Archiv der Kategorie: Eukaryonten

INFORMELLE KOSMOLOGIE. Teil 2. Homo Sapiens und Milchstraße

Journal: Philosophie Jetzt – Menschenbild
ISSN 2365-5062, 18.Februar 2018
URL: cognitiveagent.org
Email: info@cognitiveagent.org

Autor: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de
Frankfurt University of Applied Sciences
Institut für Neue Medien (INM, Frankfurt)

PDF

INHALT

I Kontext … 1
II Die Größen … 2
III Ermittelte Sachverhalte … 3
IV Philosophische Anmerkungen … 4
IV-A Zusammenhang durch Funktionen … 4
IV-B Gehirn so winzig … 5
IV-C Bewusstsein: Was ist das? … 5
V Anhang: Rechenvorschriften … 6
VI Anhang: Ausführung von Rechenvorschriften … 7
Quellen

 

THEMA

Die Diskussion um die neue Frage nach dem Menschen angesichts der fortschreitenden Digitalisierung hat erst begonnen. Im vorausgehenden Beitrag zur ’Informellen Kosmologie’ wurde der große evolutionsbiologische Zusammenhang skizziert. Hier ein Hinweis auf die unvorstellbare Komplexität eines einzelnen menschlichen Körpers im Vergleich zur Milchstraße, und was dies bedeuten kann (ansatzweise).

I. KONTEXT

Die Diskussion um die neue Frage nach dem Menschen angesichts der fortschreitenden Digitalisierung hat erst begonnen. Im vorausgehenden Beitrag zur ’Informellen Kosmologie’ ist der große evolutionsbiologische Zusammenhang skizziert worden: nach ca. 9.6 Milliarden Jahren ohne biologische Lebensformen (soweit wir
wissen) bildeten sich vor ca. 4 Milliarden Jahren einfache Lebensformen auf der Erde (Bakterien, Archaeen), die dann innerhalb von 2 Milliarden Jahren die Erde in allen Winkeln chemisch so verändert haben, dass es zu einer Sauerstoffatmosphäre kommen konnte. Trotz der damit einhergehenden globalen Vereisung der Erde (’snowball earth’) für viele Millionen Jahre konnten sich dann aber komplexe Lebensformen bilden, die im Verlauf von weiteren 2 Milliarden Jahren dann – trotz vieler weiterer globaler Katastrophen – die Lebensform homo sapiens hervorgebracht
haben, der dann die Erde ein weiteres Mal flächendeckend erobert und kolonisiert hat. Dieser Prozess befindet sich aktuell in einer Phase, in der der homo sapiens aufgrund seiner erweiterten Denk- und Kommunikationsfähigkeiten das ’Prinzip des Geistes’ in Form von – aktuell noch sehr primitiven – ’lernfähigen und intelligenten Maschinen’ in
eine neue Dimension transformiert.

Von den vielen Fragen, die sich hier stellen, sei hier heute nur ein winziger Teilaspekt aufgegriffen, der aber dennoch geeignet erscheint, das Bild des Menschen von sich selbst wieder ein kleines Stück der ’Realität’ anzunähern.

Der winzige Teilaspekt bezieht sich auf die schlichte Frage nach der ’Komplexität’ eines einzelnen menschlichen Körpers. Natürlich gibt es zahlreiche Lehrbücher zur ’Physiologie des Menschen’ (Z.B. Birbaumer (2006) [BS06]) , in denen man über viele hunderte Seiten zur Feinstruktur des Körpers finden kann. Ergänzt man diese Bücher um Mikrobiologie (Z.B. Alberts (2015) [AJL + 15]) und Genetik, dann ist man natürlich sehr schnell in einem Denkraum, der die einen in Ekstase versetzen kann, andere möglicherweise erschaudern lässt angesichts der unfassbaren Komplexität von einem einzelnen Körper der Lebensform homo sapiens.

Hier soll der Blick mittels eines spielerischen Vergleichs auf einen winzigen Aspekt gelenkt werden: ein versuchsweiser Vergleich zwischen einem einzelnen menschlichen Körper und der Milchstraße, unserer ’Heimatgalaxie’ im Universum.

II. DIE GRÖSSEN

Im ersten Moment mag man den Kopf schütteln, was solch ein Vergleich soll, wie man solche so unterschiedliche Dinge wie einen menschlichen Körper und die Milchstraße vergleichen kann. Doch hat die neuzeitliche Erfindung der Mathematik die Menschen in die Lage versetzt, auf neue abstrakte Weise die Phänomene der Natur jenseits
ihrer augenscheinlichen Reize neu zu befragen, zu beschreiben und dann auch zu vergleichen. Und wenn man auf diese Weise einerseits die Komplexität von Galaxien beschreibt, unabhängig davon auch die Komplexität von biologischen Lebensformen, dann kann einem auffallen, dass man auf abstrakter Ebene sehr wohl eine Beziehung
zwischen diesen im ersten Moment so unterschiedlichen Objekte feststellen kann.
Der ’gedankliche Schlüsselreiz’ sind die ’Elemente’, aus denen sich die Struktur einer Galaxie und die Struktur des Körpers einer biologischen Lebensform bilden. Im Falle von Galaxien sind die primären Elemente (der Astrophysiker) die ’Sterne. Im Fall der Körper von biologischen Lebensformen sind es die ’Zellen’.

Im Alltag spielen die einzelnen Zellen normalerweise keine Rolle; wir sind gewohnt von uns Menschen in ’Körpern’ zu denken, die eine bestimmte ’Form’ haben und die zu bestimmten ’Bewegungen’ fähig sein. Irgendwie haben wir auch davon gehört, dass es in unserem Körper ’Organe’ gibt wie Herz, Leber, Niere, Lunge, Magen, Gehirn usw.,
die spezielle Aufgaben im Körper erfüllen, aber schon dies sind gewöhnliche ’blasse Vorstellungen’, die man der Medizin zuordnet, aber nicht dem Alltagsgeschehen.
Tatsache ist aber, dass alles, auch die einzelnen Organe, letztlich unfassbar große Mengen von individuellen Zellen sind, die jeweils autonom sind. Jede Zelle ist ein individuelles System, das von all den anderen Zellen um sich herum nichts ’weiß’. Jede Zelle tauscht zwar vielfältige chemische Materialien oder auch elektrische Potentiale mit der Umgebung aus, aber eine Zelle ’weiß’ darüber hinaus nichts von ’dem da draußen’. Schon der Begriff ’da draußen’ existiert nicht wirklich. Und jede Zelle agiert autonom, folgt ihrem eigenen Programm der Energiegewinnung und der Vermehrung.

Schon vor diesem Hintergrund ist es ziemlich bizarr, wie es möglich ist, dass so viele Zellen im Bereich zwischen Millisekunden, Sekunden, Minuten, Stunden, Tagen usw. miteinander kooperieren, so, als ob sie alle einem geheimnisvollen Plan folgen würden.
Fragt man dann, wie viele von solchen Zellen dann im Bereich eines menschlichen Körpers aktiv sind, wird das Ganze fast unheimlich. Das Unheimliche beginnt schon bei der Frage selbst. Denn unsere Forscher haben bis heute keine wirklich ’harte’ Zahlen zur Anzahl der Zellen im Körper des Menschen, allerdings erste Annäherungen, die sich beständig weiter verfeinern.

Für den Bereich des menschlichen Körpers habe ich die Darstellung von Kegel (2015) [Keg15] benutzt, der sowohl Abschätzungen für die Körperzellen im engeren Sinne bietet (ca. 37.2 Billionen (32.7^12 )) wie auch für die Bakterien im Körper (ca. 100 Billionen (100^12 )).

Innerhalb des Körpers nimmt das Gehirn für manche Eigenschaften eine besondere Stellung ein. Auch hier zeigt die Literatur,  dass eine Abschätzung der Anzahl der Zellen schwierig ist (Messverfahren generell, dann die unterschiedlichen Strukturen in verschiedenen Gehirnarealen). Nach dem neuesten Übersichtsartikel zum Thema über die letzten
150 Jahre von Bartheld et.al. (2016) [vBBHH16] konvergieren die Schätzungen aktuell dahingehend, dass das Verhältnis der Gliazellen zu den Neuronen weitgehend konstant erscheint mit 1:1 und dass sich die Zahl der Gliazellen zwischen 40-130 Milliarden bewegt. Dabei gilt nach neuesten Erkenntnissen, dass sich die Gesamtzahl der Gehirnzellen nach dem anfänglichen Aufbau altersabhängig nicht (!) kontinuierlich abbaut. Dies geschieht nur bei spezifischen Krankheiten. Für die Modellrechnung habe ich dann die Zahl der Neuronen und Gliazellen mit jeweils 100 Milliarden angenommen (damit möglicherweise zu hoch).

Auch bei der Abschätzung der Anzahl der Sterne in der Milchstraße stößt man auf erhebliche Probleme. Ein kleiner Einblick in die Problematik findet sich in einem Artikel der NASA von 2015 [Mas15]. Viele Schätzungen konvergieren aktuell im Bereich zwischen 100 – 400 Milliarden Sterne, aber es könnten möglicherweise viel mehr sein. Die Erkenntnislage ist noch sehr unsicher. Für den geplanten Vergleich habe ich jetzt einfach mal angenommen, es seien 300 Milliarden. Sollten irgendwann bessere Zahlen verfügbar sein, dann könnte man diese stattdessen eintragen.

Die Idee ist, ein erstes ’Gefühl’ dafür zu bekommen, wie sich die Komplexität der ’Himmelskörper’ zur Komplexität von biologischen Lebensformen verhält.

III. ERMITTELTE SACHVERHALTE

Die Rechenvorschriften, mit denen ich gerechnet habe sowie die Ausführung dieser Rechenvorschriften finden sich unten im Anhang.

Führt man die ’Rechnungen durch und überträgt die Zahlen (grob) in eine Zeichnung, dann er gibt sich folgendes Bild 1:

Die Körpergalaxie des homo sapiens im quantitativen Vergleich zur Milchstrasse
Die Körpergalaxie des homo sapiens im quantitativen Vergleich zur Milchstraße

1) Die Körperzellen zusammen mit den Bakterien im Körper werden hier ’Body-Galaxy’ genannt und diese repräsentiert 100% aller Zellen.
2) Im Rahmen der Body-Galaxy haben die körperinternen Bakterien einen Anteil von ca. 73%, d.h. ca. 3/4 der Body-Galaxy. Über diese Bakterienpopulationen weiß die Mikrobiologie bis heute noch nicht all zu viel.
3) Alle Gehirnzellen machen in dieser Body-Galaxy etwa 0.15% aller Zellen aus.
4) Eine Galaxie vom Format der Milchstraße entspricht 0.2% der Zellen der Body-Galaxy und passt ca. 457 Mal in eine Body-Galaxy.

IV. PHILOSOPHISCHE ANMERKUNGEN

Die eben angeführte Zahlen und quantitativen Verhältnisse stehen erst einmal für sich. Insofern der homo sapiens, wir, nicht nur die Objekte der Betrachtung sind, sondern zugleich auch die Betrachter, jene, die die Wirklichkeit einschließlich unserer selbst beobachten und dann ’denken’ können, erlaubt unsere Denkfähigkeit uns, diese
Sachverhalte in alle möglichen Denkzusammenhänge einzubringen und mit ihnen ’zu spielen’. Von den unendlich vielen Aspekten, die man hier jetzt durchspielen könnte, im folgen drei.

A. Zusammenhang durch Funktionen

Aus Sicht der Zellen bildet ein menschlicher Körper eine Super-Galaxie unvorstellbaren Ausmaßes. Die Tatsache, dass eine einzelne Zelle ’autonom’ ist, in ihrem Verhalten nur sich selbst verpflichtet ist, eine einzelne Zelle von all den anderen Zellen auch nichts ’weiß’, dies wirft um so mehr die Frage auf, wie denn solch eine Super-Galaxie
von Zellen überhaupt funktionieren kann?

Durch die Mikrobiologie wissen wir heute, dass eine einzelne komplexe Zelle (d.h. eine ’eukaryotische Zelle’) selbst schon eine komplexe Struktur mit vielen zellähnlichen Unterstrukturen ist, in der sich Millionen von unterschiedlich komplexen Molekülen befinden, die miteinander interagieren; ebenso finden komplexe Interaktionen der Zelle mit ihrer Umgebung statt. Diese Interaktionen realisieren sich über molekulare Strukturen oder elektrische Potentiale (Die elektrischen Potentiale bilden sich durch Ionen, deren Elektronenverteilung ein negativ oder positiv geladenes elektrisches Feld erzeugt. Viele solcher Ionen können dann elektrische Potentiale erzeugen, die ’Wirkungen’ erzielen können, die man messen kann.)

Aus Sicht der Mathematik kann man diese Interaktionen als ’Funktionen’ beschreiben, in denen eine ’Region’ mittels molekularer Strukturen oder elektrischer Felder in einer anderen ’Region’ eine ’Veränderung’ bewirkt. Eine einzelne Zelle realisiert simultan viele tausende (Eine genaue Zahl kenne ich (noch) nicht.)  solcher Funktionen. Die Mikrobiologie weiß heute auch schon, dass solche Interaktionen nicht nur zwischen einzelnen Zellen (also von A nach B und zurück) stattfinden, sondern dass es große Zellverbände sein können, die mit anderen Zellverbänden interagieren (man denke an ’Herz’, ’Lunge’, ’Gehirn’ usw.). Allerdings setzen diese ’Makro-Funktionen’ die vielen einzelnen Funktionen dabei voraus.

Wenn z.B. ein Auge mit seinen ca. 1 Millionen Rezeptoren Energieereignisse aus der Umgebung registrieren und in neuronale Signale ’übersetzen’ kann, dann geschieht dies zunächst mal in 1 Million Signalereignisse unabhängig voneinander, parallel, simultan. Erst durch die ’Verschaltung’ dieser Einzelereignisse entstehen daraus
Ereignisse, in denen viele einzelne Ereignisse ’integriert’/ ’repräsentiert’ sind, die wiederum viele unterschiedliche Erregungsereignisse nach sich ziehen. Würde man immer nur die ’lokalen Funktionen’ betrachten, dann würde man nicht erkennen können, dass alle diese lokalen Ereignisse zusammen nach vielen Interaktionsstufen zu einem
Gesamtereignis führen, das wir subjektiv als ’Sehen’ bezeichnen. Will man sinnvoll über ’Sehen’ sprechen, dann muss man gedanklich alle diese lokalen Funktionen ’begreifen’ als ’Teilfunktionen’ einer ’Makro-Funktion’, in der sich erst ’erschließt’, ’wofür’ alle diese lokalen Funktionen ’gut’ sind.

In der Erforschung des menschlichen Körpers hinsichtlich seiner vielen lokalen und immer komplexeren Makro-Funktionen steht die Wissenschaft noch ziemlich am Anfang. Aber, wenn man sieht, wie schwer sich die Physik mit den vergleichsweise ’einfachen’ ’normalen’ Galaxien tut, dann sollten wir uns nicht wundern, dass die vielen Disziplinen, die sich mit den Super-Galaxien biologischer Körper beschäftigen, da noch etwas Zeit brauchen.

B. Gehirn so winzig

Im Laufe der letzten 100 und mehr Jahre hat die Einsicht in die Bedeutung des Gehirns zugenommen. Bisweilen kann man den Eindruck haben, als ob es nur noch um das Gehirn geht. Macht man sich aber klar, dass das Gehirn nur etwa 0.15% der Körper-Galaxie ausmacht, dann darf man sich wohl fragen, ob diese Gewichtung
angemessen ist. So komplex und fantastisch das Gehirn auch sein mag, rein objektiv kann es nur einen Bruchteil der Körperaktivitäten ’erfassen’ bzw. ’steuern’.

Durch die Mikrobiologie wissen wir schon jetzt, wie Körperzellen und vor allem Bakterien, über chemische Botenstoffe das Gehirn massiv beeinflussen können. Besonders krasse Fälle sind jene, in denen ein Parasit einen Wirtsorganismus chemisch so beeinflussen kann, dass das Gehirn Handlungen einleitet, die dazu führen, dass der Wirtsorganismus zur Beute für andere Organismen wird, in denen der Parasit leben will. (Siehe dazu verschiedene Beispiel im Buch von Kegel (2015) [Keg15]:SS.282ff)  Andere Beispiele sind Drogen, Nahrungsmittel, Luftbestandteile, die die Arbeitsweise des Gehirns beeinflussen, oder bestimmte Verhaltensweisen oder einen ganzen Lebensstil. Die Kooperation zwischen Gehirnforschung und anderen Disziplinen
(z.B. moderne Psychotherapie) nimmt glücklicherweise zu.

C. Bewusstsein: Was ist das?

Wenn man sieht, wie winzig das Gehirn im Gesamt der Körper-Galaxie erscheint, wird das Phänomen des ’Bewusstseins’ — das wir im Gehirn verorten — noch erstaunlicher, als es sowieso schon ist.

Schon heute wissen wir, dass diejenigen Erlebnisse, die unser Bewusstsein ausfüllen können, nur einen Bruchteil dessen abbilden, was das Gehirn als Ganzes registrieren und bewirken kann. Das – hoffentlich – unverfänglichste Beispiel ist unser ’Gedächtnis’.

Aktuell, in der jeweiligen Gegenwart, haben wir keine direkte Einsicht in die Inhalte unseres Gedächtnisses. Aufgrund von aktuellen Erlebnissen und Denkprozessen, können wir zwar – scheinbar ’mühelos’ – die potentiellen Inhalte ’aktivieren’, ’aufrufen’, ’erinnern’, verfügbar machen’, aber immer nur aktuell getriggert. Bevor mich jemand nach dem Namen meiner Schwestern fragt, werde ich nicht daran denken, oder meine Telefonnummer, oder wo ich vor zwei Monaten war, oder …. Wenn es aber ein Ereignis gibt, das irgendwie im Zusammenhang mit solch einem potentiellen Gedächtnisinhalt steht, dann kann es passieren, dass ich mich ’erinnere’, aber nicht notwendigerweise. Jeder erlebt ständig auch, dass bestimmtes Wissen nicht ’kommt’; besonders unangenehm in Prüfungen, in schwierigen Verhandlungen, in direkten Gesprächen.

Es stellt sich dann die Frage, wofür ist ein ’Bewusstsein’ gut, das so beschränkt und unzuverlässig die ’Gesamtlage’ repräsentiert?

Und dann gibt es da ein richtiges ’Bewusstseins-Paradox’: während die Ereignisse im Gehirn sich physikalisch-chemisch beschreiben lassen als Stoffwechselprozesse oder als elektrische Potentiale, die entstehen und vergehen, hat der einzelne Mensch in seinem Bewusstsein subjektive Erlebnisse, die wir mit ’Farben’ beschreiben können, ’Formen’, ’Gerüchen’, ’Klängen’ usw. Die Philosophen sprechen hier gerne von ’Qualia’ oder einfach von ’Phänomenen’. Diese Worte sind aber ziemlich beliebig; sie erklären nichts. Das Paradox liegt darin, dass auf der Ebene der Neuronen Ereignisse, die visuelle Ereignisse repräsentieren oder akustische oder olfaktorische usw.
physikalisch-chemisch genau gleich beschaffen sind. Aus dem Messen der neuronalen Signale alleine könnte man nicht herleiten, ob es sich um visuelle, akustische usw. Phänomene im Kontext eines Bewusstseins handelt. Subjektiv erleben wir aber unterschiedliche Qualitäten so, dass wir mittels Sprache darauf Bezug nehmen können.
Ein eigentümliches Phänomen.

Ein anderes Paradox ist der sogenannte ’freie Wille’. Die Vorstellung, dass wir einen ’freien Willen’ haben, mit dem wir unser Verhalten autonom bestimmten können, ist im kulturellen Wissen tief verankert. Bedenkt man die prekäre Rolle des Gehirns in der Körper-Galaxie, dazu die Beschränkung des Bewusstseins auf nur Teile der Gehirnereignisse, dann tut man sich schwer mit der Vorstellung, dass der einzelne Mensch über sein Bewusstsein irgendwie ’substantiell’ Einfluss auf das Geschehen seiner Körper-Galaxie nehmen kann.

Gerade die Gehirnforschung konnte uns immer mehr Beispiele bringen, wie eine Vielzahl von chemischen Botenstoffen über das Blut direkten Einfluss auf das Gehirn nehmen kann. Zusätzlich hatte schon viel früher die Psychologie (und Psychoanalyse?) an vielen Beispielen verdeutlichen können, dass wir Menschen durch falsche Wahrnehmung, durch falsche Erinnerungen und durch falsche gedanklichen Überlegungen, durch Triebe, Bedürfnisse, Emotionen und Gefühle unterschiedlichster Art das ’Falsche’ tun können.

Alle diese Faktoren können offensichtlich unsere unterstellte Freiheit beeinflussen und erschweren, können sie sie aber grundsätzlich aufheben?

Es gibt zahllose Beispiele von Menschen, die trotz vielfältigster körperlicher, psychischer und sozialer Erschwernisse Dinge getan haben, die die scheinbare Unausweichlichkeit solcher unterstellter Kausalitäten individuell unterbrochen und aufgehoben haben und zu Handlungen und Lebensverläufen gekommen sind, die
man als Indizien dafür nehmen kann, dass der Komplex ’Bewusstsein’ und ’freier Wille’ eventuell noch mehr überraschende Eigenschaften besitzt, als sie in der aktuellen – eher mechanistischen – Betrachtungsweise sichtbar werden.

Der Autor dieser Zeilen geht davon aus, dass es sogar ziemlich sicher solche weiteren Aspekte gibt, die bislang nur deshalb noch nicht Eingang in die Diskussion gefunden haben, weil die Theoriebildung im Bereich der Super-Galaxien der Körper und dann noch umfassender der gesamten  biologischen Evolution noch nicht allzu weit
fortgeschritten ist. Sie steht noch ziemlich am Anfang.

V. ANHANG : RECHENVORSCHRIFTEN

Für die einfachen Rechnungen habe ich die Sprache python (Siehe Rossum (2017) [RPDT17]) in Version 3.5.2 benutzt.

# hscomplex.py
# author: Gerd Doeben-Henisch
# idea: comparing the complexity of humans (homo sapiens, hs) with the milky way galaxy
# See paper: cognitiveagent.org, February-18, 2018

#######################
# IMPORT MODULES
########################
import math
#########################
# GLOBAL VALUES
##########################
bodycells = 37200000000000
inbodycells = 100000000000000
milkyway = 300000000000
bodygalaxy=bodycells+inbodycells
gliacells = 100000000000
ratioglianeuron = 1/1
neurons = gliacells *ratioglianeuron
braincells = neurons + gliacells
#########################
# CALCULATIONS
##########################
bodygalaxymilkywayunits=bodygalaxy/milkyway

print(’Number of Milky Way Objects possible within Body-Galaxy =’,bodygalaxymilkywayunits)
percentmilkywaybody=milkyway/(bodygalaxy/100)
print(’Percentage of Milky Way object within Body-Galaxy =’,percentmilkywaybody)
percentbrainbody=braincells/(bodygalaxy/100)
print(’Percentage of Brain object within Body-Galaxy =’, percentbrainbody)
percentbodybact=bodycells/(bodygalaxy/100)
print(’Percentage of body cells within body-galaxy =’,percentbodybact)
radiusinbody=math.sqrt((inbodycells/math.pi)*4)/2
radiusmilkyway=math.sqrt((milkyway/math.pi)*4)/2
radiusbodygalaxy=math.sqrt((bodygalaxy/math.pi)*4)/2
radiusinbodybodygalaxy=radiusinbody/radiusbodygalaxy
print(’Proportion of radius inbody cells to radius body galaxy =’,radiusinbodybodygalaxy)
radiusmilkywaybodygalaxy=radiusmilkyway/radiusbodygalaxy
print(’Proportion of radius milky way to radius body galaxy =’, radiusmilkywaybodygalaxy)
radiusbrain=math.sqrt((braincells/math.pi)*4)/2
radiusbraincellsbodygalaxy=radiusbrain/radiusbodygalaxy
print(’Proportion of radius brain to radius body galaxy =’, radiusbraincellsbodygalaxy)

VI. ANHANG : AUSFÜHRUNG VON RECHENVORSCHRIFTEN

(eml) gerd@Doeben-Henisch: ̃/environments/eml/nat$ python hscomplex.py
Number of Milky Way Objects possible within Body-Galaxy = 457.3333333333333
Percentage of Milky Way object within Body-Galaxy = 0.21865889212827988
Percentage of Brain object within Body-Galaxy = 0.1457725947521866
Percentage of body cells within body-galaxy = 27.113702623906704
Proportion of radius inbody cells to radius body galaxy = 0.8537347209531384
Proportion of radius milky way to radius body galaxy = 0.04676097647914122
Proportion of radius brain to radius body galaxy = 0.038180177416060626

QUELLEN

[AJL + 15] B. Alberts, A. Johnson, J. Lewis, D. Morgan, M. Raff, K. Roberts, and P. Walter. Molecular Biology of the Cell. Garland Science,
Taylor & Francis Group, LLC, Abington (UK) – New York, 6 edition, 2015.
[BS06] Niels Birbaumer and Robert F. Schmidt. Biologische Psychologie. Springer, Heidelberg, 6 edition, 2006.
[Keg15] Bernhard Kegel. Die Herrscher der Welt. DuMont, Köln (DE), 1 edition, 2015.
[Mas15] Maggie Masetti. How many stars in the milky way? blueshift, 2015. https://asd.gsfc.nasa.gov/blueshift/index.php/2015/07/22/how-
many-stars-in-the-milky-way.
[RPDT17] Guido van Rossum and Python-Development-Team. The Python Language Reference, Release 3.6.3. Python Software Foundation,
Email: docs@python.org, 1 edition, 2017. https://docs.python.org/3/download.html.
[vBBHH16] Christopher S. von Bartheld, Jami Bahney, and Suzana Herculano-Houzel. The search for true numbers of neurons and glial cells
in the human brain: A review of 150 years of cell counting. Journal of Comparative Neurology, 524(18):3865–3895, 2016.

KONTEXT BLOG

Einen Überblick über alle Blogeinträge von Autor cagent nach Titeln findet sich HIER.

Einen Überblick über alle Themenbereiche des Blogs findet sich HIER.

Das aktuelle Publikationsinteresse des Blogs findet sich HIER

BLICK IN DAS INNERE DES UNIVERSUMS – NICK LANE – LIFE ASCENDING – BESPRECHUNG – Teil 2

Nick Lane, „Life Ascending“, London: Profile Books Ltd, 2009 (Paperback 2010)

KONTEXT

  1. Im vorausgehenden Teil 1 wurde nach einer kurzen Einleitung die Entstehung des Lebens im Lichte neuerer Erkenntnisse skizziert. Wer dadurch neugierig geworden ist, sei ermuntert, den Text von Lane und die angegebenen zusätzlichen Artikel und Bücher selbst zu lesen. In dieser Besprechung können nur die großen Linien angesprochen werden und mögliche Zusammenhänge mit dem Thema dieses Blogs. Interessant vielleicht auch die Nachbemerkungen zur Besprechung in Teil 1.
  2. Nachdem in Teil 1 neuere Forschungsergebnisse andeuten, wie sich das biologische Leben (= das Leben) im Rahmen der allgemeinen physikalischen (und chemischen) Gesetze in Form von grundlegenden hoch stabilen metabolischen Prozessketten formieren konnte, stellt sich die Folgefrage, wie der Weg von diesen komplexen, und doch – verglichen mit den späteren biologischen Strukturen – noch so einfachen Strukturen zu den eigentlichen Selbstreproduktionsmechanismen kommen konnte.

DNA – Der Code des Lebens (SS.34-59)

  1. Lane beginnt mit dem Sachverhalt, dass die Reproduktion einer Zelle letztlich gesteuert wird vom sogenannten Genom, das aus einer endlichen Menge von DNA-Molekülen besteht, wobei jedes DNA-Molekül jeweils in einem Doppelstrang ausgeführt ist. In diesem Doppelstrang bildet jedes Element ein Paar aus zwei Basen.
  2. [Anmerkung: ein DNA-Molekül bildet zusammen mit weiteren Elementen ein Chromatin. Ein Chromosom enthält – je nach Zellphase – entweder genau ein Chromatin oder ein Chromatin und seine Kopie (bei der Zellteilung werden diese beiden auf auf zwei neue Zellen als Schwester-Chromatine aufgeteilt). Die Gesamtheit der Chromosome bildet das Genom.]
  3. [Anmerkung: ein Grundelement (Nukleotid) der DNA besteht aus einem Strukturelement (einem Zucker-Phosphat Molekül), an das sich eine Base anlagern kann. Zwei solche Nukleotide können sich dann über die Basen komplementär zu einem Paar verbinden. (vgl. CELL S.3)]
  4. Es gibt vier Basen Adenin (A), Thymin (T), Guanin (G) und Cytosin (C). Dazu gibt es die starke chemische Tendenz, dass A sich nur an T bindet und C nur an G. Dadurch sind die beiden Stränge komplementär. (vgl. S.34f) Die Anordnung nutzt also eine vorgegebene chemische Bindungstendenz aus.
  5. Die Gesamtzahl der Nukleoide in einem menschlichen Genom wird auf ca. 3 Mrd (10^9) geschätzt. Bei ca. 15 Billionen (10^12) Körperzellen [Anmerkung: neuere Schätzungen gehen auf ca. 34 Billionen) bedeutet dies, dass das Genom 15 Billionen Mal (und öfters, da ja Körperzellen absterben und wieder ersetzt werden müssen) kopiert werden muss. Bei einer geschätzten Fehlerrate von 1 Nukleotid in 1 Mrd bedeutet dies, dass bei einer Kopie ca. 3 Fehler auftreten. Der Unterschied zwischen Menschen wird auf ca. 1 Unterschied pro 1000 Nukleotide geschätzt, also ca. 3 Mio; Lane spricht von 6-10 Mio. (vgl. SS.36-38)
  6. Beispiel: Die Trennung vom Schimpansen soll ca. vor 6 Mio Jahren geschehen sein. Die empirisch ermittelte Abweichungen werden mit 1,4% angegeben, also jede Art hat ca. 0.7% ihres Genoms in dieser Zeit verändert [Anmerkung: Bei einer angenommenen Generationendauer von 30 Jahren ergäben sich ca. 1050 Änderungen an Nukleotiden pro Generation auf jeder Seite].(vgl. S.38)
  7. Das Wissen um die Kombinatorik der Basen auf einem DNA-Molekül nützt allerdings letztlich nur dann etwas, wenn man auch weiß, welche potentiellen Strukturen und ihre lebensweltbezogenen Funktionen damit kodiert werden.(vgl. S.39) In der Zeit vor der Entdeckung von Watson und Crick 1953 waren die Details der biochemischen Maschinerie unbekannt.(vgl. S.40f)
  8. Nur langsam entdeckte man, dass die Proteine außerhalb des Zellkerns über die Zwischenstationen Messenger RNA (mRNA) (erste Kopie von DNA-Abschnitten) und Transfer RNA (tRNA) (Rückübersetzung) und Ribosom (Zusammenbau von Aminosäuren anhand der tRNA-Informationen) erzeugt werden. Und nur langsam entdeckte man, dass jeweils vier Nukleotide aus der DNA ein Codon bilden, das für genau eine Aminosäure steht, deren Aneinanderreihung ein Protein (bei kürzeren Formen spricht man von einem Peptid) ergibt. Während 4^4 = 64 Kombinationen mit einem Codon möglich wären, schätzten Crick und Watson damals die Zahl der relevanten Aminosäuren für biogene Proteine auf 20. [Anmerkung: im menschlichen Körper kommen 21 verschiedene Aminosäuren vor. Insgesamt sind heute 23 Aminosäuren bekannt, die bei Proteinen Verwendung finden (wobei heute mehr als 400 Aminosäuren bekannt sind, die biologisch wichtig sind aber nicht in Proteinen vorkommt).] Es stellte sich heraus, dass der Kode redundant ist: es können mehrere verschiedene Codons die gleiche Aminosäure kodieren. Drei von 64 Codons dienen als STOP-Signal. Da dieser Kode universell für alle Lebensformen gilt wird daraus geschlossen, dass alle diese Lebensformen einen gemeinsamen Vorläufer gehabt haben müssen, von dem diese Kodierung übernommen wurde. (vgl. SS.39-45) Crick entwickelte daraus die These (1981), dass das Leben von außerhalb der Erde kam (Raumschiff, Aliens,…), und sich dann hier ausgebreitet hat.
  9. Die Hypothese von Crick wurde durch den Gang der Forschung überholt. Generell erschien die Hypothese von Crick auch nicht sehr plausibel, da das Auftreten von komplexen Molekülen ohne entsprechende Umgebungen wenig Chancen bietet, dass diese Moleküle überleben.(vgl. S.45f)
  10. Realistischer erschienen solche Hypothesen, die aufzeigen können, wie die Elemente von Aminosäuren aus Vorläufermaterial aus vorgegebenen Umgebungen rekrutiert werden konnten.(vgl. S.46)
  11. Und in der Tat, man entdeckte nach und nach, dass es einen Kode in den Codons gibt! Die Codons mit ihren vier Elementen haben Positionen 1-4. Ein einzelnes Codon steht nicht nur irgendwie für eine bestimmte Aminosäure, sondern die Abfolge der Elemente im Codon steuern sehr stark auch den Prozess der Aminosäurebildung! So fand man heraus, dass es folgenden Zusammenhang gibt: ein C an erster Stelle legt fest, dass als erster Baustein bei der Aminosäureherstellung ein alpha-ketoglutarate benutzt werden soll; ein A an erster Stelle legt fest, dass als erster Baustein bei der Aminosäureherstellung ein oxalocetate benutzt werden soll; ein T steht für pyruvate; ein G steht für eine beliebige Anzahl von einfachen Vorläufern.(vgl.S46f und Fußnote 5)
  12. Die zweite Position im Codon reguliert, wo im Spektrum zwischen hydrophob und hydrophil sich die Aminosäure ansiedeln soll: die fünf häufigsten hydrophoben Elemente korrespondieren mit T an Position 2; die meisten hydrophilen Elemente mit dem Element A; G und C stehen für Elemente in der Mitte des Spektrums.(vgl. S.47)
  13. Position 3 und 4 lassen keine feste Kodierung erkennen. Dies deutet darauf hin, dass die frühen Vorformen des DNA-Kodes möglicherweise nur 2 Elemente hatten, die stark deterministisch waren. Experimente mit Punktmutationen zeigen, dass der genetische Kode verglichen mit zufälligen Anordnungen extrem stabil ist. Er stellt eine interessante Kombination dar aus einem sehr konservativem Anteil (Position 1-2), und einem experimentellen Anteil (Positionen 3-4).(vgl. SS.47-49)
  14. Bleibt als Frage, wie kam der Prozess zustande, in dem DNA eine Proteinproduktion steuert, wo aber DNA spezifische Proteine für ihr Funktionieren voraussetzt und die spezifischen Proteine eben DNA?(vgl.S.49)
  15. Eine Lösung deutet sich an über RNA Moleküle: diese sind flexibler und können als Katalysatoren wirken, die zur Bildung jener ersten Proteine geführt haben, die wiederum Vorformen von DNA-Molekülen ermöglichten.(vgl.49-51)
  16. Allerdings, wo kommen diese RNA-Moleküle her? Man weiß, dass RNA-Moleküle sich nur bei hohen Konzentrationen bilden können, da sie beim Zusammenbau Nukleotide verbrauchen. Wo findet man solche hohen Konzentrationen? Die Entdeckung der unterseeischen Schlote eröffnet ein mögliches Szenario. Modellrechnungen zeigten, dass die Wahrscheinlichkeit sehr hoch ist, dass sich in solchen Schloten (speziell in den Poren des Gesteins) solche hohen Konzentrationen von RNA-Molekülen bilden können. Simuliert man RNA-Moleküle isoliert, dann tendieren sie dazu, sich nur mit einer minimalen Struktur fortzupflanzen, nur genau so viele Elemente, wie zur Reproduktion notwendig sind (die berühmten ‚Spiegelmann Monster‘). Dieses Modell ist offensichtlich nicht dazu geeignet, die Bildung komplexer RNA-Moleküle, dazu noch in Kooperation mit Proteinbildung zu erklären. Eine Lösung muss in einem umfassenderen Rahmen gesucht werden, in dem die RNA-Moleküle nur eine Teilkomponenten sind. Dieser umfassenderer Rahmen wurde wieder in der Struktur der unterseeischen Schlote gesehen. Die Poren bilden natürliche Umgebungen, die wie eine Zelle wirken, in der komplexere metabolische Prozesse ablaufen können, in deren Kontext die RNA-Moleküle nur eine Teilfunktion haben.(vgl. S.53-55)
  17. Zum Thema umfassender Rahmen gehören auch die Entdeckungen, dass aufgrund genetischer Strukturen die Eukaryotischen Zellen (jene mit einem Zellkern) von den Archaeen abstammen, diese wiederum haben sehr viel mit den Bakterien gemeinsam. Letztere beiden unterscheiden sich aber bei der DNA Replikation, was so gedeutet wird, dass beide einen gemeinsamen Vorläufer haben müssen, von dem sie sich unterschiedlich weiter entwickelt haben.(vgl.S.55f)
  18. Die Arbeitshypothesen laufen darauf hinaus, dass die flexibleren RNA-Moleküle zwischen Proteinerzeugung und DNA-Bildung vermittelt haben (nach dem Muster von Retroviren?). Erst in dem Maße, wie sich die stabileren DNA-Moleküle bilden konnten, war auf Dauer eine Reproduktion gesichert. Für die beiden chemischen Unterschiede von RNA- und DNA-Molekülen gibt es genügend chemische Bestandteile in der unterseeischen Schlotumgebung, so dass eine DNA-Erzeugung aus RNA-Molekülen prinzipiell möglich erscheint.(vgl. SS.55-59)

DISKURS

  1. Die Details der neuen Erkenntnisse können einen erschlagen, und doch ist dies ja nur die berühmte Spitze des Eisbergs. Hinter diesen Fakten verbergen sich hochkomplexe Prozesse und entsprechend aufwendige Forschungen, die hier natürlich nicht beschrieben werden können. Nick Lane macht das großartig.
  2. Aber, treten wir ein paar Schritte zurück und fragen uns, was sich in diesen vielen Fakten an allgemeineren Strukturen andeutet.
  3. Offensichtlich nimmt man aktuell an, dass man mindestens die folgenden Strukturen unterscheiden sollte:
  4. Die heutigen eukaryotischen Zellen (Z_eu) (Zellen mit einem komplexen Kern und vielen Teilstrukturen inklusive ganzer ehemaliger Bakterien).
  5. Die heutigen Prokarytischen Zellen (Z_pro) als Bakterien (Z_ba) und die Archaeen (Z_ar)
  6. Eine Erzeugungsbeziehung zwischen Archaeen und Eukaryoten (g_ar.eu : Z_ar —> Z_eu)
  7. Bei dieser Erzeugungsbeziehung sind weitere Einflussfaktoren durch horizontalen Genaustausch nicht völlig ausgeschlossen.
  8. Es soll einen gemeinsamen Vorläufer (Z_pre) von Archaeen und Bakterien geben.
  9. Entsprechend muss es auch eine Erzeugungsbeziehung geben: g_pre.ar.ba: Z_pre —> Z_ba u Z_ar.
  10. Diese Strukturen und Erzeugungsbeziehungen haben nicht im Nichts stattgefunden, sondern haben geeignete Umgebungen ENV benötigt, die sowohl in großen Mengen und kontinuierlich die notwendigen Ausgangsmaterialien M0 bereit halten konnten wie auch die notwendigen Temperaturgefälle DT für die Ermöglichung der chemischen Prozesse: ENV = <M0, DT, Z_pre, Z_ba, Z_ar, Z_eu, g_pre.ar.ba, g_ar.eu>
  11. Ferner wird angenommen, dass die allgemeinen physikalisch-chemischen Gesetze (G) gelten und ausschließlich diese für das Auftreten und das Reagieren der verschiedenen beteiligten Materialien zuständig sind, also ENV = <M0, DT, Z_pre, Z_ba, Z_ar, Z_eu, g_pre.ar.ba, g_ar.eu, G>
  12. Dazu gehören auch jene Entstehungsprozesse, die aus den Ausgangsmaterialien M0 die Vorläuferzelle Z_pre hat entstehen lassen, also g_0: ENV x TD x M0 —> Z_pre, also ENV = <M0, DT, Z_pre, Z_ba, Z_ar, Z_eu, g_0, g_pre.ar.ba, g_ar.eu, G>
  13. Für den Bereich der eukaryotischen Zellen Z_eu werden mindestens angenommen DNA-Moleküle, Boten-RNA (mRNA), Transfer RNA (tRNA), ribosomale RNA (ribRNA) und Proteine PROT. Dazu weitere Großstrukturen wie Chromatin(e), Chromosomen, Mitochondrien, usw.
  14. Im Bereich der Erzeugungsprozesse muss man ferner eine Art zeitliche und logische Abhängigkeit annehmen, indem der jeweils spätere Hervorbringungsprozess andere frühere voraussetzt, also: G < g_0 < g_pre.ar.ba < g_ar.eu.
  15. Jeder dieser Hervorbringungsprozesse wiederum zeigt sich nicht im Nichts sondern nur beim Vorhandensein spezifischer Materialien M, die in ihrem beobachtbaren Verhalten phi indirekt das Wirken spezifischer Gesetze manifestieren. Ohne die Beobachtbarkeit spezifischer Materialien und deren Verhalten (Newtons berühmter Apfel, die Planetenbahnen der alten Astronomen, magnetische Kräfte, Vulkanausbrüche, geologische Ablagerungen usw.) wäre es nicht möglich, auf dahinter/ darunter/ damit .. wirkende Kräfte phi zu schließen, die man dann in Form von symbolischen Darstellungen als gesetzmäßige Beziehungen (Relationen, Funktionen, Axiome) beschreibt.
  16. Während das menschliche Denken beim Vorliegen von irgendwelchen beobachtbaren Materialien, deren Eigenschaften und Veränderungen spontan dazu neigt, diese als gegeben, als auftretend, als seiend, als objektiv, als Objekte zu unterstellen, tut sich das gleiche Denken sehr schwer, das durch diese Materialien sichtbare werdende Verhalten phi in gleicher Weise als gegeben, seiend, objektiv vorkommend zu denken.
  17. Obgleich die beobachtbaren Materialien ohne dieses unterstellte Verhalten sich in keiner Weise verändern würden, zögern wir, aus den beobachtbaren Veränderungen auf eine interne Eigenschaft der Materialien zu schließen. Im Falle von tierischen Lebewesen wissen wir mittlerweile, dass das gesamte Verhalten in einem Nervensystem gründet, das im Innern des Systems angeordnet ist und von da aus das Verhalten steuert. Aber wir tun  uns schwer, in analoger Weise anzunehmen, dass das überall beobachtbare Verhalten von Materialien nicht auch von Strukturen abhängig ist, die im Innern der Materialien zu verorten sind.
  18. Bei chemischen Molekülen unterstellt man die atomare Struktur mit den unterschiedlichen Bestandteilen, Ladungen und Reaktionstendenzen, die in Wechselwirkung mit der jeweiligen Umgebung sich spezifisch verändern können.
  19. Bei Atomen bleiben einem nur noch die unterscheidbaren Teilchen, aber auch diese haben mathematisch beschreibbare ( wenngleich in Form von Möglichkeitsräumen) Verhaltenstendenzen.
  20. Dann bleibt als letzter Referenzpunkt nur die reine Energie E. Diese kann man nicht direkt beobachten, nur in ihren Wirkungen. Mit anderen Worten, die Energie E enthält sowohl alle potentiellen Materialeigenschaften wie auch die dazu gehörigen Verhaltenstendenzen. In diesem Sinne repräsentiert die Energie E eine Art Superobjekt, in dem die in der Makrowelt bekannte Unterscheidung zwischen materiellen Strukturen und Verhalten nicht mehr gilt. Energie als Superobjekt beinhaltet Materie und deren Verhalten in einem. Um diesen Sachverhalt auszudrücken, ist die bekannte Formel von Einstein e = mc^2 möglicherweise zu ungenau. Sie bietet keine Möglichkeit, zwischen materiellen Strukturen und Verhalten zu unterscheiden. Das beobachtbare Verhalten ist aber genau die Sprache, in der sich das Innere der Dinge mitteilt. Alles,was uns Menschen fasziniert, das sind die Erscheinungen der Veränderungen, ihre Vielfalt, ihre Abfolge. Liebe enthüllt sich nur im Gewandte solcher Veränderungen, genauso wie Hass oder Treue. Wissen ist eingeflochten in eine Vielzahl von Strukturen und deren Veränderungen.
  21. Sowohl die Entwicklung des Universums vor dem ersten Auftreten von Leben wie erst recht dann mit dem Auftreten biologischer Strukturen ist ein Prozess immer komplexerer Verhaltensweisen, die in ihrer Dynamik Gesetze, Regeln, Strukturen erkennen lassen, die den Blick immer tiefer in das Innere aller Dinge öffnen. Das ist eigentlich unfassbar fantastisch, aber es scheint niemand besonders zu rühren.

Keine direkte, aber inhaltlich passende Fortsetzung könnte DIESE sein.

WEITERE QUELLEN/ LINKS (Selektiv)

  • Freie Protein-Datenbank: http://www.ebi.ac.uk/pdbe/ (siehe auch http://proteopedia.org/wiki/index.php/Main_Page )
  • Visualisierung von Proteindaten: https://de.wikipedia.org/wiki/Jmol und http://wiki.jmol.org/index.php/Jmol_Application#Starting_Jmol_Application
  • Proteine (Peptide): https://de.wikipedia.org/wiki/Protein
  • Aminosäuren: https://de.wikipedia.org/wiki/Aminos%C3%A4uren
  • Alpha-Ketoglutarate: https://en.wikipedia.org/wiki/Alpha-Ketoglutaric_acid
  • oxalocetate: https://en.wikipedia.org/wiki/Oxaloacetic_acid
  • Pyruvate: https://en.wikipedia.org/wiki/Pyruvic_acid
  • Punktmutation: https://de.wikipedia.org/wiki/Punktmutation
  • Spiegelmann Monster: https://de.wikipedia.org/wiki/Spiegelmans_Monster
  • Bakterien: https://de.wikipedia.org/wiki/Bakterien
  • Achaeen: https://de.wikipedia.org/wiki/Archaeen
  • Eukaryoten: https://de.wikipedia.org/wiki/Eukaryoten
  • Retroviren: https://de.wikipedia.org/wiki/Retroviren
  • Chromosom: https://de.wikipedia.org/wiki/Chromosom
  • Chromatin: https://de.wikipedia.org/wiki/Chromatin
  • CELL: B.Alberts, A.Johnson, J.Lewis (und andere), Molecular Biology of THE CELL, 6.Aufl., 2015, New York: Garland Science, Taylor and Francis Group, LLC.
  • V.Storch, U.Welsch, M.Wink (und andere), Evolutionsbiologie,3.überarbeitete und aktualisiere Aufl., 2013, Berlin – Heidelberg: Springer-Verlag
  • Francis Harry Compton Crick, Nobelpreisrede: http://www.nobelprize.org/nobel_prizes/medicine/laureates/1962/crick-lecture.html
  • Francis Harry Compton Crick Life Itself: Its Origin and Nature (Simon & Schuster, 1981) ISBN 0-671-25562-2
  • DNA WikiEN: https://en.wikipedia.org/wiki/DNA
  • RNA: https://de.wikipedia.org/wiki/Ribonukleins%C3%A4ure
  • Harold Morowitz: https://en.wikipedia.org/wiki/Harold_J._Morowitz (ein großes Thema: Wechselwirkung von Thermodynamik und Leben)
  • Michael J.Russel et al: http://www.gla.ac.uk/projects/originoflife/html/2001/pdf_articles.htm: The Origin of Life research project by Michael J. Russell & Allan J. Hall , University of Glasgow, May 2011
  • Krebs-Zyklus: https://en.wikipedia.org/wiki/Citric_acid_cycle
  • Martin W, Russell MJ., On the origin of biochemistry at an alkaline hydrothermal vent. , Philos Trans R Soc Lond B Biol Sci. 2007 Oct 29; 362(1486):1887-925.
  • Martin W, Baross J, Kelley D, Russell MJ., Hydrothermal vents and the origin of life., Nat Rev Microbiol. 2008 Nov; 6(11):805-14.
  • Harold Morowitz und Eric Smith , Energy flow and the organization of life , Journal Complexity archive, Vol. 13, Issue 1, September 2007, SS. 51 – 59 ,John Wiley & Sons, Inc. New York, NY, USA

Einen Überblick über alle Blogeinträge des Autors cagent nach Titeln findet sich HIER.