorkommt. So wäre eine ‚Rose‘ tendenziell ein ‚echtes Objekt‘, da es mit bestimmten Eigenschaften ’normalerweise‘ auftritt, ‚Rot‘ wäre aber ein ‚unechtes‘ Objekt, da ‚Rot‘ normalerweise nicht isoliert auftritt sondern nur in Verbindung mit anderen Objekten; z.B. kann das Objekt ‚Rose‘ das Objekt ‚Rot‘ als Eigenschaft – also als unechtes Objekt – enthalten.
33. Die Unterscheidung von (echtem) Objekt und (unechtem) Objekt (als Eigenschaft) hängt damit von der ‚gelernten‘ Bedeutung ab: was tritt wann wie oft und welcher Konstellation auf.
34. ‚Wesentlich‘ wird hier interpretiert als ‚regelmäßige Erscheinung‘ (normal), und ’nicht wesentlich‘ bzw. kontingent bzw. akzidentell wird hier interpretiert als ’nicht regelmäßig‘, ’nicht normal‘, ‚gelegentlich‘, ‚zufällig‘ auftretend.

Fortsetzung folgt …

QUELLEN

  • Avicenna, ‚Avicennas Treatise on Logic‘. Part One of ‚Danesh-Name Alai‘ (A Concise Philosophical Encyclopedia) and Autobiography, edited and translated by Farang Zabeeh, The Hague (Netherlands): Martinus Nijhoff, 1971. Diese Übersetzung basiert auf dem Buch ‚Treatise of Logic‘, veröffentlicht von der Gesellschaft für Nationale Monumente, Serie12, Teheran, 1952, herausgegeben von M.Moien. Diese Ausgabe wiederum geht zurück auf eine frühere Ausgabe, herausgegeben von Khurasani.
  • Digital Averroes Research Environment
  • Stanford Encyclopedia of Philosophy, Aristotle’s Logic
  • Whitehead, Alfred North, and Bertrand Russell, Principia Mathematica, 3 vols, Cambridge University Press, 1910, 1912, and 1913; Second edition, 1925 (Vol. 1), 1927 (Vols 2, 3). Abridged as Principia Mathematica to *56, Cambridge University Press, 1962.
  • Alfred North Whitehead; Bertrand Russell (February 2009). Principia Mathematica. Volume One. Merchant Books. ISBN 978-1-60386-182-3.
  • Alfred North Whitehead; Bertrand Russell (February 2009). Principia Mathematica. Volume Two. Merchant Books. ISBN 978-1-60386-183-0.
  • Alfred North Whitehead; Bertrand Russell (February 2009). Principia Mathematica. Volume Three. Merchant Books. ISBN 978-1-60386-184-7

Eine Übersicht über alle bisherigen Blogeinträge nach Titeln findet sich HIER.