Archiv der Kategorie: Chatbot

KÜNSTLICHE INTELLIGENZ im Spiegel der Menschen. Teil 1

Zeit: 8.Febr 24 – 3.März 24

Autor: Gerd Doeben-Henisch

Email: gerd@doeben-henisch.de

KONTEXT

Das Thema Mensch und Maschine durchzieht den gesamten Blog von Anfang an. Es liegt daher nahe, diese Thematik auch in Vorträgen zu thematisieren. Allerdings, jede der beiden Komponenten ‚Mensch‘ wie auch ‚Maschine‘ ist in sich sehr komplex; eine Wechselwirkung zwischen beiden umso mehr. Dazu ‚einfach mal so‘ einen Vortrag zu halten erscheint daher fast unmöglich, wie eine ‚Quadratur des Kreises‘. Dennoch lasse ich mich gelegentlich darauf ein.

Überblick

Im Teil 1 wird eine Ausgangslage beschrieben, die in Vorbereitung eines Vortrags angenommen worden ist. Im Rahmen des Vortrags konnte das Thema aber nur ansatzweise behandelt werden. In den nachfolgenden Texten soll die Themenstellung daher nochmals aufgegriffen und ausführlicher behandelt werden.

Ankündigung des Vortrags

Im offiziellen Ankündigungs-Flyer konnte man folgenden Text lesen:

Perspektive Vortragender

Das Eigentümliche von freien Vorträgen ist, dass man die Zusammensetzung des Publikums vorab nicht kennt. Man muss mit einer großen Vielfalt rechnen, was auch am 21.Febr 2024 der Fall war. Ein voller Saal, immerhin fast alle hatten schon mal Kontakt mit chatGPT gehabt, manche sogar sehr viel Kontakt. Wie ein roter Faden liefen aber bei allen Fragen der Art mit, was man denn jetzt von dieser Software halten solle? Ist sie wirklich intelligent? Kann sie eine Gefahr für uns Menschen darstellen? Wie soll man damit umgehen, dass auch immer mehr Kinder und Jugendliche diese SW benutzen ohne wirklich zu verstehen, wie diese SW arbeitet? … und weitere Fragen.

Als Vortragender kann man auf die Vielzahl der einzelnen Fragen kaum angemessen eingehen. Mein Ziel war es, ein Grundverständnis von der Arbeitsweise von chatGPT4 als Beispiel für einen chatbot und für generative KI zu vermitteln, und dieses Grundverständnis dann in Bezug zu setzen, wie wir Menschen mit dem Problem Zukunft umgehen: auf welche Weise kann chatGPT4 uns helfen, Zukunft gemeinsam ein wenig zu verstehen, so dass wir dadurch gemeinsam etwas rationaler und zielgerichteter handeln können.

Ob und wieweit mir dies dann faktisch im Vortrag und bei den Gesprächen gelungen ist, bleibt eine offene Frage. Bei einigen, die aufgrund ihrer individuellen Experimente mit chatGPT sich schon ein bestimmtes Bild von chatGPT gemacht hatten, sicher nicht. Sie waren so begeistert davon, was chatGPT alles kann, dass sie weiterführende Überlegungen eher abwehrten.

Absicht des Vortragenden

Wie schon angedeutet, gab es die Themenkomplexe (i) chatbots/ generative KI/ KI, (ii) Zukunft verstehen und gestalten sowie (iii) Ob und wie kann generative KI uns Menschen dabei helfen.

Chatbots/ Generative KI/ KI

Aufgrund der heute stark ausgefächerten Terminologie mit stark verschwommenen Bedeutungsrändern habe ich eine Skizze des Begriffsfelds in den Raum gestellt, um dann Eliza und chatGPT4 als Beispiel für chatbots/ generative KI/ maschinelles Lernen näher zu betrachten.

Das Programm Eliza [1,2] ist insoweit von historischem Interesse, als es der erste chatbot [3] war, der einige Berühmtheit erlangte. Trotz seiner einfachen Struktur (ohne jede explizite Wissensbasis) übte der chatbot eine starke Wirkung auf die Menschen aus, die mit dem Programm per Tastatur und Bildschirm interagierten. Alle hatten das Gefühl, dass der chatbot sie ‚versteht‘. Dies verweist auf Grundmuster der menschlichen Psychologie, Vertrauen zu schenken, wenn erlebte Interaktionsformen den persönlichen Erwartungen entsprechen.

Verglichen mit Eliza besitzt der chatbot chatGPT4 [4a,b,c] eine unfassbar große Datenbasis von vielen Millionen Dokumenten, sehr breit gestreut. Diese wurden miteinander ‚verrechnet‘ mit Blick auf mögliche Kontexte von Worten samt Häufigkeiten. Zusätzlich werden diese ‚Sekundärdaten‘ in speziellen Trainingsrunden an häufig vorkommende Dialogformen angepasst.

Während Eliza 1966 nur im Format eines Psychotherapeuten im Stil der Schule von Rogers [5] antworten konnte, weil das Programm speziell dafür programmiert war, kann chatGPT4 ab 2023 viele verschiedene Therapie-Formen nachahmen. Überhaupt ist die Bandbreite möglicher Interaktionsformen von chatGPT4 erheblich breiter. So kann man folgenden Formate finden und ausprobieren:

  1. Fragen beantworten …
  2. Texte zusammenfassen …
  3. Texte kommentieren …
  4. Texte entwerfen …
  5. Übersetzen …
  6. Text zu Bild …
  7. Text zu Video
  8. … und weitere …

Bewertung

Eine Software wie chatGBT4 zu benutzen ist das eine. Wie aber kann man solch eine Software bewerten?

Aus dem Alltag wissen wir, dass wir zur Feststellung der Länge eines bestimmten räumlichen Abschnitts ein standardisiertes Längenmaß wie ‚das Meter‘ benutzen oder für das Gewicht eines Objekts das standardisierte Gewichtsmaß ‚das Kilogramm‘.[6]

Wo gibt es eine standardisierte Maßeinheit für chatbots?

Je nachdem, für welche Eigenschaft man sich interessiert, kann man sich viele Maßeinheiten denken.

Im hier zur Debatte stehenden Fall soll es um das Verhalten von Menschen gehen, die gemeinsam mittels Sprache sich auf die Beschreibung eines möglichen Zustands in der Zukunft einigen wollen, so, dass die einzelnen Schritte in Richtung Ziel überprüfbar sind. Zusätzlich kann man sich viele Erweiterungen denken wie z.B. ‚Wie viel Zeit‘ wird die Erreichung des Ziels benötigen?‘, ‚Welche Ressourcen werden benötigt werden zu welchen Kosten?‘, ‚Wie viele Menschen mit welchen Fähigkeiten und in welchem zeitlichem Umfang müssen mitwirken? … und einiges mehr.

Man merkt sofort, dass es hier um einen ziemlich komplexen Prozess geht.

Um diesen Prozess wirklich als ‚Bezugspunkt‘ wählen zu können, der in seinen einzelnen Eigenschaften dann auch ‚entscheidbar‘ ist hinsichtlich der Frage, ob chatGPT4 in diesem Kontext hilfreich sein kann, muss man diesen Prozess offensichtlich so beschreiben, dass ihn jeder nachvollziehen kann. Dass man dies tun kann ist keineswegs selbstverständlich.

Anforderungen für eine gemeinsame Zukunftsbewältigung

BILD : Andeutung der Fragen, die beantwortet werden müssen, um möglicherweise eine Antwort zu bekommen.

ZUKUNFT KEIN NORMALES OBJEKT

Generell gilt, dass das mit dem Wort ‚Zukunft‘ Gemeinte kein normales Objekt ist wie ein Stuhl, ein Auto, oder ein Hund, der gerade über die Straße läuft. Zukunft kommt für uns immer nur in unserem Denken vor als Bild eines möglichen Zustands, das sich nach einer gewissen Zeit möglicherweise ‚bewahrheiten kann‘.

Wollen wir also möglichst viele Menschen in die Zukunft mitnehmen, dann stellt sich die Aufgabe, dass das gemeinsamen Denken möglichst viel von dem, was wir uns für die Zukunft wünschen, ‚voraus sehen‘ können muss, um einen Weg in ein mögliches gedachtes Weiterleben zu sichern.

BEISPIEL MIT BRETTSPIEL

Dies klingt kompliziert, aber anhand eines bekannten Brettspiels kann man dies veranschaulichen. Auf Deutsch heißt dies Spiel ‚Mensch ärgere Dich nicht‘ (auf dem Bild sieht man eine Version für die Niederlande).[7]

BILD : Spielbrett des Spiels ‚Mensch ärgere Dich nicht‘

BILD : Strukturelemente einer Spielsituation und die darin angenommenen Beziehungen. Die reale SPIELSITUATION wird im Text der SPIELANLEITUNG vorausgesetzt und beschrieben. Neben den ELEMENTEN der Spielsituation enthalten die SPIELREGELN Beschreibungen möglicher Aktionen, um die Spielsituation zu verändern sowie die Beschreibung einer möglichen Konfiguration von Elementen, die (i) als STARTSITUATION gelten soll wie auch als ZIELZUSTAND (ZIEL). Ferner gibt es eine ANLEITUNG, WER WAS WANN WIE tun darf.

Was man in der Gegenwart sieht, das ist ein Spielbrett mit diversen Symbolen und Spielsteinen. Zusätzlich gibt es noch den Kontext zum Spielbrett bestehend aus vier Spielern und einem Würfel. Alle diese Elemente zusammen bilden eine Ausgangslage oder Startzustand oder den aktuellen IST-Zustand.

Ferner muss man annehmen, dass sich in den Köpfen der Mitspieler ein Wissen befindet, aufgrund dessen die Mitspieler die einzelnen Elemente als Elemente eines Spiels erkennen können, das ‚Mensch ärgere dich nicht‘ heißt.

Um dieses Spiel praktisch spielen zu können, müssen die Spieler auch wissen, wer wann welche Veränderungen wie auf dem Spielbrett vornehmen darf. Diese Veränderungen werden beschrieben durch Spielregeln, zu denen es noch eine geschriebene Spielanleitung gibt, aus der hervorgehen muss, welche Regel wann wie von wem angewendet werden darf.

Wenn die Spieler nach den vorgegebenen Regeln Veränderungen auf dem Spielbrett vornehmen, dann kann das Spiel beliebig lange laufen, es sei denn, es gibt eine klar Beschreibung eines Zielzustands, der als Ziel und gleichzeitig als Ende vereinbart ist. Wenn dieser Zielzustand auf dem Brett eintreten sollte, dann wäre das Spiel beendet und jener Spieler, der den Zielzustand als erster erreicht, wäre dann ein Gewinner im Sinne des Spiels.

Nicht zu vergessen: Genauso wichtig die die Beschreibung eines Zielzustandes ist die Beschreibung eines Startzustands, mit dem das Spiel beginnen soll.

Für die Frage der Zukunft im Kontext Spiel wird sichtbar, dass die Zukunft in Gestalt eines Zielzustands zwar in Form einer textlichen Beschreibung existiert, aber nicht als reale Konfiguration auf dem Spielbrett. Es wird von den beteiligten Spielern aber angenommen, dass die beschrieben Zielkonfiguration durch wiederholte Ausführung von Spielregeln beginnend mit einer Startkonfiguration irgendwann im Verlaufe des Spiels eintreten kann. Im Fall des Eintretens der Zielkonfiguration als reale Konfiguration auf dem Spielbrett wäre dies für alle wahrnehmbar und entscheidbar.

Interessant in diesem Zusammenhang ist der Sachverhalt, dass die Auswahl eines Zielzustands nur möglich ist, weil die Vorgabe einer Startsituation in Kombination mit Spielregeln einen Raum von möglichen Zuständen markiert. Der Zielzustand ist dann immer die Auswahl einer spezifischen Teilmenge aus dieser Menge der möglichen Folgezuständen.

Spiel und Alltag

Wenn man sich den Alltag anschaut, auch dort, wo nicht explizit ein Spiel gespielt wird, dann kann man feststellen, dass sehr viele — letztlich alle ? — Situationen sich als Spiel interpretieren lassen. Ob wir die Vorbereitung eines Essens nehmen, den Tisch decken, Zeitung lesen, Einkaufen, Musik machen, Auto fahren …. alle diese Tätigkeiten folgen dem Schema, dass es eine Ausgangssituation (Startsituation) gibt, ein bestimmtes Ziel, das wir erreichen wollen, und eine Menge von bestimmten Verhaltensweisen, die wir gewohnt sind auszuführen, wenn wir das spezielle Ziel erreichen wollen. Verhalten wir uns richtig, dann erreichen wir — normalerweise — das gewünschte Ziel. Diese Alltagsregeln für Alltagsziele lernt man gewöhnlich nicht in er Schule, sondern durch die Nachahmung anderer oder durch eigenes Ausprobieren. Durch die Vielfalt von Menschen und Alltagssituationen mit unterschiedlichsten Zielen gibt es eine ungeheure Bandbreite an solchen Alltags-Spielen. Letztlich erscheinen diese als die Grundform menschlichen Verhaltens. Es ist die Art und Weise, wie wir als Menschen lernen und miteinander handeln. [8]

Im Unterschied zu expliziten Spielen verlaufen die Alltagsspiele nicht starr innerhalb der von der Spielanleitung beschriebenen Grenzen, sondern die Alltagsspiele finden innerhalb einer offenen Welt statt, sie sind ein kleiner Teil eines größeren dynamischen Gesamtgeschehens, welches dazu führen kann, dass während der Umsetzung eines Alltagsspiels andere Ereignisse die Umsetzung auf unterschiedliche Weise behindern können (Ein Telefonanruf unterbricht, Zutaten beim Kochen fehlen, beim Einkaufen findet man nicht den richtigen Gegenstand, …). Außerdem können Ziele im Alltag auch scheitern und können neben schlechten Gefühlen real auch negative Wirkungen erzeugen. Auch können Alltagsspiele irgendwann unangemessen werden, wenn sich die umgebende dynamische Welt soweit geändert hat, dass ein die Regeln des Alltagsspiels nicht mehr zum erhofften Ziel führen.

Vor diesem Hintergrund kann man vielleicht verstehen, dass explizite Spiele eine besondere Bedeutung haben: sie sind keine Kuriositäten im Leben der Menschen, sondern sie repräsentieren die normalen Strukturen und Prozesse des Alltags in zugespitzten, kondensierten Formaten, die aber von jedem Menschen mehr oder weniger sofort verstanden werden bzw. verstanden werden können.[9] Die Nichterreichung eines Zieles im expliziten Spiel kann zwar auch schlechte Gefühle auslösen, hat aber normalerweise keine weiteren reale negative Auswirkungen. Explizite Spiele ermöglichen es, ein Stück weit reale Welt zu spielen ohne sich dabei aber einem realen Risiko auszusetzen. Diese Eigenschaft kann für Mitbürger eine große Chance auch für den realen Alltag bieten.

Wissen und Bedeutung oder: Der Elefant im Raum

Ist man erst einmal aufmerksam geworden auf die Allgegenwart von Spielstrukturen in unserem Alltag, dann erscheint es fast ’normal‘, dass wir Menschen uns im Format des Spiels scheinbar schwerelos bewegen können. Wo immer man hinkommt, wen man auch immer trifft, das Verhalten im Format eines Spiels ist jedem vertraut. Daher fällt es meistens gar nicht auf, dass hinter dieser Verhaltensoberfläche einige Fähigkeiten des Menschen aktiv sind, die als solche alles andere als selbstverständlich sind.

Überall dort, wo mehr als ein Mensch sich im Format eines Spiels verhält, müssen alle beteiligten Menschen (Mitspieler, Mitbürger,…) in ihrem Kopf über ein Wissen verfügen, in dem alle Aspekte, die zu einem spielerischen Verhalten gehören, vorhanden (repräsentiert) sind. Wenn ein Spieler beim Fußballspiel nicht weiß, wann er im Abseits steht, macht er einen Fehler. Wer nicht weiß, dass man beim Einkaufen am Ende seine Waren bezahlen muss, macht einen Fehler. Wer nicht weiß, wie man bei der Essenszubereitung richtig schneidet/ würzt/ brät/ … verändert dies das erhoffte Ergebnis. Wer nicht weiß, wie er Bargeld aus dem Automat bekommt, hat ein Problem … Jeder lernt im Alltag, dass er wissen muss, um richtig handeln zu können. Was aber hat es genau mit diesem Wissen auf sich?

Und, um die Geschichte vollständig zu erzählen: Im Alltag operieren wir ständig mit Alltagssprache: wir produzieren Laute, die andere hören können und umgekehrt. Das Besondere an diesen Lauten ist, dass alle Teilnehmer des Alltags die eine gleiche Alltagssprache gelernt haben, diese Laute spontan in ihrem Kopf mit Teilen des Wissens verknüpfen, über das sie verfügen. Die gesprochenen und gehörten Laute sind daher nur ein Mittel zum Zweck. Als solche haben die Laute keine Bedeutung (was man sofort merken kann, wenn jemand die benutzte Alltagssprache nicht kennt). Aber für die, die die gleiche Alltagssprache im Alltag gelernt haben, stimulieren diese Laute in ihrem Kopf bestimmte Wissenselemente, falls wir über sie verfügen. Solche Wissenselemente, die sich durch die Laute einer gelernten Alltagssprache in einem Mitbürger stimulieren lassen, nennt man gewöhnlich sprachliche Bedeutung, wobei hier nicht nur die gehörten Laute alleine eine Rolle spielen, sondern normalerweise sind viele Kontexteigenschaften zusätzlich wichtig: Wie jemand etwas sagt, unter welchen Begleitumständen, in welcher Rolle usw. Meist muss man in der Situation des Sprechens anwesend sein, um all diese Kontextfaktoren erfassen zu können.

Hat man verstanden, dass jede geteilte Alltagssituation im Spielformat zentral zum notwendigen Alltagswissen auch eine Alltagssprache voraussetzt, dann wird auch klar, dass jedes explizite Spiel im Format einer Spielanleitung genau jenes Spielwissen bereit zu stellen versucht, welches man kennen muss, um das explizite Spiel spielen zu können. Im Alltag entsteht das notwendige Wissen durch Lernprozesse: durch Nachahmung und Ausprobieren baut jeder in seinem Kopf jenes Wissen auf, das er für ein bestimmtes Alltagshandeln benötigt. Für sich alleine braucht man nicht unbedingt einen Text, der das eigene Alltagshandeln beschreibt. Will man aber andere Mitbürger in sein Alltagsverhalten einbeziehen — gerade auch wenn es viele sein sollen, die nicht unbedingt am gleichen Ort sind –, dann muss man sein Alltagsverhalten mittels Alltagssprache ausdrücken.

Wissenschaftliches Denken und Kommunizieren

Für alle die, die nicht direkt mit wissenschaftlicher Arbeit zu tun haben, bildet Wissenschaft eine Zusammenballung von vielen unverständlichen Begriffen, Sprachen und Methoden. Dies führt in der Gegenwart leider vielfach zu einer Art Entfremdung der normalen Bürger von der Wissenschaft. Was nicht nur schade ist, sondern für eine Demokratie sogar gefährlich werden kann.[10,11]

Diese Entfremdung müsste aber nicht stattfinden. Die Alltagsspiele wie auch die expliziten Spiele, welche unsere natürlichen Wissens- und Verhaltensformen im Alltag darstellen, haben bei näherer Betrachtung die gleiche Struktur wie wissenschaftliche Theorien. Begreift man, dass Alltagsspiele strukturgleich mit wissenschaftlichen Theorien sind, dann kann man sogar entdecken, dass Alltagtheorien sogar noch umfassender sind als normale wissenschaftliche Theorien. Während eine empirisch Theorie (ET) erklären kann, was mit einer gewissen Wahrscheinlichkeit in einer möglichen nachfolgenden Situation passieren kann, falls gewisse Voraussetzungen in einer Situation gegeben sind, gehen Alltagstheorien über diese Beschreibungskraft in der Regel hinaus: In einer Alltagstheorie wird nicht nur gesagt, was passieren wird, wenn man in einer bestimmten Situation eine bestimmte Änderung vornimmt, sondern im Alltag wählt man normalerweise auch ein bestimmtes Ziel aus, das man mit Anwendung des Veränderungswissens erreichen möchte.

Im Unterschied zu einer normalen empirischen Theorie, die sich auf erklärende Zusammenhänge beschränkt, besteht im Alltagsprozess die beständige Herausforderung, den Lebensprozess des einzelnen wie jenen von unterschiedlichen Gruppen von Menschen bestmöglichst am Laufen zu halten. Dies aber geht nicht ohne explizite Ziele, deren Einlösung als Beitrag zur Erhaltung des alltäglichen Lebensprozesses angenommen wird.

Die normale Wissenschaft hat diesen Aspekt der Einbeziehung von Zielen in eine Theoriebildung noch nicht in ihre normale Arbeit integriert. Die Verknüpfung von Erklärungswissen in Form einer empirischen Theorie (ET) mit irgendwelchen Zielen überlässt die Wissenschaft bislang der Gesellschaft und ihren unterschiedlichen Gruppierungen und Institutionen. Dies kann gut sein, weil dadurch eine maximale Bandbreite an möglichen Ideen zur Sprache kommen kann; es kann aber auch schlecht sein, wenn mangels Verständnis von Wissenschaft und überhaupt aufgrund von mangelndem Wissen keine guten Ziel-Vorschläge zustande kommen.

Alltagstheorie (AT) und Empirische Theorie (ET)

Mancher wird sich an dieser Stelle vielleicht fragen, wie man sich jetzt genau die Struktur-Gleichheit von Alltagstheorien (AT) und Nachhaltigen Empirischen Theorien (NET) vorstellen kann. Hier ein kurze Beschreibung.

BILD : Skizze der Struktur einer empirischen Theorie ohne Ziele. Eine empirische Theorie (ET) mit Zielen wäre eine ’nachhaltige empirische Theorie (NET)‘. Siehe Text weiter unten.

Diese Skizze zeigt menschliche Akteure hier nicht als die Anwender einer Theorie — wie im Beispiel eines Brettspiels — sondern als Autoren einer Theorie, also jene Menschen, die Theorien in Interaktion mit dem realen Alltag entwickeln.

Hier wird davon ausgegangen, dass Theorie-Autoren im Normalfall irgendwelche Bürger sind, die ein Interesse eint, bestimmte Vorgänge in ihrem Alltag besser zu verstehen.

Zum Start müssen sie sich darauf einigen, welchen Ausschnitt aus ihrem Alltag sie als Startsituation (S) benutzen wollen. Diese Startsituation muss in einem Text beschrieben werden, der sich von allen Beteiligten als im Alltag zutreffend (wahr) erweist.

Aufgrund des verfügbaren Wissens über die bisherige Vergangenheit müssen die Theorie-Autoren sich darauf einigen, welche Arten von Veränderungen (V) sie für ihre Theorie benutzen wollen.

Schließlich müssen sie sich auch darüber einigen, auf welche Weise die ausgewählten Veränderungsbeschreibungen (V) auf eine gegebene Situation (S) so angewendet werden können, dass sich dadurch die Beschreibung jener Situation S1 ergibt, die durch die angewendeten Veränderungen entsteht. Abkürzend geschrieben: V(S)=S1.

Da sich in den meisten Fällen die angenommenen Veränderungsregeln V auch auf die neue nachfolgende Situation S1 wieder anwenden lässt — also V(S1)=S2 usw. –, reichen diese drei Elemente <S, V, Anwendung> aus, um aus einer Gegenwart S heraus mit Hilfe von Veränderungswissen bestimmte Zustände als möglich in einer Zukunft zu prognostizieren.

Dies beschreibt die Struktur und den Inhalt einer gewöhnlichen empirischen Theorie (ET).

Nachhaltige Empirische Theorie (NET) = ET + Ziele

Der Übergang von einer normalen empirischen Theorie (ET) zu einer nachhaltigen empirischen Theorie (NET) ist vergleichsweise einfach: man muss nur das empirische Wissen mit solchen Zielen (Z) verknüpfen, die aus der Gesellschaft heraus als interessante Kandidaten für eine mögliche gute Zukunft erwachsen.

BILD : Ergänzend zur normalen empirischen Theorie (ET) kann die Gesellschaft, die den Kontext zu einer empirischen Theorie bildet, Ziele (Z) generieren, von denen sie glaubt, dass sie für möglichst viele eine möglichst gute Zukunft unterstützen. Formulierte Ziele können zugleich als Benchmark benutzt werden, um aktuelle Zustände S daraufhin zu evaluieren, welche große Übereinstimmung (in %) sie mit dem gewählten Ziel Z aufweisen.

Während empirisches Wissen als solches wertneutral ist, d.h. keine bestimmte Richtung in eine mögliche Zukunft favorisiert, können aber die Wertvorstellungen, die die Auswahl von realen Fragestellungen leiten, indirekt dazu führen, dass wichtiges Wissen aufgrund von der Wissenschaft vorgelagerten Entscheidungen nicht generiert wird. 12]

Fortsetzung: Teil 2

Kann Maschinelles Lernen im Format einer generativen KI einen Beitrag zur Bildung von nachhaltigen empirischen Theorien (NET) leisten?

QUELLEN

[1] Eliza Computer Programm in wkp-en: https://en.wikipedia.org/wiki/ELIZA, ELIZA is an early natural language processing computer program developed from 1964 to 1967[1] at MIT by Joseph Weizenbaum.[2][3] Created to explore communication between humans and machines, ELIZA simulated conversation by using a pattern matching and substitution methodology that gave users an illusion of understanding on the part of the program, but had no representation that could be considered really understanding what was being said by either party.[4][5][6]

[2] Joseph Weizenbaum, ELIZA A Computer Program For the Study of Natural Language Communication Between Man And Machine, Communications of the ACM Volume 9 / Number 1, January 1966, pp: 36-45

[3] chatbot in wkp-de: https://de.wikipedia.org/wiki/Chatbot, „Ein Chatterbot, Chatbot oder kurz Bot ist ein textbasiertes Dialogsystem, das Chatten mit einem technischen System erlaubt. Er hat je einen Bereich zur Textein- und -ausgabe, über die sich in natürlicher Sprache mit dem System kommunizieren lässt. Chatbots können, müssen aber nicht in Verbindung mit einem Avatar benutzt werden. Technisch sind Chatbots näher mit einer Volltextsuchmaschine verwandt als mit künstlicher oder gar natürlicher Intelligenz. Mit der steigenden Computerleistung können Chatbot-Systeme allerdings immer schneller auf immer umfangreichere Datenbestände zugreifen und daher auch intelligente Dialoge für den Nutzer bieten, wie zum Beispiel das bei OpenAI entwickelte ChatGPT oder das von Google LLC vorgestellte Language Model for Dialogue Applications (LaMDA). Solche Systeme werden auch als virtuelle persönliche Assistenten bezeichnet. Es gibt auch Chatbots, die gar nicht erst versuchen, wie ein menschlicher Chatter zu wirken (daher keine Chatterbots), sondern ähnlich wie IRC-Dienste nur auf spezielle Befehle reagieren. Sie können als Schnittstelle zu Diensten außerhalb des Chats dienen, oder auch Funktionen nur innerhalb ihres Chatraums anbieten, z. B. neu hinzugekommene Chatter mit dem Witz des Tages begrüßen. Heute wird meistens durch digitale Assistenten wie Google Assistant und Amazon Alexa, über Messenger-Apps wie Facebook Messenger oder WhatsApp oder aber über Organisationstools und Webseiten auf Chatbots zugegriffen[1][2].“

[4] Generative KI als ‚Generativer Vortrainierter Transformer‘ (Generative pre-trained transformers GPT) in wkp-de, https://de.wikipedia.org/wiki/Generativer_vortrainierter_Transformer, „Generative vortrainierte Transformer (englisch Generative pre-trained transformers, GPT) sind eine Art großes Sprachmodell[1][2][3] und ein bedeutendes Framework für generative künstliche Intelligenz.[4][5] Der erste GPT wurde 2018 vom amerikanischen Unternehmen für künstliche Intelligenz (KI) OpenAI vorgestellt.[6] GPT-Modelle sind künstliche neuronale Netzwerke, die auf der TransformerArchitektur basieren, auf großen Datensätzen unbeschrifteten Textes vorab trainiert werden und in der Lage sind, neuartige, menschenähnliche Inhalte zu generieren.[2] Bis 2023 haben die meisten LLMs diese Eigenschaften[7] und werden manchmal allgemein als GPTs bezeichnet.[8] OpenAI hat sehr einflussreiche GPT-Grundmodelle veröffentlicht, die fortlaufend nummeriert wurden und die „GPT-n“-Serie bilden. Jedes dieser Modelle war signifikant leistungsfähiger als das vorherige, aufgrund zunehmender Größe (Anzahl der trainierbaren Parameter) und des Trainings. Das jüngste dieser Modelle, GPT-4, wurde im März 2023 veröffentlicht. Solche Modelle bilden die Grundlage für ihre spezifischeren GPT-Systeme, einschließlich Modellen, die für die Anweisungsbefolgung optimiert wurden und wiederum den ChatGPTChatbot-Service antreiben.[1] Der Begriff „GPT“ wird auch in den Namen und Beschreibungen von Modellen verwendet, die von anderen entwickelt wurden. Zum Beispiel umfasst eine Reihe von Modellen, die von EleutherAI erstellt wurden, weitere GPT-Grundmodelle. Kürzlich wurden auch sieben Modelle von Cerebras erstellt. Auch Unternehmen in verschiedenen Branchen haben auf ihren jeweiligen Gebieten aufgabenorientierte GPTs entwickelt, wie z. B. „EinsteinGPT“ von Salesforce (für CRM)[9] und „BloombergGPT“ von Bloomberg (für Finanzen).[10]

[4a] Die Firma openAI: https://openai.com/

[4b] Kurze Beschreibung: https://en.wikipedia.org/wiki/ChatGPT

[4c] Tutorial zu chatGPT: https://blogkurs.de/chatgpt-prompts/

[5] Person-Centered Therapy in wkp-en: https://en.wikipedia.org/wiki/Person-centered_therapy

[6] Messung in wkp-de: https://de.wikipedia.org/wiki/Messung

[7] Mensch ärgere Dich nicht in wkp-de: https://de.wikipedia.org/wiki/Mensch_%C3%A4rgere_Dich_nicht

[8] Elain Rich, 1983, Artificial Intelligence. McGraw-Hill Book Company. Anmerkung: In der Informatik der 1970iger und 1980iger Jahre hatte man gemerkt, dass die Beschränkung auf die Logik als Beschreibung von Realität zu einfach und zu umständlich ist. Konfrontiert mit dem Alltag wurden Begriffe aktiviert wie ‚Schema‘, ‚Frame (Rahmen)‘, ‚Script‘, ‚Stereotype‘, ‚Rule Model (Rollenmodell)‘. Doch wurden diese Konzepte letztlich noch sehr starr verstanden und benutzt. Siehe Kap.7ff bei Rich.

[9] Natürlich gibt es auch Spiele, die einen Umfang haben, der von den Spielern eine sehr intensive Beschäftigung verlangt, um sie wirklich voll zu verstehen. Ermöglichen solche komplexe Spiele aber zugleich wertvolle ‚Emotionen/ Gefühle‘ in den Spielern, dann wirkt die Komplexität nicht abschreckend, sondern kann zu einer lang anhaltenden Quelle von Spiellust werden, die in Spielsucht übergehen kann (und vielfach auch tatsächlich in Spielsucht übergeht).

[10] Warren Weaver, Science and the Citizens, Bulletion of the Atomic Scientists, 1957, Vol 13, pp. 361-365.

[11] Philipp Westermeier, 23.Nov. 2022, Besprechung Science and the Citizen von Warren Weaver, URL: https://www.oksimo.org/2022/11/23/besprechung-science-and-the-citizen-von-warren-weaver/

[12] Indirekt kann empirisches Wissen einen gewissen Einfluss auf eine mögliche Zukunft ausüben, indem bei der Auswahl einer zu erstellenden empirische Theorie (ET) gerade solche Aspekte nicht ausgewählt werden, die vielleicht für eine bestimmte Zielerreichung wichtig wären, jetzt aber eben nicht verfügbar sind. Dies kann sich vielfach manifestieren, z.B. durch eine Forschungspolitik, die von vornherein viele Themenfelder ausblendet, weil sie im Lichte aktueller Trends als nicht vorteilhaft eingestuft werden.

DER AUTOR

Einen Überblick über alle Beiträge von Autor cagent nach Titeln findet sich HIER.

chatGPT – Wie besoffen muss man sein?

Journal: Philosophie Jetzt – Menschenbild
ISSN 2365-5062, 13.Februar 2023 – 17.April 2023
URL: cognitiveagent.org, Email: info@cognitiveagent.org
Autor: Gerd Doeben-Henisch (cagent@cognitiveagent.org)

Kontext

Beitrag ansehen

Seit der Freigabe des chatbots ‚chatGPT‘ für die größere Öffentlichkeit geht eine Art ‚Erdbeben‘ durch die Medien, weltweit, in vielen Bereichen, vom Privatpersonen über Institutionen, Firmen, Behörden …. jeder sucht das ‚chatGPT Erlebnis‘. Diese Reaktionen sind erstaunlich, und erschreckend zugleich.

Anmerkung: In meinem Englischen Blog hatte ich nach einigen Experimenten mit chatGPT eine erste Reflexion über den möglichen Nutzen von chatGPT geschrieben. Mir hatte es für ein erstes Verständnis geholfen; dieses hat sich dann bis zu dem Punkt weiterentwickelt, der im vorliegenden Text zum Ausdruck kommt.[6]

Form

Die folgenden Zeilen bilden nur eine kurze Notiz, da es sich kaum lohnt, ein ‚Oberflächenphänomen‘ so intensiv zu diskutieren, wo doch die ‚Tiefenstrukturen‘ erklärt werden sollten. Irgendwie scheinen die ‚Strukturen hinter chatGPT‘ aber kaum jemanden zu interessieren (Gemeint sind nicht die Details des Quellcodes in den Algortihmen).

chatGPT als Objekt

Der chatbot mit Namen ‚chatGPT‘ ist ein Stück Software, ein Algorithmus, der (i) von Menschen erfunden und programmiert wurde. Wenn (ii) Menschen ihm Fragen stellen, dann (iii) sucht er in der ihm bekannten Datenbank von Dokumenten, die wiederum Menschen erstellt haben, (iv) nach Textmustern, die nach bestimmten formalen Kriterien (z.T. von den Programmierern vorgegeben) einen Bezug zur Frage aufweisen. Diese ‚Textfunde‘ werden (v) ebenfalls nach bestimmten formalen Kriterien (z.T. von den Programmierern vorgegeben) in einen neuen Text ‚angeordnet‘, der (vi) jenen Textmustern nahe kommen soll, die ein menschlicher Leser ‚gewohnt‘ ist, als ’sinnvoll‘ zu akzeptieren.

Textoberfläche – Textbedeutung – Wahrheitsfähig

Ein normaler Mensch kann — mindestens ‚intuitiv‘ — unterscheiden zwischen den (i) ‚Zeichenketten‘, die als ‚Ausdrücke einer Sprache‘ benutzt werden, und jenen (ii) ‚Wissenselementen‘ (im Kopf des Hörer-Sprechers), die als solche ‚unabhängig‘ sind von den Sprachelementen, aber die (iii) von Sprechern-Hörer einer Sprache ‚frei assoziiert‘ werden können, so dass die korrelierten ‚Wissenselemente zu dem werden, was man gewöhnlich die ‚Bedeutung‘ der Sprachelemente nennt.[1] Von diesen Wissenselementen (iv) ‚weiß‘ jeder Sprachteilnehmer schon ‚vorsprachlich‘, als lernendes Kind [2], dass einige dieser Wissenselemente unter bestimmten Umständen mit Umständen der Alltagswelt ‚korrelierbar‘ sind. Und der normale Sprachbenutzer verfügt auch ‚intuitiv‘ (automatisch, unbewusst) über die Fähigkeit, solche Korrelation — im Lichte des verfügbaren Wissens — einzuschätzen als (v) ‚möglich‘ oder (vi) als eher ‚unwahrscheinlich‘ bzw. (vi) als ‚bloße Fantasterei‘.[3]

Die grundlegende Fähigkeit eines Menschen, eine ‚Korrelation‘ von Bedeutungen mit (intersubjektiven) Umweltgegebenheiten feststellen zu können, nennen — zumindest einige — Philosophen ‚Wahrheitsfähigkeit‘ und im Vollzug der Wahrheitsfähigkeit spricht man dann auch von ‚zutreffenenden‘ sprachlichen Äußerungen oder von ‚wahren (empirischen) Aussagen‘.[5]

Unterscheidungen wie ‚zutreffend‘ (‚wahr‘), ‚möglicherweise zutreffend‘, ‚eher nicht zutreffend‘ oder ‚auf keinen Fall zutreffend‘ deuten an, dass der Wirklichkeitsbezug menschlicher Wissenselemente sehr vielfältig und ‚dynamisch‘ ist. Etwas, das gerade noch zutreffend war, kann im nächsten Moment nicht mehr zutreffend sein. Etwas, das lange als ‚bloße Fantasterei‘ abgetan wurde, kann dann doch plötzlich als ‚möglich‘ erscheinen oder ‚trifft plötzlich zu‘. Sich in diesem ‚dynamisch korrelierten Bedeutungsraum‘ so zu bewegen, dass eine gewisse ‚innere und äußere Konsistenz‘ gewahrt bleibt, stellt eine komplexe Herausforderung dar, die von Philosophie und den Wissenschaften bislang eher nicht ganz verstanden, geschweige denn auch nur annähernd ‚erklärt‘ worden ist.

Fakt ist: wir Menschen können dies bis zu einem gewissen Grad. Je komplexer der Wissensraum ist, je vielfältiger die sprachlichen Interaktion mit anderen Menschen werden, umso schwieriger wird es natürlich.

‚Luftnummer‘ chatGPT

(Letzte Änderung: 15.Februar 2023, 07:25h)

Vergleicht man den chatbot chatGPT mit diesen ‚Grundeigenschaften‘ des Menschen, dann kann man erkennen, dass chatGPT nichts von alledem kann. (i) Fragen kann er von sich aus nicht sinnvoll stellen, da es keinen Anlass gibt, warum er fragen sollte (es sei denn, jemand induziert ihm eine Frage). (ii) Textdokumente (von Menschen) sind für ihn Ausdrucksmengen, für die er über keine eigenständigen Bedeutungszuordnung verfügt. Er könnte also niemals eigenständig die ‚Wahrheitsfrage‘ — mit all ihren dynamischen Schattierungen — stellen oder beantworten. Er nimmt alles für ‚bare Münze‘ bzw. man sagt gleich, dass er ’nur träumt‘.

Wenn chatGPT aufgrund seiner großen Text-Datenbank eine Teilmenge von Ausdrücken hat, die irgendwie als ‚wahr‘ klassifiziert sind, dann kann der Algorithmus ‚im Prinzip‘ indirekt ‚Wahrscheinlichkeiten‘ ermitteln, die andere Ausdrucksmengen, die nicht als ‚wahr‘ klassifiziert sind, dann doch ‚mit einer gewissen Wahrscheinlichkeit‘ als ‚wahr erscheinen‘
lassen. Ob der aktuelle chatGPT Algorithmus solche ‚wahrscheinlichen Wahrheiten explizit‘ benutzt, ist unklar. Im Prinzip übersetzt er Texte in ‚Vektorräume‘, die auf verschiedene Weise ‚ineinander abgebildet‘ werden, und Teile dieser Vektorräume werden dann wieder in Form eines ‚Textes‘ ausgegeben. Das Konzept ‚Wahrheit‘ taucht in diesen mathematischen Operationen — nach meinem aktuellen Kenntnisstand — nicht auf. Wenn, dann wäre es auch nur der formale logische Wahrheitsbegriff [4]; dieser liegt aber mit Bezug auf die Vektorräume ‚oberhalb‘ der Vektorräume, bildet in Bezug auf diese einen ‚Meta-Begriff‘. Wollte man diesen auf die Vektorräume und Operationen auf diesen Vektorräumen tatsächlich anwenden, dann müsste man den Code von chatGPT komplett neu schreiben. Würde man dies tun — das wird aber keiner schaffen — dann würde sich der Code von chatGPT dem Status einer formalen Theorie nennen (wie in der Mathematik) (siehe Anmerkung [5]). Von einer empirischen Wahrheitsfähigkeit wäre chatGPT dann immer noch meilenweit entfernt.

Hybride Scheinwahrheiten

Im Anwendungsfall, bei dem der Algorithmus mit Namen ‚chatGPT‘ Ausdrucksmengen benutzt, die den Texten ähneln, die Menschen produzieren und lesen, navigiert sich chatGPT rein formal und mit Wahrscheinlichkeiten durch den Raum der formalen Ausdruckselemente. Ein Mensch, der die von chatGPT produzierten Ausdrucksmengen ‚liest‘, aktiviert aber automatisch (= unbewusst!) sein eigenes ’sprachliches Bedeutungswissen‘ und projiziert dieses in die abstrakten Ausdrucksmenge von chatGBT. Wie man beobachten kann (und hört und liest von anderen), sind die von chatGBT produzierten abstrakten Ausdrucksmengen dem gewöhnten Textinput von Menschen in vielen Fällen — rein formal — so ähnlich, dass ein Mensch scheinbar mühelos seine Bedeutungswissen mit diesen Texten korrelieren kann. Dies hat zur Folge, dass der rezipierende (lesende, hörende) Mensch das ‚Gefühl‘ hat, chatGPT produziert ’sinnvolle Texte‘. In der ‚Projektion‘ des lesenden/hörenden Menschen JA, in der Produktion von chatGPT aber NEIN. chatGBT verfügt nur über formale Ausdrucksmengen (kodiert als Vektorräume), mit denen er ‚blind‘ herumrechnet. Über ‚Bedeutungen‘ im menschlichen Sinne verfügt er nicht einmal ansatzweise.

Zurück zum Menschen?

(Letzte Änderung: 27.Februar 2023)

Wie leicht sich Menschen von einer ‚fake-Maschine‘ so beeindrucken lassen, dass sie dabei sich selbst anscheinend vergessen und sich ‚dumm‘ und ‚leistungsschwach‘ fühlen, obgleich die Maschine nur ‚Korrelationen‘ zwischen menschlichen Fragen und menschlichen Wissensdokumenten rein formal herstellt, ist eigentlich erschreckend [7a,b], und zwar mindestens in einem doppelten Sinne: (i)Statt die eigene Potentiale besser zu erkennen (und zu nutzen), starrt man gebannt wie das berühmte ‚Kaninchen auf die Schlange‘, obgleich die Maschine immer noch ein ‚Produkt des menschlichen Geistes‘ ist. (ii) Durch diese ‚kognitive Täuschung‘ wird versäumt, das tatsächlich ungeheure Potential ‚kollektiver menschlicher Intelligenz‘ besser zu verstehen, das man dann natürlich durch Einbeziehung moderner Technologien um mindestens einen evolutionären Level weiter voran bringen könnte. Die Herausforderung der Stunde lautet ‚Kollektiver Mensch-Maschine Intelligenz‘ im Kontext einer nachhaltigen Entwicklung mit Priorität bei der menschlichen kollektiven Intelligenz. Die aktuelle sogenannte ‚Künstliche (= maschinelle) Intelligenz‘ sind ziemlich primitive Algorithmen. Integriert in eine entwickelte ‚kollektive menschliche Intelligenz‘ könnten ganz andere Formen von ‚Intelligenz‘ realisiert werden, solche, von denen wir aktuell höchstens träumen können.

Kommentierung weiterer Artikel von anderen Autoren zu chatGPT

(Letzte Änderung: 17.April 2023)

Achtung: Einige der Text in den Anmerkungen sind aus dem Englischen zurück übersetzt worden. Dies geschah unter Benutzung der Software www.DeepL.com/Translator (kostenlose Version).

Siehe [8], [9], [10], [12],[13],[14],[15]

Anmerkungen

[1] In den vielen tausend ’natürlichen Sprachen‘ dieser Welt kann man beobachten, wie ‚erfahrbare Umweltgegebenheiten‘ über die ‚Wahrnehmung‘ zu ‚Wissenselementen‘ werden können, die dann in jeder Sprache mit unterschiedlichen Ausdrücken korreliert werden. Die Sprachwissenschaftler (und Semiotiker) sprechen daher hier von ‚Konventionen‘, ‚frei vereinbarte Zuordnungen‘.

[2] Aufgrund der körperlichen Interaktion mit der Umgebung, die ‚Wahrnehmungsereignisse‘ ermöglicht, die von den ‚erinnerbaren und gewussten Wissenselementen‘ unterscheidbar sind.

[3] Die Einstufung von ‚Wissenselementen‘ als ‚Fantasterei‘ kann falsch sein, wie viele Beispiele zeigen, wie umgekehrt, die Einstufung als ‚wahrscheinlich korrelierbar‘ auch falsch sein kann!

[4] Nicht der ‚klassischen (aristotelischen) Logik‘ da diese noch keine strenge Trennung von ‚Form‘ (Ausdruckselementen) und ‚Inhalt‘ (Bedeutung) kannte.

[5] Es gibt auch Kontexte, in denen spricht man von ‚wahren Aussagen‘, obgleichgar keine Beziehung zu einer konkreten Welterfahrung vorliegt. So z.B. im Bereich der Mathematik, wo man gerne sagt, dass eine Aussage ‚wahr‘ ist. Dies ist aber eine ganz ‚andere Wahrheit‘. Hier geht es darum, dass im Rahmen einer ‚mathematischen Theorie‘ bestimmte ‚Grundannahmen‘ gemacht wurden (die mit einer konkreten Realität nichts zu tun haben müssen), und man dann ausgehend von diesen Grundannahmen mit Hilfe eines formalen Folgerungsbegriffs (der formalen Logik) andere Aussagen ‚ableitet‘. Eine ‚abgeleitete Aussage‘ (meist ‚Theorem‘ genannt), hat ebenfalls keinerlei Bezug zu einer konkreten Realität. Sie ist ‚logisch wahr‘ oder ‚formal wahr‘. Würde man die Grundannahmen einer mathematischen Theorie durch — sicher nicht ganz einfache — ‚Interpretationen‘ mit konkreter Realität ‚in Beziehung setzen‘ (wie z.B. in der ‚angewandten Physik‘), dann kann es unter speziellen Bedingungen sein, dass die formal abgeleiteten Aussagen einer solchen ‚empirisch interpretierten abstrakten Theorie‘ eine ‚empirische Bedeutung‘ gewinnen, die unter bestimmten Bedingungen vielleicht ‚korrelierbar‘ ist; dann würde man solche Aussagen nicht nur ‚logisch wahr‘ nennen, sondern auch ‚empirisch wahr‘. Wie die Geschichte der Wissenschaft und der Wissenschaftsphilosophie zeigt, ist der aber ‚Übergang‘ von empirisch interpretierten abstrakten Theorien zu empirisch interpretierbaren Folgerungen mit Wahrheitsanspruch nicht trivial. Der Grund liegt im benutzten ‚logischen Folgerungsbegriff‘. In der modernen formalen Logik gibt es mahezu ‚beliebig viele‘ verschiedene formale Folgerzungsbegriffe. Ob ein solcher formaler Folgerungsbegriff tatsächlich die Struktur empirischer Gegebenheiten über abstrakte Strukturen mit formalen Folgerungen ‚angemessen wiedergibt‘, ist keinesfalls gesichert! Diese Problemstellung ist in der Wissenschaftsphilosophie bislang nicht wirklich geklärt!

[6] Gerd Doeben-Henisch, 15.-16.Januar 2023, „chatGBT about Rationality: Emotions, Mystik, Unconscious, Conscious, …“, in: https://www.uffmm.org/2023/01/15/chatgbt-about-rationality-emotions-mystik-unconscious-conscious/

[7a] Der chatbot ‚Eliza‘ von Weizenbaum von 1966 war trotz seiner Einfachheit in der Lage, menschliche Benutzer dazu zu bringen, zu glauben, dass das Programm sie ‚versteht‘ selbst dann, wenn man ihnen erklärte, dass es nur ein einfacher Algorithmus sei. Siehe das Stichwort ‚Eliza‘ in wkp-de: https://de.wikipedia.org/wiki/ELIZA

[7b] Joseph Weizenbaum, 1966, „ELIZA. A Computer Program For the Study of Natural Language. Communication Between Man And Machine“, Communications of the ACM, Vol.9, No.1, January 1966, URL: https://cse.buffalo.edu/~rapaport/572/S02/weizenbaum.eliza.1966.pdf Anmerkung: Obwohl das Programm ‚Eliza‘ von Weizenbaum sehr einfach war, waren alle Benutzer fasziniert von dem Programm, weil sie das Gefühl hatten „Es versteht mich“, dabei spiegelte das Programm nur die Fragen und Aussagen der Benutzer. Anders gesagt: die Benutzer waren ‚von sich selbst‘ fasziniert mit dem Programm als eine Art ‚Spiegel‘.

[8] Ted Chiang, 2023, „ChatGPT Is a Blurry JPEG of the Web. OpenAI’s chatbot offers paraphrases, whereas Google offers quotes. Which do we prefer?“, The NEW YORKER, February 9, 2023. URL: https://www.newyorker.com/tech/annals-of-technology/chatgpt-is-a-blurry-jpeg-of-the-web . Anmerkung: Chang betrachtet das Programm chatGPT im Paradigma eines ‚Kompressions-Algorithmus‘: Die Fülle der Informationen wird ‚verdichtet/ abstrahiert‘, so dass ein leicht unscharfes Bild der Textmengen entsteht, keine 1-zu-1 Kopie. Dies führt beim Benutzer zum Eindruck eines Verstehens auf Kosten des Zugriffs auf Details und Genauigkeit. Die Texte von chatGPT sind nicht ‚wahr‘, aber sie ‚muten an‘.

[9] Dietmar Hansch, 2023, „Der ehrlichere Name wäre ‚Simulierte Intelligenz‘. An welchen Defiziten Bots wie chatGBT leiden und was das für unseren Umgang mit Ihnen heißen muss.“, FAZ, 1.März 2023, S.N1 . Bemerkung: Während Chiang (siehe [8] sich dem Phänomen chatGPT mit dem Konzept ‚Kompressions-Algorithmus‘ nähert bevorzugt Hansch die Begriffe ’statistisch-inkrementelles Lernen‘ sowie ‚Einsichtslernen‘. Für Hansch ist Einsichtslernen an ‚Geist‘ und ‚Bewusstsein‘ gebunden, für die er im Gehirn ‚äquivalente Strukturen‘ postuliert. Zum Einsichtslernen kommentiert Hansch weiter „Einsichtslernen ist nicht nur schneller, sondern auch für ein tiefes, ganzheitliches Weltverständnis unverzichtbar, das weit greifende Zusammenhänge erfasst sowie Kriterien für Wahrheit und Wahrhaftigkeit vermittelt.“ Es verwundert dann nicht wenn Hansch schreibt „Einsichtslernen ist die höchster Form des Lernens…“. Mit Bezug auf diesen von Hansch etablierten Referenzrahmen klassifiziert er chatGPT in dem Sinne dass er nur zu ’statistisch-inkrementellem Lernen‘ fähig sei. Ferner postuliert Hansch für den Menschen, „Menschliches Lernen ist niemals rein objektiv, wir strukturieren die Welt immer in Bezug auf unsere Bedürfnisse, Gefühle und bewussten Zwecke…“. Er nennt dies den ‚Humanbezug‘ im menschlichen Erkennen, und genau diesen spricht er chatGPT auch ab. Für geläufige Bezeichnung ‚KI‘ als ‚Künstliche Intelligenz‘ postuliert er, dass der Terminus ‚Intelligenz‘ in dieser Wortverbindung nichts mit der Bedeutung zu tun habe, die wir im Fall des Menschen mit ‚Intelligenz‘ verbinden, also auf keinen Fall etwas mit ‚Einsichtslernen‘, wie er zuvor schon festgestellt hat. Um diesem Umstand mehr Ausdruck zu verleihen würde er lieber den Begriff ‚Simulierte Intelligenz‘ benutzen (siehe dazu auch [10]). Diese begriffliche Strategie wirkt merkwürdig, da der Begriff Simulation [11] normalerweise voraussetzt, dass es eine klare Sachlage gibt, zu der man ein vereinfachtes ‚Modell‘ definiert, mittels dem sich dann das Verhalten des Originalsystems in wichtigen Punkten — vereinfacht — anschauen und untersuchen lässt. Im vorliegenden Fall ist aber nicht ganz klar, was denn überhaupt das Originalsystem sein soll, das im Fall von KI simuliert werden soll. Es gibt bislang keine einheitliche Definition von ‚Intelligenz‘ im Kontext von ‚KI‘! Was die Begrifflichkeit von Hansch selbst angeht, so sind die Begriffe ‚statistisch-inkrementelles Lernen‘ sowie ‚Einsichtslernen‘ ebenfalls nicht klar definiert; der Bezug zu beobachtbarem menschlichen Verhalten geschweige den zu den postulierten ‚äquivalenten Gehirnstrukturen‘ ist beliebig unklar (was durch den Bezug zu bis heute nicht definierten Begriffen wie ‚Bewusstsein‘ und ‚Geist‘ nicht gerade besser wird).

[10] Severin Tatarczyk, 19.Februar 2023, zu ‚Simulierter Intelligenz‘: https://www.severint.net/2023/02/19/kompakt-warum-ich-den-begriff-simulierte-intelligenz-bevorzuge-und-warum-chatbots-so-menschlich-auf-uns-wirken/

[11] Begriff ‚Simulation‘ in wkp-de: https://de.wikipedia.org/wiki/Simulation

[12] Doris Brelowski machte mich auf folgenden Artikel aufmerksam: James Bridle, 16.März 2023, „The stupidity of AI. Artificial intelligence in its current form is based on the wholesale appropriation of existing culture, and the notion that it is actually intelligent could be actively dangerous“, URL: https://www.theguardian.com/technology/2023/mar/16/the-stupidity-of-ai-artificial-intelligence-dall-e-chatgpt?CMP=Share_AndroidApp_Other . Anmerkung: Ein Beitrag, der kenntnisreich und sehr differenziert das Wechselspiel zwischen Formen der AI beschreibt, die von großen Konzernen auf das gesamte Internet ‚losgelassen‘ werden, und was dies mit der menschlichen Kultur und dann natürlich mit den Menschen selbst macht. Zwei Zitate aus diesem sehr lesenwerten Artikel: Zitat 1: „The entirety of this kind of publicly available AI, whether it works with images or words, as well as the many data-driven applications like it, is based on this wholesale appropriation of existing culture, the scope of which we can barely comprehend. Public or private, legal or otherwise, most of the text and images scraped up by these systems exist in the nebulous domain of “fair use” (permitted in the US, but questionable if not outright illegal in the EU). Like most of what goes on inside advanced neural networks, it’s really impossible to understand how they work from the outside, rare encounters such as Lapine’s aside. But we can be certain of this: far from being the magical, novel creations of brilliant machines, the outputs of this kind of AI is entirely dependent on the uncredited and unremunerated work of generations of human artists.“ Zitat 2: „Now, this didn’t happen because ChatGPT is inherently rightwing. It’s because it’s inherently stupid. It has read most of the internet, and it knows what human language is supposed to sound like, but it has no relation to reality whatsoever. It is dreaming sentences that sound about right, and listening to it talk is frankly about as interesting as listening to someone’s dreams. It is very good at producing what sounds like sense, and best of all at producing cliche and banality, which has composed the majority of its diet, but it remains incapable of relating meaningfully to the world as it actually is. Distrust anyone who pretends that this is an echo, even an approximation, of consciousness. (As this piece was going to publication, OpenAI released a new version of the system that powers ChatGPT, and said it was “less likely to make up facts”.)“

[13] David Krakauer in einem Interview mit Brian Gallagher in Nautilus, March 27, 2023, Does GPT-4 Really Understand What We’re Saying?, URL: https://nautil.us/does-gpt-4-really-understand-what-were-saying-291034/?_sp=d9a7861a-9644-44a7-8ba7-f95ee526d468.1680528060130. David Krakauer, Evolutionstheoretiker und Präsident des Santa Fe Instituts für Complexity Science, analysiert die Rolle von Chat-GPT-4-Modellen im Vergleich zum menschlichen Sprachmodell und einem differenzierteren Verständnis dessen, was „Verstehen“ und „Intelligenz“ bedeuten könnte. Seine Hauptkritikpunkte stehen in enger Übereinstimmung mit der obigen Position. Er weist darauf hin, dass (i) man klar zwischen dem „Informationskonzept“ von Shannon und dem Konzept der „Bedeutung“ unterscheiden muss. Etwas kann eine hohe Informationslast darstellen, aber dennoch bedeutungslos sein. Dann weist er darauf hin (ii), dass es mehrere mögliche Varianten der Bedeutung von „Verstehen“ gibt. Die Koordinierung mit dem menschlichen Verstehen kann funktionieren, aber Verstehen im konstruktiven Sinne: nein. Dann setzt Krakauer (iii) GPT-4 mit dem Standardmodell der Wissenschaft in Beziehung, das er als „parsimony“ charakterisiert; chat-GPT-4 ist eindeutig das Gegenteil. Ein weiterer Punkt (iv) ist die Tatsache, dass die menschliche Erfahrung einen „emotionalen“ und einen „physischen“ Aspekt hat, der auf somato-sensorischen Wahrnehmungen im Körper beruht. Dies fehlt bei GPT-4. Dies hängt (v) mit der Tatsache zusammen, dass das menschliche Gehirn mit seinen „Algorithmen“ das Produkt von Millionen von Jahren der Evolution in einer komplexen Umgebung ist. Die GPT-4-Algorithmen haben nichts Vergleichbares; sie müssen den Menschen nur ‚überzeugen‘. Schließlich (vi) können Menschen „physikalische Modelle“ generieren, die von ihren Erfahrungen inspiriert sind, und können mit Hilfe solcher Modelle schnell argumentieren. So kommt Krakauer zu dem Schluss: „Das Narrativ, das besagt, dass wir das menschliche Denken wiederentdeckt haben, ist also in vielerlei Hinsicht falsch. Einfach nachweislich falsch. Das kann nicht der richtige Weg sein.“ Anmerkungen zum Text von Krakauer: Benutzt man das allgemeine Modell von Akteur und Sprache, wie es der Text oben annimmt, dann ergeben sich die Punkt (i) – (vi) als Folgerungen aus dem allgemeinen Modell. Die Akzeptanz eines allgemeinen Akteur-Sprache Modells ist leider noch nicht verbreitet.

[14] Von Marie-José Kolly (Text) und Merlin Flügel (Illustration), 11.04.2023, „Chatbots wie GPT können wunderbare Sätze bilden. Genau das macht sie zum Problem“. Künstliche Intelligenz täuscht uns etwas vor, was nicht ist. Ein Plädoyer gegen die allgemeine Begeisterung. Online-Zeitung ‚Republik‘ aus der SChweiz, URL: https://www.republik.ch/2023/04/11/chatbots-wie-gpt-koennen-wunderbare-saetze-bilden-genau-das-macht-sie-zum-problem? Hier einige Anmerkungen:

Der Text von Marie-José Kolly sticht hervor weil der Algorithmus mit Namen chatGPT(4) hier sowohl in seinem Input-Output Verhalten charakterisiert wird und zusätzlich ein Vergleich zum Menschen zumindest in Ansätzen vorgenommen wird.

Das grundsätzliche Problem des Algorithmus chatGPT(4) besteht darin (wie auch in meinem Text oben herausgestellt), dass er als Input-Daten ausschließlich über Textmengen verfügt (auch jene der Benutzer), die nach rein statistischen Verfahren in ihren formalen Eigenschaften analysiert werden. Auf der Basis der analysierten Regelmäßigkeiten lassen sich dann beliebige Text-Kollagen erzeugen, die von der Form her den Texten von Menschen sehr stark ähneln, so sehr, dass viele Menschen sie für ‚von Menschen erzeugte Texte‘ nehmen. Tatsächlich fehlen dem Algorithmus aber das, was wir Menschen ‚Weltwissen‘ nennen,es fehlt echtes ‚Denken‘, es fehlen ‚eigene‘ Werte-Positionen, und der Algorithmus ‚versteht‘ seine eigenen Text ’nicht‘.

Aufgrund dieses fehlenden eigenen Weltbezugs kann der Algorithmus über die verfügbaren Textmengen sehr leicht manipuliert werden. Eine ‚Massenproduktion‘ von ‚Schrott-Texten‘, von ‚Desinformationen‘ ist damit sehr leicht möglich.

Bedenkt man, dass moderne Demokratien nur funktionieren können, die Mehrheit der Bürger über eine gemeinsame Faktenbasis verfügt, die als ‚wahr‘ angenommen werden können, über eine gemeinsame Wissensmenge, über zuverlässige Medien, dann können mit dem Algorithmus chatGPT(4) genau diese Anforderungen an eine Demokratie massiv zerstört werden.

Interessant ist dann die Frage, ob chatGPT(4) eine menschliche Gesellschaft, speziell eine demokratische Gesellschaft, tatsächlich auch positiv-konstruktiv unterstützen kann?

Vom Menschen ist jedenfalls bekannt, dass dieser den Gebrauch seiner Sprache von Kindes Beinen an im direkten Kontakt mit einer realen Welt erlernt, weitgehend spielerisch, in Interaktion mit anderen Kindern/ Menschen. Für Menschen sind ‚Worte‘ niemals isolierte Größen sondern sie sind immer dynamisch eingebunden in ebenfalls dynamische Kontexte. Sprache ist nie nur ‚Form‘ sondern immer zugleich auch ‚Inhalt‘, und dies auf mannigfaltige Weise. Dies geht nur weil der Mensch über komplexe kognitiven Fähigkeiten verfügt, die u.a. entsprechende Gedächtnisleistungen wie auch Fähigkeiten zur Verallgemeinerung/ Generalisierung umfassen.

Die kulturgeschichtliche Entwicklung von gesprochener Sprache, über Schrift, Buch, Bibliotheken bis hin zu gewaltigen digitalen Datenspeichern hat zwar bezüglich der ‚formen‘ von Sprache und darin — möglicherweise — kodiertem Wissen Gewaltiges geleistet, aber es besteht der Eindruck, dass die ‚Automatisierung‘ der Formen diese in die ‚Isolation‘ treibt, so dass die Formen ihren Kontakt zur Realität, zur Bedeutung, zur Wahrheit immer mehr verlieren. Aus der Sprache als zentralem Moment der Ermöglichung von mehr komplexem Wissen und mehr komplexem Handeln wird damit zunehmend ein ‚Parasit‘, der immer mehr Raum beansprucht und dabei immer mehr Bedeutung und Wahrheit vernichtet.

[15] Gary Marcus, April 2023, Hoping for the Best as AI Evolves, Gary Marcus on the systems that “pose a real and imminent threat to the fabric of society.” Communications of the ACM, Volume 66, Issue 4, April 2023 pp 6–7, https://doi.org/10.1145/3583078 . Anmerkung: Gary Marcus schreibt anlässlich der Wirkungen von Systemen wie chatGPT(OpenAI), Dalle-E2 und Lensa über die ernst zunehmenden negativen Wirkungen, die diese Werkzeuge innerhalb einer Gesellschaft haben können, und zwar in einem Ausmaß, das eine ernsthafte Bedrohung für jede Gesellschaft darstellt! Sie sind inhärent fehlerhaft in den Bereichen Denken, Tatsachen und Halluzinationen. Mit nahezu Null Kosten lassen sich mit ihnen sehr schnell umfangreiche Desinformationskampagnen erstellen und ausführen. Am Beispiel der weltweit wichtigen Webseite ‚Stack Overflow‘ für Programmierer konnte (und kann) man sehen, wie der inflationäre Gebrauch von chatGPT aufgrund der inhärenten vielen Fehler dazu führt, dass das Management-Team von Stack Overflow seine Benutzer dringend bitten musste, den Einsatz von chatGPT komplett zu unterlassen, um den Zusammenbruch der Seite nach 14 Jahren zu verhindern. Im Falle von großen Playern, die es gezielt auf Desinformationen absehen, ist solch eine Maßnahme unwirksam. Diese Player zielen darauf ab, eine Datenwelt zu erschaffen, in der niemand mehr irgend jemandem vertrauen kann. Dies vor Augen stellt Gary Marcus 4 Postulate auf, die jede Gesellschaft umsetzen sollte: (1) Automatisch generierter Inhalt sollte komplett verboten werden; (2) Es müssen rechtswirksame Maßnahmen verabschiedet werden, die ‚Missinformationen‘ verhindern können; (3) User Accounts müssen fälschungssicher gemacht werden; (4) Es wird eine neue Generation von KI Werkzeugen gebraucht, die Fakten verifizieren können.

DER AUTOR

Einen Überblick über alle Beiträge von Autor cagent nach Titeln findet sich HIER.


KOLLEKTIVE MENSCH:MASCHINE INTELLIGENZ und das Konzept ‚Social Machines‘

Journal: Philosophie Jetzt – Menschenbild
ISSN 2365-5062, 2.-5.Dezember 2021, 13:12h
URL: cognitiveagent.org, Email: info@cognitiveagent.org
Autor: Gerd Doeben-Henisch (gerd@doeben-henisch.de)

KONTEXT

Der Autor dieses Textes ist involviert in die Ausarbeitung zur Theorie und zur praktischen Umsetzung eines neuen Konzeptes von ‚Kollektiver Mensch:Maschine Intelligenz‘, das unter dem Begriff ‚oksimo Paradigma‘ vorgestellt und diskutiert wird.[1] In diesem Zusammenhang ist es wichtig, den eigenen Standpunkt immer wieder mit anderen Positionen in der Literatur abzugleichen: Ist das Ganze letztlich doch nicht wirklich ‚Neu‘? Falls doch, in welchem Sinne neu? Interessant sind auch die Beziehungen zwischen den verschiedenen Konzepten, ihre historische Entwicklung.

In einer online-Veranstaltung am 30.November 2021 bekam der Autor von Jörn Lamla den Hinweis auf den Artikel ‚Social Machines‘. [2] Wie man in dem kurzen aber prägnanten Artikel in der englischen Wikipedia nachlesen kann [3], ist der Begriff ‚Social Machine‘ (‚Soziale Maschine‘) schon gut 150 Jahre alt, zeigt aber noch keine sehr klaren Konturen. Der Versuch, das ‚Soziale‘ mit der ‚Technologie‘, mit ‚Maschinen‘ — hier sind vernetzte Computer gemeint, letztlich der ‚Cyberspace‘ — begrifflich zu vernetzen, drängt sich auf, ist für Gesellschaftswissenschaften verführerisch, führt aber nicht automatisch zu präzisen Konzepten. Weder ‚das Soziale‘ noch ‚die Maschine‘ sind Begriffe, die aus sich heraus irgendwie klar sind. Umso gespannter kann man sein, was die Autoren meinen, wenn sie zum begrifflichen Konstrukt ‚Soziale Maschine‘ einen Text schreiben.

SOZIALE MASCHINEN

Im weiteren Text bekennen sich die Autoren zu der schwer fassbaren Semantik des Begriffs ‚Soziale Maschine‘, indem sie diverse Beispiele aus der Literatur zitieren, die ein viel schillerndes Bild bietet. Um für ihre Diskussion einen irgendwie gearteten begrifflichen Referenzpunkt zu gewinnen, führen sie dann ihrerseits eine ‚Definition‘ von ‚Sozialer Maschine‘ ein (ohne sich allerdings der Mühe zu unterziehen, die Vielfalt der bisherigen Positionen tatsächlich im einzelnen zu diskutieren).

Def 1: Social Machines

Ihre Definition lautet: „Social Machines sind soziotechnische Systeme, in denen die Prozesse sozialer Interaktion hybrid zwischen menschlichen und maschinellen Akteuren ablaufen und teilweise algorithmisiert sind.“

An dieser Stelle ist es eine offene Frage, ob diese Definition eine ‚adäquate Repräsentation‘ des vorausgehenden Diskurses zu Sozialen Maschinen darstellt, oder ob es sich nur um eine spezielle Setzung der Autoren handelt, deren Begründung nicht schlüssig aus dem bisherigen Diskurszusammenhang folgt.

Liest man die Definition der Autoren, dann fallen u.a. folgende Formulierungen auf: (i) dass die ‚Prozesse sozialer Interaktion‚ ‚hybrid‚ sein sollen; (ii) dass diese Prozesse zwischen ‚menschlichen und maschinellen Akteuren‚ ablaufen sollen, und (iii) dass diese ‚ teilweise algorithmisiert‚ sein sollen.

Hybrides Handeln

Angesichts des großen Bedeutungsspektrums des Ausdrucks ’soziale Interaktion‘ in der Literatur (dazu oft sehr theorieabhängig genutzt) ist an dieser Stelle nicht ganz klar, was mit sozialer Interaktion‘ gemeint sein soll. Dazu der Ausdruck ‚hybrid‘. Ab wann sind menschliche Handlungen hybrid? Handelt ein Mensch ‚hybrid‘ wenn er Werkzeuge benutzt? Handelt ein Mensch ‚hybrid‘, wenn er die Gegebenheiten der Natur nutzt, um Nahrung zu finden oder zu produzieren? Handelt ein Mensch ‚hybrid‘, wenn er andere Menschen ‚instrumentalisiert‘, um persönliche Ziele zu erreichen? Handelt ein Mensch ‚hybrid‘, wenn er eine Sprache benutzt, die er in einer Gesellschaft als Instrument der Kommunikation vorfindet? Warum sollte die Benutzung einer Maschine eine besondere Form von ‚hybridem Handeln‘ darstellen, wenn die Nutzung der Maschine für den ‚Inhalt der Aktion‘ ‚unwesentlich‘ ist?

Für die weitere Diskussion sei hier daher die Verabredung getroffen, dass immer dann, wenn ein Mensch in seiner Interaktion mit der Welt irgendwelche Umstände so benutzt, dass dieses Handeln ohne diese Bezugnahme nicht erklärbar wäre, von einer ‚allgemein hybriden Handlung‘ gesprochen werden soll. Da jede Interaktion mit der Umgebung ‚als Interaktion‘ in diesem Sinne ‚allgemein hybrid‘ ist, sagt der Ausdruck ‚allgemein hybrid‘ nicht allzu viel, außer, das er uns bewusst machen kann, dass wir im Handeln niemals nur ‚für uns‘ handeln, niemals nur ‚isoliert, autonom‘ handeln, sondern wir uns unausweichlich in einer ‚Wechselwirkung‘ mit ‚etwas anderem‘ befinden. Und dies liegt nicht am ‚Handeln als solchem‘ sondern in der Art und Weise, wie jegliches Handeln von Homo sapiens Exemplaren in der ‚inneren Struktur‘ eines Homo sapiens ‚verankert‘ ist.

Die Benutzung vieler Computerdienste (maschinelle Dienstleistungen) sind in diesem Sinne zwar ‚allgemein hybrid‘ insoweit ein Mensch zusätzliche Mittel für sein Handeln benutzt, aber ob man den die maschinelle Dienstleistung benutzt oder nicht, muss nicht notwendigerweise einen wesentlichen Einfluss auf den ‚Inhalt des Handelns‘ haben (außer dass diese Benutzung das Handeln ‚bequemer‘ oder ’schneller‘ oder … macht). Wenn die Autoren also die Bedeutung von ‚hybrid‘ in diesem Zusammenhang so betonen, stellt sich die Frage, was denn in dieser Interaktion so ‚besonders‘, so ’speziell‘ sein soll, dass es sich lohnt, dies hervor zu heben. Allein die Einbeziehung von ‚etwas anderem‘ in das menschliche Handeln geschieht seitdem es den Homo sapiens gibt, tatsächlich sogar schon viel länger, wenn man die evolutionäre Vorgeschichte des Homo sapiens berücksichtigt. Selbst unter Prä-Homo sapiens Lebensformen, die heute leben, ist ‚allgemein hybrides‘ Handeln verbreitet.

Menschliche und Maschinelle Akteure

Es fragt sich, ob mit der Konkretisierung des ‚technischen Anteils‘ im Ausdruck ’soziotechnische Systeme‘ zu ‚Maschinen‘ etwas gewonnen wird? Gibt es technische Systeme, die keine Maschinen sind? Was ist mit hochentwickelten Landwirtschaften, wie sie sich in der Zeit islamischer Besetzung in Spanien um und vor +1000 fanden: komplexe Bewässerungssysteme, komplexe Architektur, komplexe Organisationsformen machten aus Spanien eine blühende und fruchtbare Landschaft. Ist das auch Technologie, und dann sogar im eminenten Sinne soziotechnisch‘? Was ist mit den großartigen Bibliotheken in der Hochblüte des Islams mit vielen hundert Tausend Büchern? Was ist mit der Seeschifffahrt durch die letzten Jahrtausende, die Städte, den Bauwerken, den Straßen und Brücken, den … ? Der Begriff ‚technisches System‘ ist nicht besonders klar, genauso wenig der Begriff ‚Maschine‘. Wie ein kurzer Blick in die englische Wikipedia zeigt [8], hat der Begriff eine lange Geschichte mit einem starken Bedeutungswandel, der die Spuren vielfältiger kultureller Entwicklungen in sich aufgenommen hat. Welche Typen von Maschinen meinen die Autoren?

Durch die Kombination von ‚Maschine‘ und ‚Akteur‘ kommt auf jeden Fall eine besondere Note ins Spiel, da der Begriff des ‚Akteurs‘ — in sich auch nicht klar definiert! — die unscharfe Vorstellung assoziiert, dass damit ein ‚System‘ gemeint sein könnte, das ‚(selbständig?) handeln‘ kann — was immer genau ‚(selbständig) handeln‘ heißen mag –.

Im Englischen meint ‚Akteur‘ als ‚actor‘ schlicht Menschen, die als Schauspieler in einem Stück handeln [9]. Sie handeln aber tatsächlich nur partiell ’selbständig, aus sich heraus‘, insofern sie das vorgegebene Drehbuch zwar in den groben Linien ’nachspielen‘, im Detail der Rolle aber mit ihrem realen Verhalten diese Rolle ‚modifizieren‘ können; in der Art und Weise dieses ‚Modifizierens einer Rolle‘ meinen viele erkennen zu können, ob es sich um einen ‚großen Schauspieler‘ handelt.

In neueren technischen Kontexten gibt es viele Standards, u.a. auch UML (Unified Modeling Language). [10] In UML wird für den Bereich der Programmierung das Zusammenspiel, die Interaktion verschiedener ‚Rollen‘ in einem Interaktionsfeld strukturiert beschrieben. ‚Akteure‘ (‚actors‘) sind dann jene abgrenzbare Größen, die Ereignisse aus der Umgebung (Input) aufnehmen, wie auch auf die Umgebung durch Reaktionen (Output) reagieren können.[11]

Viele andere sprachliche Verwendungszusammhänge mit dem Begriff ‚Akteur‘ sind bekannt. Die Autoren bieten dazu keine Erläuterungen, weder für die Frage, warum sie den allgemeinen Begriff des ‚technischen Systems‘ auf ‚Maschinen als Akteure‘ einschränken noch, welche Art von ‚Akteuren‘ sie genau meinen.

Teilweise Algorithmisiert

Der heutige Begriff des ‚Algorithmus‘ im Kontext von programmierbaren Maschinen [12] hat eine lange Vorgeschichte im Kontext der Mathematik (von heute aus ca. 4.500 Jahre rückwärts), wird aber seit der Verfügbarkeit von real programmierbaren Maschinen (‚Computern‘) seit ca. 1930 vornehmlich für jene Befehlslisten verwendet, mit denen programmierbare Maschinen gesteuert werden.[13] Der Ausdruck der Autoren, dass ’soziale Interaktionen‘ ‚teilweise algorithmisiert‘ sind, wirft von daher mindestens eine Frage auf: Was an einer sozialen Interaktion soll algorithmisiert‘ sein, wenn doch nach allgemeinem Verständnis nur programmierbare Maschinen von einem Algorithmus gesteuert werden können?

Nehmen wir an, dass hier soziotechnische Systeme gemeint sind, die — vereinfachend — aus Akteuren bestehen, die sowohl biologische und nicht-biologische Systeme sein können. Im angenommenen Fall sind diese Akteure auf der einen Seite weiter spezialisiert zu ‚biologischen System‘, die ‚Homo sapiens Exemplare‘ darstellen, und auf der anderen Seite ‚programmierbare Maschinen‘. Von den programmierbaren Maschinen ist bekannt, dass sie — per Definition — über ein ‚Programm‘ verfügen können, das die Eigenschaften eines ‚Algorithmus‘ besitzt. In einer ‚Interaktion‘ zwischen Homo sapiens Akteuren und programmierbaren Maschinen würden — Annahme — die Homo sapiens Akteure so handeln, wie sie immer handeln: Bezugnehmend auf ihre Wahrnehmung der Umgebung würden sie auf der Basis der bis dahin erworbenen Erfahrungen und aktuellen Motivationslagen auf diese Umgebung reagieren; dieses ‚Muster‘ von ‚Wahrnehmung + innere Zustände + Reagieren‘ würde dann einen groben Rahmen für den Begriff einer ‚Handlung‘ zur Verfügung stellen, die bezogen auf eine Situation mit einem anderen Akteur als ‚Gegenüber‘ dann als ‚Interaktion‘ bezeichnet werden könnte. [14] Jede Art von ‚Interaktion‘ in dieser Sicht wäre ‚allgemein hybrid‘, sofern das ‚Gegenüber‘ zu einem Homo sapiens Exemplar nicht wieder ein anderes Homo sapiens Exemplar wäre, also allgemein ‚kein biologisches System‘! Insofern ‚programmierbare Maschinen‘ sehr spezielle Formen von Maschinen — und generell von technischen Systemen — darstellen, die in er ‚Rolle eines Akteurs‘ auftreten können, hätten wir das Muster einer ‚allgemein hybriden‘ Interaktion, die sich zunächst nicht von irgendwelchen anderen Interaktionen des Homo sapiens Exemplars mit irgendwelchen nicht-biologischen Systemen unterscheidet.

An dieser Stelle könnte man dann die Frage stellen, ob und wie die Interaktion eines Homo sapiens Exemplars mit einer programmierbaren Maschine irgendwelche Besonderheiten aufweisen kann verglichen mit einer ‚allgemein hybriden Interaktion‘?

Nach diesen ersten Fragen an die Autoren hier die Interpretation, die die Autoren selbst zu ihrer Definition geben.

Def. 2: Soziotechnisches System

Interessant ist die Formulierung „… verstehen wir unter einem soziotechnischen System ein komplexes Gefüge, welches Menschen, Hard- und Software, organisationale und soziale Prozesse für gegebene Aufgaben oder Ziele miteinander interagieren lässt.“

Das zuvor ermittelte Schema von zwei Akteuren unterschiedlicher Art (biologisch und nicht-biologisch, im letzteren Fall ‚programmierbare Maschinen‘), wird hier in einem Bündel von vier Faktoren gesehen: (i) Menschen, (ii) Hard- und Software, (iii) ‚organisationale und soziale Prozesse‘, sowie (iv) ‚Aufgaben und Ziele‘. Diese vier Faktoren sind dynamisch so verknüpft, dass es ‚Aufgaben und Ziele‘ sind, bezogen auf diese die anderen drei Faktoren in Wechselwirkungen treten. Normalerweise würde man annehmen, dass es die Interaktionen von ‚Menschen‘ einerseits und ‚Hard- und Software‘ andererseits sind, durch die ‚Prozesse‘ stattfinden. In der Formulierung der Autoren liest es sich aber so, als ob ‚organisationale und soziale Prozesse‘ einen eigenständigen Faktor neben ‚Menschen‘ und ‚Hard- und Software‘ bilden, und zwar so, dass alle drei Faktoren interagieren. Also, ein ‚Prozess‘ interagiert mit einem Menschen oder einer Hard- und Software und umgekehrt. Eine sehr ungewöhnliche Vorstellung.

In einem sehr verbreiteten Verständnis von ‚Prozess‘ [15] ist ein Prozess eine Serie von Aktivitäten, die ineinandergreifen, um ein ‚Ergebnis‘ zu produzieren. Je nach Kontext (Disziplin, Anwendungsbereich) können die Aktivitäten sehr unterschiedlich aussehen, ebenso das erzielte Ergebnis.[15] Ergänzend ist es ein verbreitetes Verständnis von ‚Aktion’/’Aktivität‘, dass es sich um ein Ereignis handelt, das von einem ‚Agenten’/ ‚Akteur‘ für eine bestimmte ‚Absicht’/ ‚Ziel‘ herbeigeführt wird, das ‚in‘ dem handelnden Akteur ‚verankert‘ ist. [16]

In diesem Verständnishorizont sind es also Agenten/ Akteure, die unter dem Einfluss von Zielen bestimmte Ereignisse erzeugen — als handeln, indem sie Aktionen ausführen –, die zusammen genommen als ein ‚Prozess‘ verstanden werden können. In diesem Sinne sind ‚Prozesse‚ keine ’normalen Objekte‘ der realen Welt sondern begriffliche Konstrukte, die sich in den Köpfen von Akteuren bilden können, um eine Folge von konkreten Ereignissen — stark abstrahierend — als einen ‚Prozess‘ zu verstehen. Von einem ‚Prozess‘ zu sprechen verlangt daher von den Beteiligten, sich jeweils darüber zu vergewissern, welche Abfolge von Ereignissen (Handlungen) zum aktuellen Begriff eines Prozesses gehören sollen.

Bemerkenswert ist auch, dass die Ziele — die intendierten Ergebnisse — ebenfalls nicht als ’normale Objekte‘ vorkommen, sondern primär ‚in den Akteuren‘ verankert sind, und es eine der schwierigsten Aufgaben in jedem Prozess ist, zwischen allen beteiligten Akteuren zu klären, was man unter dem ‚gemeinsamen‘ Ziel — eventuell individuell ganz unterschiedlich gedacht — so zu verstehen hat, dass es zwischen allen Beteiligten ‚klar genug‘ ist. [17] Da Ziele keine realen Objekte sind, sondern immer nur ‚innere Objekte‘ der Akteure, ist eine vollständige Klärung der ‚gemeinten Bedeutung‘ generell nur annäherungsweise über aufzeigbare Beispiele möglich.

Versucht man der Intention der Autoren zu folgen, dann wären Prozesse Entitäten, die mit Menschen und/oder Hard- und Software interagieren können. Hierin klingt irgendwie an, als ob Prozesse soziale Realitäten sind, die als solche greifbar sind und mit denen Menschen interagieren können so wie mit anderen Gegebenheiten. Da die Autoren den Begriff der ‚Interaktion‘ bzw. der ‚Aktion‘ bislang nicht geklärt haben, bleibt der Versuch des Verstehens an dieser Stelle ‚mit sich alleine‘.

Im Lichte eines verbreiteten Verständnisses sind Prozesse höchstens in einem sehr abstrakten Sinne ’soziale Realitäten‘, die mit Menschen sowie Hard- und Software ‚interagieren‘. Nehmen wir z.B. einen beliebigen Planungsprozess in einer Firma oder einer Behörde. Ein Chef kann z.B. einen Mitarbeiter davon in Kenntnis setzen, dass er ab morgen in dem Planungsprozess Px mitarbeiten soll. Damit wird der Mitarbeiter Mitglied der Projektgruppe PGx zum Planungsprozess Px. Als Mitglied der Projektgruppe startet für das neue Mitglied ein Kommunikationsprozess, innerhalb dessen er sich ein ‚inneres Bild‘ von dem Projekt und seinen Aufgaben machen kann. In dem Maße, wie der Mitarbeiter aufgrund seines ‚inneren Bildes‘ versteht, was genau seine Aufgaben mitsamt einem spezifischen Aufgabenumfeld sind, kann der Mitarbeiter anfangen, ‚etwas zu tun‘, d.h. er kann ‚gezielt Handlungen vornehmen‘. Im ‚Stattfinden‘ seiner Handlungen und durch die möglichen ‚erfahrbaren Resultaten‘ können die anderen Mitglieder der Projektgruppe ‚wahrnehmen‘, was der neue Mitarbeiter tut und sie können die neuen ‚Wahrnehmungen‘ mit ihrem ‚inneren Bild des Projektes‘ ‚abgleichen‘: passen die Handlungen und Ergebnisse des neuen Mitarbeiters zu ‚ihrem inneren Bild‘ des Prozesses?

Im Lichte dieses Beispiels würde das Konzept einer ‚Interaktion zwischen Menschen und einem Prozess‘ letztlich zurück übersetzt werden müssen zu einer ‚Interaktion zwischen Menschen‘, da ein Prozess niemals als solcher als ein ‚erfahrbares Objekt‘ existiert, sondern immer nur als ‚abstraktes Konzept‘ im ‚Innern von Menschen‘, die über Kommunikation verbunden mit Handlungen und aufzeigbaren Artefakten miteinander interagieren. Kann man solchen Kommunikationen und Interaktionen mit Artefakten ein gewisses ‚Format‘ zuordnen, dann sprechen wir von einem ‚Prozess‘, der durch Akteure — hier Menschen — in einer Abfolge typischer Handlungen ’stattfindet‘.

Def. 2*: Soziotechnisches System

An dieser Stelle des Rekonstruktionsversuchs würde man die Formulierung der Autoren wie folgt ‚um-formulieren‘ können: „… verstehen wir unter einem soziotechnischen System ein komplexes Gefüge bestehend aus Menschen und Hard- und Software, die aufgrund von akzeptierten Zielen so miteinander interagieren können, dass organisationale und soziale Prozesse stattfinden, die zu Änderungen in der bestehenden Umgebung führen können.

Möglicherweise meinen die Autoren auch, dass die Tatsache, dass eine Gruppe von Menschen aufgrund von festgelegten Zielen längere Zeit in einem bestimmten Format miteinander so interagieren, dass andere dieses Vorgehen ‚in ihrem Innern‘ als ein ‚Prozess‘ erkennen, und diese ‚Wahrnehmung und Interpretation‘ für die ‚Beobachter‘ eine irgendwie geartete ‚Wirkung entfaltet, dass solch eine ‚Wirkung im Innern‘ als ‚Teil einer Interaktion‘ der Beobachter mit dem beobachtbaren Prozess verstanden werden kann. Eine solche Ausweitung der Bedeutung von normalen ‚Wahrnehmungsprozessen‘ zu ‚Interaktionsprozessen‘ würde aber für eine Analyse wenig attraktiv erscheinen.

Der Ausdruck ‚Gefüge‚, den die Autoren benutzen, klingt ein wenig ‚altmodisch‘. Nach mehr als 100 Jahren diverse Strukturwissenschaften sollte man das Wort ‚Gefüge‘ doch vielleicht eher durch den Ausdruck ‚Struktur‚ ersetzen. [18] Eine ‚Struktur‘ liegt vor, wenn man verschiedene Komponenten unterscheiden kann, hier z.B. ‚Menschen‘ und ‚Hard- und Software‘, und diese Komponenten können in Form ‚typischer‘ Handlungen miteinander interagieren, also etwa

SOZIOTECHNISCHES SYSTEM (ST) gdw ST = <Menschen, Hard-/Software, …, Interaktionen, …>

Die Elemente ‚Absicht‘, ‚Ziel‘, ‚inneres Bild von…‘ usw. würden dann in einer eigenständigen Sub-Struktur ‚Mensch‘ oder ‚menschlicher Akteur‘ verortet, da ein Mensch als eine ‚eigenständige Struktur‘ aufgefasst werden kann, etwa:

MENSCH(M) gdw M = <Bilder, Ziele, …, Handlungen, …>

Die beiden Strukturen ST und M würden sogar eine kleine ‚Hierarchie‚ bilden: die Struktur M wäre eingebettet in die Struktur ST.

Offen ist dabei noch, in welchen Sinne ‚Hard- und Software‘ überhaupt interagieren können.

Def 3: Prozesse sozialer Interaktion

sind sich dynamisch ändernde Abfolgen sozialer Aktionen zwischen Individuen und/oder Gruppen.

Die Unklarheit, die durch Def. 2 noch darin gegeben war, als ob ‚organisationale und soziale Prozesse‘ quasi ‚gleichberechtigte‘ Faktoren neben Akteuren, Hard- und Software sind, wird durch Def. 3 aufgehoben. In der Formulierung von Def. 3 sind ‚Prozesse sozialer Interaktion‘ ‚Abfolgen sozialer Aktionen‘, die ‚zwischen Individuen und/oder Gruppen‘ stattfinden, und die sich ‚dynamisch ändern‘ können. Diese Lesart entspricht weitgehend dem Formulierungsvorschlag Def 2*.

Def. 4: Hybridität

Unter ihrer Hybridität schließlich verstehen wir, dass an diesen Prozessen inhärent sowohl maschinelle als auch menschliche Akteure wesentlich beteiligt sind.

Anders formuliert sagen die Autoren, dass ‚Prozesse sozialer Interaktion‘ dann hybrid sind, wenn in solchen Prozessen sowohl ‚maschinelle als auch ‚menschliche Akteure‘ beteiligt sind.

Mit Blick auf die Diskussion zum Ausdruck ‚hybrid‘ im Anschluss an Def. 1 beschränkt sich die Formulierung von Def. 4 zunächst darauf, nur zu fordern, dass im Rahmen von ‚Prozessen sozialer Interaktionen‘ neben dem Akteurstyp ‚Mensch‘ auch der Akteurstyp ‚Maschine‘ vorkommt. Wie solch eine Interaktion aussieht, welche Eigenschaften sie auszeichnen, bleibt hier noch offen. In der vorausgehenden Diskussion war ja schon thematisiert worden, dass menschliche Akteure andere nicht-menschliche Mittel — also auch Maschinen (welche Typen von Maschinen?) — ‚unwesentlich‘ benutzen können. Damit war gemeint, dass man zwar eine programmierbare Maschine (Computer) zum ‚Text schreiben‘ benutzen kann, dass der Computer hier aber keine ‚wesentliche‘ Rolle spielt; er macht das Erstellen von Texten vielleicht ‚einfacher‘, wäre aber generell nicht notwendig.

Den folgenden Text kann man grob als eine Serie von ‚Annahmen‘ über die Wirklichkeit bezeichnen, vermischt mit impliziten Folgerungen, in denen die bisherige Einleitung weiter ausdifferenziert wird.

Ziel der Diskussion bleibt es, zu klären, wie sich das Konzept der ‚kollektiven Mensch:Maschine Intelligenz‘ aus dem oksimo Paradigma zum Konzept der ‚Sozialen Maschine‘ verhält.

ANNAHME-Hybridisierung 1

Die Autoren benennen drei Komponenten ‚Webtechnologie‘ — mit dem Attribut ‚mobil‘ ergänzt –, ‚lernende Bots‘ und ‚KI‘, wodurch „Sozialität und Maschine“ zunehmend verschmelzen. Daraus ziehen sie den Schluss: „Die menschlichen und nichtmenschlichen Komponenten der Social Machine sind folglich immer schwerer voneinander zu unterscheiden und zu trennen, was als paradigmatischer Trend zur fortschreitenden Hybridisierung der Social Machine bezeichnet werden kann“.

Der Kern der Schlussfolgerung fokussiert in der Idee, dass der „Trend zur fortschreitenden Hybridisierung“ offensichtlich sei.

Wenn nach Def. 4 von den Autoren festgehalten wird, dass man unter „Hybridität“ verstehen sollte, „dass an diesen Prozessen inhärent sowohl maschinelle als auch menschliche Akteure wesentlich beteiligt sind“, dann fragt man sich, was man sich unter dem ‚Fortschreiten einer Hybridisierung‘ verstehen soll. Die bloße Vermehrung der ‚Anzahl‘ der beteiligten Faktoren ‚Menschen‘ oder ‚Maschinen‘ kann es wohl nicht sein. Zumindest gibt die Def. 4 dies nicht her.

Die Autoren sprechen vor ihrer Schlussfolgerung davon, dass „Sozialität und Maschine zunehmend verschmelzen„. Dies kann man so interpretieren, dass die ‚fortschreitende Hybridisierung‘ zusammenhängt mit einer ‚Verschmelzung‘ von Sozialität und Maschine. Der Ausdruck ‚verschmelzen‘ wurde von den Autoren zuvor nicht eigens definiert. Die eher sprachliche Deutung von ‚Verschmelzung‘ von Worten scheint nicht gemeint zu sein.[19] Der bedeutungsnahe Ausdruck ‚Fusion‘ bietet eine Vielzahl von Varianten. [20] Welche Variante meinen die Autoren. Dass so ungleiche Wirklichkeiten wie ‚Sozialität‘ und ‚Maschinen‘ ‚verschmelzen‘, dafür fehlt jeglicher Ansatzpunkt einer sinnvollen Interpretation.

Um dieses Dilemma aufzulösen könnte der Ausdruck „… sind folglich immer schwerer voneinander zu unterscheiden und zu trennen …“ einen Hinweis liefern. Wenn man das ‚unterscheiden‘ und ‚trennen‘ nicht auf reale Sachverhalte — wie Sozialität und Maschine — bezieht sondern auf die ‚Verarbeitung von Sinneseindrücken im Innern des Menschen‘, dann könnte man sich eine Interpretation vorstellen, in der durch die Art und Weise, wie Sozialität und Maschine in der Umwelt ‚vorkommen‘, im menschlichen Akteur ‚Vorstellungen‘ auslöst, in denen das menschliche Denken eine klare Unterscheidung immer weniger leisten kann. Dann wäre die angenommene Verschmelzung der Autoren ein rein kognitives/ mentales Problem der menschlichen Akteure, die sich in Interaktion mit einer Umwelt befinden, in der mindestens Menschen und Maschinen vorkommen, aber auf eine Weise, die eine klare Unterscheidung kognitiv/ mental schwer macht.

Dies führt zu folgendem Formulierungsvorschlag:

ANNAHME-Hybridisierung 1 *

Meine Formulierung würde dann lauten: „Menschliche und nichtmenschliche Akteure (hier Maschinen) können in einer Weise in der Umwelt vorkommen, dass es für die beteiligten Menschen in ihren mentalen/ kognitiven Bildern von der Welt immer schwerer wird, diese Akteure klar voneinander zu unterscheiden und zu trennen.

Zu beachten ist auch, dass die Autoren zu Beginn des Abschnitts von drei unterschiedlichen Komponenten sprechen (‚Webtechnologie‘ — mit dem Attribut ‚mobil‘ ergänzt –, ‚Bots‘ und ‚KI‘), die im Gefolge dann offensichtlich dem Ausdruck ‚Maschine‘ zugeschlagen werden. Der Ausdruck ‚Maschine‘ wurde aber bislang nicht wirklich definiert. Auch sei der Ausdruck ‚Hard- und Software‘ erinnert, der in Def. 2 von den Autoren benutzt wird. Nach den Kontexten gehört dieser auch in das Bedeutungsfeld ‚Maschine‘, so wie es die Autoren praktizieren. Halten wir an dieser Stelle fest:

Def. 5 Maschine (indirekt abgeleitet):

Für die Autoren repräsentieren die Ausdrücke ‚Hard- und Software‘, ‚Webtechnologie (mit Aspekten der ‚Mobilität‘), ‚lernende Bots‘ und ‚KI‘ Aspekte des Bedeutungsfelds ‚Maschine‘, wie es im Kontext der Begriffe ’soziotechnisches System‘ bzw. ‚Soziale Maschine‘ implizit angenommen wird.

In der ‚realen Welt‘ beschreiben die aufgelisteten Ausdrücke (‚Hard- und Software‘, ‚Webtechnologie (mit Aspekten der ‚Mobilität‘), ‚lernende Bots‘ und ‚KI‘ ) ganz unterschiedliche Sachverhalte, deren Verhältnis zueinander keinesfalls trivial ist. Dies sei hier ganz kurz angedeutet:

Webtechnologie, Mobil, Hard- und Software

Der Begriff ‚Webtechnologie‚ ist in sich eher unklar, was mit dem unklaren Begriff ‚Web‚ zusammenhängt. Die englische Wikipedia listet mögliche Bedeutungsvarianten auf und verweist bei ‚web‘ auch auf das ‚World Wide Web [WWW]‘.[21] Die wichtige Botschaft ist [22], dass das WWW nicht das Internet ist, sondern das Internet als Basistechnologie voraussetzt. Das WWW selbst ist eine reine Softwareangelegenheit, wodurch es möglich ist, mittels eines speziellen Adresssystems (URLs) Signale zwischen diesen Adressen hin und her zu schicken. Die Art und Weise, wie dieser Signalaustausch formal stattfinden soll, regelt ein ‚Protokoll‘ (das ‚Hypertext Transfer Protocol‘ [HTTP]; mit zusätzlicher Sicherheit als HTTPS). Auf Seiten der Anwender benötigt man dazu eine Software, die ‚Browser‚ genannt wird, und innerhalb des Internets benötigt man einen Server, auf dem eine Software läuft, die ‚Webserver‚ genannt wird. Die ‚Mobilität‘ des WWW ist keine direkte Eigenschaft des WWW selbst sondern ergibt sich aus veränderten technischen Bedingungen des vorausgesetzten Internets: mobile Endgeräte, auf denen eine Browser Software installiert ist, erlauben eine Kommunikation innerhalb des WWWs.[23] Während das WWW eine reine Software ist, kann man fragen, was denn dann mit ‚Webtechnologie‘ gemeint sein soll? Wenn mit ‚Webtechnologie‘ auch ‚Software‘ gemeint ist, dann wäre der Begriff ‚Technologie‘ stark ausgeweitet. Das ‚Internet‘ — eine spezielle Kombination aus Hardware und Software — wird als ‚Netzwerk von Netzwerken‘ gesehen, innerhalb dessen ganz unterschiedliche Kommunikationsprotokolle am Werk sind, die ganz unterschiedliche Informationsquellen und Dienste ermöglichen. Das WWW ist eine Komponenten unter vielen.[24] Mit ‚Netzwerk‚ ist in diesem Kontext ein ‚Computernetzwerk‚ gemeint. Es besteht aus unterschiedlichen ‚Computern‚, die über geeignete ‚Verbindungen‘ und ‚Verbindungstechnologien‘ miteinander so verknüpft sind, dass Signalpakete entsprechend vereinbarten Protokollen hin und her gesendet werden können. Computer verstehen sich hier immer als Kombinationen aus Hard- und Software.[25] Als umfassender Begriff für die Vielfalt der Technologien und Anwendungen, die durch das ‚Internet‘ möglich sind, gibt es schon sehr früh — zumindest im Englischen Sprachraum — den Begriff ‚Cyberspace‚.[26]

Lernende Bots

Generell gibt es verschiedene Typen von bots. [27] Im allgemeinen ist ein bot im Internet eine Softwareanwendung, die automatisch bestimmte Aufgaben ausführt.[28] Wikipedia selbst benutzt z.B. über 2500 Wikipedia-typische Bots, um die mehr als 54 Mio. Wikipedia-Seiten zu verwalten.[29] Für die Interaktion mit Menschen gibt es u.a. den Typ des ‚Chatbots‘ [30]: die Software eines Chatbots versucht das Verhalten von Menschen anzunähern. Dies gelingt bislang aber nicht wirklich gut.[30] Ein spezielles, aber schon viele Jahre andauerndes Einsatzfeld von künstlicher Intelligenz Techniken sind Computerspiele, in denen ‚Nicht-Spieler Charaktere‘ (’non-player characters‘ [NPCs) das Spielgeschehen anreichern. Diese erledigen sehr vielfältige Aufgaben und sind keineswegs mit einem ‚menschenähnlichen‘ Spielcharakter zu vergleichen.[31] Insgesamt ist der Begriff ‚lernend‘ im Kontext von ‚Bots‘ generell sehr unscharf: einmal, weil der Ausdruck ‚bot‘ nicht einheitlich definiert ist, und zum anderen, weil der Begriff ‚lernend‘ im Kontext von ‚Künstlicher Intelligenz [KI]‘ bzw. ‚Maschinellem Lernen [ML]‘ keinesfalls klar ist. Das Feld ist zu uneinheitlich. [32]

KI (Künstliche Intelligenz)

Der Ausdruck ‚KI‘ — Abkürzung für ‚Künstliche Intelligenz‘ (heute oft auch einschränkend ‚ML‘ für maschinelles Lernen) — bezeichnet ein Teilgebiet der Informatik, das bislang keine klare Definition bietet, da schon der Begriff der ‚Intelligenz‘ selbst nicht klar definiert ist.[32], [33] Aufgrund der Unklarheit im Zusammenhang mit dem Begriff der ‚Intelligenz‘ bei biologischen Systemen — obgleich es hier einige Definitionen gibt, die für eingeschränkte Bereiche sehr brauchbar sind — versucht die Englischsprachige Informatik das Problem dadurch zu lösen, dass sie den Begriff AI nur für den Bereich nicht-biologischer Systeme — hier speziell für programmierbare Maschinen — definieren will. Programmierbare Maschinen mit KI können sowohl ihre Umwelt partiell wahrnehmen als auch dann — meist unter Zuhilfenahme systeminterner Zustände — wieder auf die Umwelt reagieren. Zusätzlich wird für solche Systeme mit künstlicher Intelligenz postuliert, dass sie ‚Zielen (‚goals‘) folgen können.[34]

Diese scheinbare Erleichterung, sich vom ursprünglichen Phänomenfeld der Intelligenz bei biologischen Systemen abzukoppeln, weil eine befriedigende Definition von Intelligenz hier schwierig ist, hat aber tatsächlich zu keiner befriedigenden Situation geführt. Sowohl der Intelligenzbegriff eingeschränkt auf programmierbare Maschinen ist heute nicht wirklich klar, noch ist es bislang möglich, zwischen dem Verhalten biologischer und nicht-biologischer Systeme dadurch eine brauchbare Verhältnisbestimmung aufzubauen. Dies führt dann z.T. zu der bizarren Situation, dass spezielle Leistungen von programmierbaren Maschinen für Bereich X, wo Maschinen dem Menschen überlegen sind, als generelle Aussage über das Verhältnis von Maschinen und Menschen benutzt werden, ohne dass man jene Bereiche, in denen biologische Systeme den programmierbaren Maschinen haushoch überlegen sind, überhaupt noch thematisiert. Es ist dem ai100-Report zu verdanken, dass er neu darauf aufmerksam macht, dass es durch diese asymmetrische Diskussion bislang unmöglich ist, genauer zu bestimmen, wie maschinelle Intelligenz der menschlichen Intelligenz konstruktiv unterstützen könnte.[32]

FORTSETZUNG folgt…

ANMERKUNGEN

Hinweis: Wenn in den Anmerkungen Quellen aus dem Internet angegeben werden, dann ergibt sich die Zeit des letzten Aufrufs aus dem Datum der Abfassung dieses Beitrags, die im Kopf des Artikels angegeben ist.

[1] Dazu gibt es einige Beiträge in diesem Philosophie-Jetzt- Blog, und in zwei anderen Blogs uffmm.org mit dem Schwerpunkt ‚Theorie‘ und dem Blog oksimo.org mit dem Schwerpunkt ‚Anwendungen‘.

[2] Claude Draude · Christian Gruhl · Gerrit Hornung · Jonathan Kropf · Jörn Lamla · JanMarco Leimeister · Bernhard Sick · Gerd Stumme , 2021, „Social Machines„, Informatik Spektrum, https://doi.org/10.1007/s00287-021-01421-4, Springer

[3] Social Machine, Wikipedia [EN]: https://en.wikipedia.org/wiki/Social_machine

[4] Berners-Lee, Tim; J. Hendler (2009). „From the Semantic Web to social machines: A research challenge for AI on the World WideWeb“ (PDF). Artificial Intelligence. 174 (2): 156–161. doi:10.1016/j.artint.2009.11.010.

[5] Markus Luczak-Roesch, Ramine Tinati, Kieron O’Hara, Nigel Shadbol, (2015), Socio-technical Computation, CSCW’15 Companion, March 14–18, 2015, Vancouver, BC, Canada. ACM 978-1-4503-2946-0/15/03, http://dx.doi.org/10.1145/2685553.2698991

[6] Luczak-Roesch, M.; Tinati, R.; Shadbolt, N. (2015). When Resources Collide: Towards a Theory of Coincidence in Information Spaces (PDF). WWW 2015 Companion. ACM. pp. 1137–1142. doi:10.1145/2740908.2743973. ISBN9781450334730. S2CID17495801.

[7] Cristianini, Nello; Scantamburlo, Teresa; Ladyman, James (4 October 2021). „The social turn of artificial intelligence“ (PDF). AI & Society: 0. doi:10.1007/s00146-021-01289-8.

[8] Der Begriff ‚machine‘ (Maschine) in der Wikipedia [EN]: https://en.wikipedia.org/wiki/Machine

[9] Der Begriff ‚actor‘ in der Wikipedia [EN] für die Rolle des Schauspielers: https://en.wikipedia.org/wiki/Actor

[10] Der Begriff ‚UML (Unified Modeling Language)‘ in der Wikipedia [EN]: https://en.wikipedia.org/wiki/Unified_Modeling_Language

[11] Der Begrifff ‚actor‘ in der Wikipedia [EN] im Rahmen des technischen Standards UML: https://en.wikipedia.org/wiki/Actor_(UML)

[12] Nicht alle Maschinen sind programmierbar, können aber meistens — im Prinzip — nach Bedarf mit programmierbaren Maschinen erweitert werden.

[13] Der Begriff ‚algorithm‘ in der Wikipedia [EN]: https://en.wikipedia.org/wiki/Algorithm

[14] Wenn man den Begriff ‚Interaktion‘ auf solche Situationen beschränken würde, in denen ein Homo sapiens Akteur mit einem anderen Akteur (biologisch oder nicht-biologisch) handelt, dann würde es auch Handlungen geben, die keine typische Interaktion mit anderen Akteuren repräsentieren, z.B. wenn ich einen Kaffee oder Tee oder … trinke, oder ich esse einen Apfel, ich fahre mit dem Fahrrad, ….

[15] Der Begriff ‚process‚ in der Wikipedia [EN]: https://en.wikipedia.org/wiki/Process

[16] Der Begriff ‚activities‚ in der Wikipedia [EN]: https://en.wikipedia.org/wiki/Action_(philosophy)

[17] Im Systems Engineering wird dieser Sachverhalt als ’semantic gap‘ bezeichnet, siehe z.B.: Doeben-Henisch, G., Wagner, M. [2007] Validation within Safety Critical Systems Engineering from a Computation Semiotics Point of View, Proceedings of the IEEE Africon2007 Conference, ISBN 0-7803-8606-X, Paper-ID 701

[18] Der Begriff ‚structure‚ in der Wikipedia [EN]: https://en.wikipedia.org/wiki/Structure

[19] Der Ausdruck ‚Verschmelzung‚ in der Wikipedia [DE]: https://de.wikipedia.org/wiki/Verschmelzung_(Grammatik)

[20] Der Ausdruck ‚Fusion‚ in der Wikipedia [DE]: https://de.wikipedia.org/wiki/Fusion

[21] Der Ausdruck ‚web‚ in der Wikipedia [EN]: https://en.wikipedia.org/wiki/Web

[22] Der Ausdruck ‚World Wide Web‚ in der Wikipedia [EN]: https://en.wikipedia.org/wiki/World_Wide_Web

[23] Der Ausdruck ‚mobile‚ in der Wikipedia [EN]: https://en.wikipedia.org/wiki/Mobile

[24] Der Ausdruck ‚Internet‚ in der Wikipedia [EN]: https://en.wikipedia.org/wiki/Internet

[25] Der Ausdruck ‚Computer network‘ in der Wikipedia [EN]: https://en.wikipedia.org/wiki/Computer_network

[26] Der Ausdruck ‚cyberspace‚ in der Wikipedia [EN]: https://en.wikipedia.org/wiki/Cyberspace

[27] Der Ausdruck ‚bot‚ in der Wikipedia [EN]: https://en.wikipedia.org/wiki/Bot

[28] Der Ausdruck ‚Internet bot‘ in der Wikipedia [EN]: https://en.wikipedia.org/wiki/Internet_bot

[29] Der Ausdruck ‚bots‚ in der Wikipedia [EN]: https://en.wikipedia.org/wiki/Wikipedia:Bots

[30] Der Ausdruck ‚chatbot‚ in der Wikipedia [EN] : https://en.wikipedia.org/wiki/Chatbot

[31] Der Ausdruck ‚Artificial intelligence in video games‚ in der Wikipedia [EN]: https://en.wikipedia.org/wiki/Artificial_intelligence_in_video_games

[32] Michael L. Littman, Ifeoma Ajunwa, Guy Berger, Craig Boutilier, Morgan Currie, Finale Doshi-Velez, Gillian Hadfield, Michael C. Horowitz, Charles Isbell, Hiroaki Kitano, Karen Levy, Terah Lyons, Melanie Mitchell, Julie Shah, Steven Sloman, Shannon Vallor, and Toby Walsh. “Gathering Strength, Gathering Storms: The One Hundred Year Study on Artificial Intelligence (AI100) 2021 Study Panel Report.” Stanford University, Stanford, CA, September
2021. Doc: http://ai100.stanford.edu/2021-report. Report: https://ai100.stanford.edu/sites/g/files/sbiybj18871/files/media/file/AI100Report_MT_10.pdf

[33] Der Ausdruck ‚KI (Künstliche Intelligenz)‚ — auch ‚ML (Maschinelles Lernen)‘ in der Wikipedia [DE] : https://de.wikipedia.org/wiki/K%C3%BCnstliche_Intelligenz

[34] Der Ausdruck ‚Artificial intelligence [AI]‘ in der Wikipedia [EN] : https://en.wikipedia.org/wiki/Artificial_intelligence

Some Soundexperiment from the past …

DER AUTOR

Einen Überblick über alle Beiträge von Autor cagent nach Titeln findet sich HIER.