Archiv der Kategorie: DNA als Gedächtnis

INDIVIDUUM ALS BINDEGLIED ZWISCHEN BIOLOGISCHEM UND SOZIALEM – Nachtrag

  1. Nach den beiden vorausgehenden – nicht gerade leicht lesbaren – Beiträgen zum Versuch einer Periodisierung der biologischen Evolution anhand eines frei gewählten Komplexitätskriteriums, schälte sich heraus, dass die Besonderheiten des Biologischen sich mit bloßen systemtheoretischen Strukturen nicht fassen lässt. Man kann zwar eine bestimmte Form von Komplexität sichtbar machen, aber das empirisch vorkommende Phänomen des Biologischen kann man auf diese Weise kaum fassen

    Das Individuum als Bindeglied zwischen der biologischen und der sozialen Dimension
    Das Individuum als Bindeglied zwischen der biologischen und der sozialen Dimension
  2. Das Biologische involviert vom Start weg komplexe Kontexte (Erde, Sonnensystem, Galaxie, Universum) und innerhalb des Kontextes Erde sind vom Start weg viele Dimension gleichzeitig wirksam (Eigenschaften der Atome und Moleküle, Umgebungsbeschaffenheiten (Meer, …, Temperaturen, …), Energieverfügbarkeit, chemische Gradienten, Magnetfelder, …). Von Beginn an sind es außerdem komplexe physikalisch-chemische Prozesse, die Prozessumgebungen bereitstellen, innerhalb deren dann eben chemische Prozesse ablaufen können, die zu ihrer eigenen Kodierung und Reproduktion führen. Das ist in vielfacher Hinsicht bemerkenswert, erstaunlich, schwer fassbar, aber, wie sich zeigt, extrem effektiv.
  3. Die Selbstkodierung von Prozessen inklusive Reproduktionsmechanismen führt zu einer ersten generischen Wissensmaschine (genannt Zelle), die schon auf dieser Ebene das Potential hat, die Menge aller verfügbaren Veränderungen der aktuellen Umgebung zu lernen und kontinuierlich weiter zu entwickeln! Zunächst ist die aktuelle Umgebung – nach heutigem Kenntnisstand – der Ozean; später kam das Land hinzu und dann auch die Luft.
  4. Die biologische Ära des Lebens war aber gebunden an den Wissensspeicher DNA und jene molekularen Mechanismen, diese zu dekodieren, die dekodierten Informationen chemisch in neue Zellstrukturen zu transformieren. Eine Steigerung der Leistungsfähigkeit war lange nur möglich über die Kooperation von Zellen untereinander. Dies verlangte eine effektive Kommunikation zwischen Zellen. Wenn man weiß, wie schwer sich zwei Menschen tun können, sich selbst über die einfachsten Dinge zu einigen, dann kann man versuchen zu ahnen, was es bedeutet, dass die biologischen Zellen es geschafft haben, im menschlichen Körper ca. 150 Galaxien an Zellen (vom Format der Milchstraße) dazu zu bringen, miteinander im Millisekundenbereich miteinander so zu kooperieren, dass es für Außenstehende aussieht, als ob da ein geschlossenes System auftritt (ein Mensch kann sich so fokussieren, dass er eine Zeitlang nur spielt, oder Musik hört, oder zeichnet oder jemandem zuhört oder Klavier spielt oder …), und während dieser Zeit machen Milliarden, Billionen von Zellen irgendwelche anderen Dinge, aber so, dass diese eine Tätigkeit nicht gestört wird.
  5. Nach fast 13.8 Mrd Jahren Weltzeit und ca. 3.8 Mrd Jahren biologischer Zeit gab es dann spätestens mit dem homo sapiens eine Lebensform, deren Gehirn die Fähigkeit zum subjektiven Bewusstsein ausgebildet hatte, mittels dem biologische Systeme mit einem Mal auf einer abstrakt-virtuellen Ebene mit anderen biologischen Systemen unabhängig vom DNA-basierten Wissen aktuelle Ereignisse wahrnehmen, abstrahieren, speichern, erinnern, verändern, kombinieren und mittels zeichenbasierten Systemen akut kommunizieren konnten.
  6. Das eröffnete eine völlig neue Ebene der Wirklichkeitswahrnehmung und deren potentielle Veränderung. Mit einem Mal dauerten Veränderungen nicht mehr viele Generationen der Reproduktion, sondern nun diktierte die Geschwindigkeit des Denkens (Lernen, Planen, …) und kommunikativ vermittelten Kooperierens den Takt möglicher Veränderung.
  7. Während die moderne Physik den Begriff des ‚Wurmlochs‘ erfunden hat, um eine mögliche Verbindung zwischen zwei Universen beschreiben zu können, ist hier ein neuer Typ von biologischem System in der Lage, von den starren Strukturen des molekularen Wissens durchzutunneln zu den flexiblen Strukturen abstrakt-virtuellen Wissens.
  8. Die molekulare Maschinerie des Körpers hat sich mit dem Gehirn und darin der Struktur des Bewusstseins eine Möglichkeit geschaffen, molekular-biologisch verankert zu sein und zugleich einen anscheinend ungehemmten Blick in die Gegenwart, die Vergangenheit und die Zukunft aufbauen zu können.
  9. Die konkrete Empirie eines homo sapiens Körpers zeigt zwar viele konkrete, endliche Rahmenbedingungen im Bereich des Wahrnehmens, Speicherns, Erinnerns, Vorstellens usw., doch die generische Struktur dieser Art des Wissens lässt sich mit technischen Vorrichtungen in viele Richtungen verstärken (künstliche Sensoren und Aktoren, technische Wissensspeicher und Rechenvorrichtungen, Algorithmen zur Fixierung wichtiger Prozesse …). Damit folgt der Revolution durch den homo sapiens als virtuellem Wissensprozessor sehr schnell eine ganze Wolke von technischen Revolutionen, die den Bereich des virtuellen Wissens explosionsartig ausdehnen lassen.
  10. Hatte der homo sapiens für einen Wimpernschlag der Universalgeschichte die Vision des Individuums als zentraler Bezugsgröße angedacht, so stellt er sich mit seinen eigenen Erfindungen selbst radikal in Frage: der generische virtuelle Wissensraum, der potentiell alles Materielle verändern kann, kennt keine Individuen. Was ist mit dem Individuum von Typ eines homo sapiens? War dies nur ein extrem kurzer Traum oder steht das biologische Leben vor seiner nächsten großen Entdeckung? Alle bekannten sogenannten Religionen sind aus Sicht des modernen Wissens ‚Wissensschrott‘; sie stimmen vorne und hinten nicht; war es das mit einem potentiellen Schöpfer-Gott oder haben wir wichtige Dinge einfach noch nicht gut genug verstanden?
  11. Da wir fast alles noch kaum verstehen, nur ansatzweise, fragmentarisch, müssen wir bereit sein, dass neue Erkenntnisse alles, was wir bisher kennen, nochmals komplett auf den Kopf zu stellen oder von innen nach außen drehen oder …. Das Tröstliche an allem ist, wir sind keine ‚Fremden‘ in diesem Prozess; wir alle sind Teil dieses unfassbaren Lebensprozesses, wir sind ‚ins Spiel gebracht worden‘, wir erleben es, können handeln auch wenn es so unfassbar unbedeutend erscheinen mag. Selbst die größten Diktatoren einer Zeit oder die größten egoistischen Kapitalisten haben keine wirkliche Chance, wenn sie gegen den Prozess arbeiten. Bildung mit wahrem Wissen und Kommunikation sind die zentralen Treiber des Lebens. Die Zukunft beginnt immer jetzt, in diesem Moment. Jetzt entscheiden wir, wo wir morgen stehen werden. Wer nach hinten schaut oder bewahren will, was jetzt ist, hat schon verloren.

Einen Überblick über alle Blogeinträge von Autor cagent nach Titeln findet sich HIER.

Einen Überblick über alle Themenbereiche des Blogs findet sich HIER.

DENKEN UND WERTE – DER TREIBSATZ FÜR ZUKÜNFTIGE WELTEN (Teil 1)

  1. In dem Beitrag Digitalisierung und die Religionen vom 9.März 2016 gibt es neben vielen anderen Motiven zwei Motive, die besonders hervortreten: einmal das Momentum (i) kombinatorischer Räume, die gefüllt werden können, und zum anderen (ii) das Momentum der Auswahl, welche Teilräume wie gefüllt werden sollen.

KOMBINATORISCHER RAUM BIOLOGISCHE ZELLE

  1. Im Rahmen der biologischen Evolution auf Zellebene z.B. eröffnet sich der kombinatorische Raum an verschiedenen Stellen. Eine ist jene, wo das Übersetzungsmolekül (das Ribosom) von den gespeicherten potentiellen Informationen (DNA mit ihren Abwandlungen) eine Transformation in andere Moleküle (Proteine) überleitet , mit denen sich neue Zellstrukturen aufbauen lassen. Die Verfügbarkeit dieser Proteine, ihre chemischen Eigenschaften und die Umgebungseigenschaften definieren einen potentiellen kombinatorischen Raum, von dem im konkreten Übersetzungsprozess dann ein bestimmter Teilraum ausgewählt wird.
  2. Aber auch schon der potentielle Informationsspeicher (realisiert mittels DNA-Molekülen) selbst, wie auch seine verschiedenen Transformationsprozesse bis zum Übersetzungsprozess in Proteine repräsentieren ebenfalls kombinatorische Räume, deren Realisierung viel Spielraum zulässt.
  3. Man könnte diese molekülbasierte Informationsspeicherung, diese Transformationen der Moleküle, als eine Urform des Denkens ansehen: Moleküle fungieren als Repräsentanten möglicher Konstruktionsprozesse, und diese Repräsentanten können verändert, rekombiniert werden zu neuen Strukturen, die dann zu neuen Konstruktionsprozessen führen. Man hat also – vereinfacht – ein Funktion der Art repr: M_inf x M_tr x MMprot —> Z, d.h. die Reproduktionsfunktion repr die mittels Molekülen, die als Informationsträger fungieren (M_inf), mittels Molekülen (M_tr), die als Übersetzer fungieren und Molekülen (MM_prot), die als Proteine fungieren können, daraus neue Zellstrukturen entstehen lassen kann.

GELIEHENE PRÄFERENZEN

  1. So wundersam diese Urform des Denkens immer neue kombinatorische Räume strukturell aufspannen und dann im Reproduktionsprozess als reales Strukturen konkretisieren kann, so hilflos und arm ist dieser Mechanismus bei der Beurteilung, Bewertung, welche der möglichen Teilräume denn bevorzugt vor anderen realisiert werden sollten. Soll das Fell weiß oder schwarz sein? Benötigt man überhaupt Zähne? Wozu so komplizierte Hand- und Fingergelenke? Warum tausende Kilometer reisen, um zu brüten? … Die Urform des Denkens ist unfähig, ihre potentielle innere Vielfalt selbständig zu bewerten. Man kann auch sagen, die Urform des Denkens kann zwar kombinieren, ist aber blind wenn es darum geht, gezielt Teilräume auszuwählen, die sich als interessante Kandidaten für das Leben anbieten.
  2. Dabei ist schon die Wortwahl ‚interessante Kandidaten für das Leben‘ problematisch, da der Begriff Leben eine Schöpfung von Lebewesen ist, die viele Milliarden Jahre später erst auftreten und die versuchen im Nachhinein, von außen, durchtränkt von neuen Bedingungen, die zunächst bedeutungsleere Wortmarke Leben mit Bedeutung zu füllen. Die Urform des Denkens verfügt über keinen externen Begriff von Leben und es gibt keine Ingenieure, die der Urform des Denkens zuflüstern können, was sie tun sollen.

MOLEKÜLE ALS INFORMATIONSSPEICHER IMPLIZITE PRÄFERENZEN

  1. Allerdings beinhaltet schon die Urform des Denkens über ein Moment, das außerordentlich ist: jene Moleküle (DNA), die als Speicher potentieller Informationen dienen. Zu einem bestimmten Zeitpunkt repräsentieren diese Informations-Moleküle einen eng umgrenzten Teilraum eines kombinatorischen Raumes und wirken für den Übersetzungsprozess wie eine Art Anweisung in Form eines Bauplans. Gemessen an dem theoretisch möglichen kombinatorischen Raum stellt der Plan des Informationsmoleküls eine Auswahl dar, eine Selektion und damit zeigt sich hier eine indirekte Präferenz für die Informationen auf dem Molekül vor allen anderen möglichen Informationen. Die Urform des Denkens kann zwar im Prinzip einen riesigen potentiellen kombinatorischen Raum repräsentieren und transformieren, die konkrete Zelle aber repräsentiert in diesem riesigen Raum einen winzigen Teilbereich, mit einem aktuellen Ausgangspunkt – gegeben durch die aktuellen Informationen auf dem Informationsmolekül M_inf – und potentiellen Veränderungsrichtungen – gegeben durch die Transformationsprozesse einschließlich der verfügbaren Materialien und Pannen im Prozess. Anders formuliert, die Informationsmoleküle repräsentieren eine komplexe Koordinate (KK) im kombinatorischen Raum und die Transformationsprozesse (einschließlich Pannen und Materialien) repräsentieren eine Menge von möglichen Veränderungsrichtungen (DD), an deren Endpunkten dann jeweils neue komplexe Koordinaten KK_neu_1, …, KK_neu_n liegen.
  2. Wichtig: eine Zelle enthält über die Informationsmoleküle zwar implizite Präferenzen/ Werte, die die Urform des Denkens steuern, diese Präferenzen werden aber nicht von der Zelle selbst generiert, sondern entstehen aus einem Wechselspiel/ aus einer Interaktion mit der Umgebung! Biologische Strukturen (bis heute nur bekannt auf dem Planeten Erde in unserem Sonnensystem in einem geschützten Bereich der Galaxie Milchstraße des uns bekannten Universums) kommen nie isoliert vor, sondern als Teil einer Umgebung, die über sogenannte freie Energie verfügt.

OHNE ENERGIE GEHT NICHTS

  1. Biologische Zellen sind Gebilde, die für ihre Konstruktion und für ihr Funktionieren solche freie Energie brauchen. Der Umfang ihrer Strukturen wie auch die Dauer ihres Funktionierens hängt direkt und ausschließlich von der Verfügbarkeit solcher freien Energie ab. Bezogen auf den kombinatorischen Raum, der durch die Kombination (Informationsmoleküle, Transformationsmolekül, Bausteine) potentiell gegeben ist, ist unter Berücksichtigung der notwendigen Fähigkeit zum Finden und Verarbeiten von freier Energie nicht neutral! Definieren wir den potentiellen kombinatorischen Raum PKK für biologische Zellen als Raum für mögliche komplexe Koordination KK (also KK in PKK), dann sind im potentiellen kombinatorischen Raum nur jene Teilräume von Interesse, in denen die biologische Zelle über hinreichende Fähigkeiten verfügt, freie Energie zu finden und zu nutzen. Nennen wir die Gesamtheit dieser interessanten Teilräume PKK+, mit PKK+ subset PKK.

GEBORGTE PRÄFERENZEN

  1. Da die individuelle biologische Zelle selbst über keinerlei explizite Informationen verfügt, wo überall im potentiell kombinatorischen Raum PKK die interessanten Teilräume PKK+ liegen, stellt sie – trotz ihrer eigenen Reproduktionstätigkeit – eher ein passives Element dar, das sich mit geborgten Präferenzen im potentiellen kombinatorischen Raum PKK bewegt, ohne explizit wissen zu können, ob es auf seinem Weg durch den potentiellen kombinatorischen Raum PKK auch tatsächlich auf solche komplexen Koordinaten KK+ stößt, die ihr eine minimale Lebensfähigkeit erlauben.
  2. Da wir vom Jahr 2016 rückwärts blickend wissen, dass diese passiven Elemente es in ca. 4 Mrd Jahren geschafft haben, komplexe Strukturen unvorstellbaren Ausmaßes zu generieren (ein Exemplar des homo sapiens soll z.B. ca. 37 Billionen Körperzellen haben (davon ca. 100 Mrd als Gehirnzellen), dazu ca. 200 Billionen Bakterien in seinem Körper plus ca. 220 Milliarden auf seiner Haut (siehe dazu Kegel-Review Doeben-Henisch), muss man konstatieren, dass die permanente Interaktion zwischen biologischer Zelle und ihrer Umgebung offensichtlich in der Lage war, all diese wichtigen Informationen PKK+ im potentiellen kombinatorischen Raum PKK zu finden und zu nutzen!
  3. Für die Frage der potentiellen Präferenzen/ Werte gilt für diesen gesamten Zeitraum, dass sich die implizit gespeicherten Präferenzen nur dadurch bilden konnten, dass bestimmte generierte Strukturen (M_inf, M_tr, MM_prot) sich immer von einer positiven komplexen Koordinate zur nächsten positiven Koordinate bewegen konnten. Dadurch konnten die gespeicherten Informationen kumulieren. Aus der Evolutionsgeschichte wissen wir, dass ein Exemplar des homo sapiens im Jahr 2016 eine Erfolgsspur von fast 4 Mrd Jahren repräsentiert, während in diesem Zeitraum eine unfassbar große Zahl von zig Mrd anderen generierte Strukturen (M_inf, M_tr, MM_prot) irgendwann auf eine negative komplexe Koordinate KK- geraten sind. Das war ihr Ende.

ERHÖHUNG DER ERFOLGSWAHRSCHEINLICHKEIT

  1. Für den Zeitraum bis zum Auftreten des homo sapiens müssen wir konstatieren, dass es Präferenzen/ Werte für ein biologisches System nur implizit geben konnte, als Erinnerung an einen erreichten Erfolg im Kampf um freie Energie. Unter Voraussetzung, dass die umgebende Erde einigermaßen konstant war, war die Wahrscheinlichkeit, von einer positiven Koordinate KK+ zu einer weiteren komplexen Koordinate KK+ zu kommen um ein Vielfaches höher als wenn das biologische System nur rein zufällig hätte suchen müssen. Die gespeicherten Informationen in den Informationsmolekülen M_inf stellen somit sowohl erste Abstraktionen von potentiellen Eigenschaften wie auch von Prozessen dar. Damit war es Anfangshaft möglich, die impliziten Gesetzmäßigkeiten der umgebenden Welt zu erkennen und zu nutzen.

URSPRUNG VON WERTEN

  1. Es fragt sich, ob man damit einen ersten Ort, einen ersten Ursprung potentieller Werte identifizieren kann.
  2. Vom Ergebnis her, von den überlebensfähigen biologischen Strukturen her, repräsentieren diese einen partiellen Erfolg von Energienutzung entgegen der Entropie, ein Erfolg, der sich in der Existenz von Populationen von solchen erfolgreichen Strukturen als eine Erfolgsspur darstellt. Aber sie alleine bilden nur die halbe Geschichte. Ohne die umgebende Erde (im Sonnensystem, in der Galaxie…), wäre dieser Erfolg nicht möglich. Andererseits, die umgebende Erde ohne die biologischen Strukturen lässt aus sich heraus nicht erkennen, dass solche biologische Strukturen möglich noch wahrscheinlich sind. Bis heute ist die Physik mehr oder weniger sprachlos, wirkt sie wie paralysiert, da sie mit ihren bisherigen (trotz aller mathematischen Komplexität weitgehend naiven) Modellen nicht einmal ansatzweise in der Lage ist, die Entstehung dieser biologischen Strukturen zu erklären. Von daher müssen wir fordern, dass die umgebende Erde — letztlich aber das gesamte bekannte Universum — die andere Hälfte des Erfolgs darstellt; nur beide zusammen geben das ganze Phänomen. In diesem Fall würde ein reduktiver Ansatz nicht vereinfachen, sondern das Phänomen selbst zerstören!

ONTOLOGISCHE GELTUNG VON BEZIEHUNGEN

  1. Dies führt zu einem bis heute ungeklärten philosophischen Problem der ontologischen Geltung von Funktionen. In der Mathematik sind Funktionen die Grundbausteine von allem, und alle Naturwissenschaften wären ohne den Funktionsbegriff aufgeschmissen. Eine Funktion beschreibt eine Beziehung zwischen unterschiedlichen Elementen. In der Mathematik gehören diese Elemente in der Regel irgendwelchen Mengen an, die einfach unterstellt werden. Wendet man das mathematische Konzept Funktion auf die empirische Wirklichkeit an, dann kann man damit wunderbar Beziehungen beschreiben, hat aber ein Problem, die in der Mathematik unterstellten Mengen in der Realität direkt erkennen zu können; man muss sie hypothetisch unterstellen. Was man direkt beobachten und messen kann sind nicht die funktionalen Beziehungen selbst, sondern nur isolierte Ereignisse in der Zeit, die der Beobachter in seinem Kopf (Gehirn, Gehirnzellen…) verknüpft zu potentiellen Beziehungen, die dann, wenn sie sich hinreichend oft wiederholen, als gegebener empirischer Zusammenhang angenommen werden. Was ist jetzt empirisch real: nur die auslösenden konkreten individuellen Ereignisse oder das in der Zeit geordnete Nacheinander dieser Ereignisse? Da wir ja die einzelnen Ereignisse protokollieren können, können wir sagen, dass auch das Auftreten in der Zeit selbst empirisch ist. Nicht empirisch ist die Zuordnung dieser protokollierten Ereignisse zu einem bestimmten gedachten Muster/ Schema/ Modell, das wir zur gedanklichen Interpretation benutzen. Die gleichen Ereignisse lassen in der Regel eine Vielzahl von unterschiedlichen Mustern zu. Einigen wir uns kurzfristig mal auf ein bestimmtes Muster, auf den Zusammenhang R(X, …, Z), d.h. zwischen den Ereignissen X, …, Z gibt es eine Beziehung R.
  2. Biologische Systeme ohne Gehirn konnten solche Relationen in ihrem Informations-Moleküle zwar speichern, aber nicht gedanklich variieren. Wenn die Beziehung R stimmen würde, dann würde sie zur nächsten positiven komplexen Koordinate KK+ führen, was R im Nachhinein bestätigen würde; wenn R aber zu einer negativen komplexen Koordinate KK- führen würde, dann war dies im Nachhinein eine Widerlegung, die nicht mehr korrigierbar ist, weil das System selbst verschwunden (ausgestorben) ist.
  3. Im Gehirn des homo sapiens können wir ein Beziehungsmuster R(X, …, Z) denken und können es praktisch ausprobieren. In vielen Fällen kann solch ein Interpretationsversuch scheitern, weil das Muster sich nicht reproduzieren lässt, und in den meisten solchen Fällen stirbt der Beobachter nicht, sondern hat die Chance, andere Muster R‘ auszuprobieren. Über Versuch und Irrtum kann er so – möglicherweise irgendwann – jene Beziehung R+ finden, die sich hinreichend bestätigt.
  4. Wenn wir solch ein positiv bestätigtes Beziehungsmuster R+ haben, was ist dann? Können wir dann sagen, dass nicht nur die beteiligten empirischen Ereignisse empirisch real sind, sondern auch das Beziehungsmuster R+ selbst? Tatsächlich ist es ja so, dass es nicht die einzelnen empirischen Ereignisse als solche sind, die wir interessant finden, sondern nur und ausschließlich die Beziehungsmuster R+, innerhalb deren sie uns erscheinen.
  5. In der Wechselwirkung zwischen umgebender Erde und den Molekülen ergab sich ein Beziehungsmuster R+_zelle, das wir biologische Zelle nennen. Die einzelnen Elemente des Musters sind nicht uninteressant, aber das wirklich frappierende ist das Beziehungsmuster selbst, die Art und Weise, wie die Elemente kooperieren. Will man dieses Beziehungsmuster nicht wegreden, dann manifestiert sich in diesem Beziehungsmuster R+_zelle ein Stück möglicher und realer empirisches Wirklichkeit, das sich nicht auf seine Bestandteile reduzieren lässt. Es ist genau umgekehrt, man versteht die Bestandteile (die vielen Milliarden Moleküle) eigentlich nur dadurch, dass man sieht, in welchen Beziehungsmustern sie auftreten können.
  6. Vor diesem Hintergrund plädiere ich hier dafür, die empirisch validierten Beziehungsmuster als eigenständige empirische Objekte zu betrachten, sozusagen Objekte einer höheren Ordnung, denen damit eine ontologische Geltung zukommt und die damit etwas über die Struktur der Welt aussagen.
  7. Zurück zur Frage der Präferenzen/ Werte bedeutet dies, dass man weder an der Welt als solcher ohne die biologischen Systeme noch an den biologischen Strukturen als solche ohne die Welt irgendwelche Präferenzen erkennen kann. In der Wechselwirkung zwischen Erde und biologischen Strukturen unter Einbeziehung einer Irreversibilität (Zeit) werden aber indirekt Präferenzen sichtbar als jener Pfad im potentiellen Möglichkeitsraum der komplexen Koordinaten KK, der die Existenz biologischer Systeme bislang gesichert hat.
  8. Dieser Sachverhalt ist für einen potentiellen Beobachter unaufdringlich. Wenn der Beobachter nicht hinschauen will, wenn er wegschaut, kann er diesen Zusammenhang nicht erkennen. Wenn der Beobachter aber hinschaut und anfängt, die einzelnen Ereignisse zu sortieren und versucht, aktiv Beziehungsmuster am Beispiel der beobachteten Ereignispunkte auszuprobieren (was z.B. die Evolutionsbiologie tut), dann kann man diese Strukturen und Prozesse erkennen, und dann kann man als Beobachter Anfangshaft begreifen, dass hier ein Beziehungsmuster R+_zelle vorliegt, das etwas ganz Außerordentliches, ja Einzigartiges im ganzen bekannten Universum darstellt.

Keine direkte, aber eine indirekte, Fortsetzung könnte man in diesem Beitrag sehen.

Einen Überblick von allen Beiträgen des Autors cagent in diese Blog nach Titeln findet sich HIER.

BUCHPROJEKT 2015 – Zwischenreflexion 18.August 2015 – INFORMATION IN DER MOLEKULARBIOLOGIE – Maynard-Smith

Der folgende Beitrag bezieht sich auf das Buchprojekt 2015.

SPANNENDER PUNKT BEIM SCHREIBEN

1. Das Schreiben des Buches hat zu einem spannenden Punkt geführt, der mich seit Jahren umtreibt, den ich aber nie so richtig zu packen bekommen habe: alle große begriffliche Koordinaten laufen im Ereignis der Zelle als einer zentralen Manifestation von grundlegenden Prinzipien zusammen. Die Physik hat zwar generelle Vorarbeiten von unschätzbarem Wert geleistet, aber erst das Auftreten von selbst reproduzierenden molekularen Strukturen, die wir (biologische) Zellen nennen, macht Dynamiken sichtbar, die ‚oberhalb‘ ihrer ‚Bestandteile‘ liegen. Dies könnte man analog dem physikalischen Begriff der ‚Gravitation‘ sehen: dem physikalischen Begriff entspricht kein direktes Objekt, aber es beschreibt eine Dynamik, eine Gesetzmäßigkeit, die man anhand des Verhaltens der beobachtbaren Materie indirekt ‚ableitet‘.

DYNAMIK BIOLOGISCHER ZELLEN

2. Ähnlich verhält es sich mit verschiedenen Dynamiken von biologischen Zellen. Die Beschreibung ihrer einzelnen Bestandteile (Chromatin, Mitochondrien, Golgiapparat, Membran, …) als solcher sagt nichts darüber aus, was tatsächlich eine biologische Zelle charakterisiert. Ihre Haupteigenschaft ist die generelle Fähigkeit, eingebettet in eine allgemeine Entropiezunahme sich eine Struktur zu generieren, die sich temporär funktionsfähig halten kann und in der Lage ist, Informationen zu sammeln, mittels deren sie sich selbst so kopieren kann, dass die Kopie sich von neuem zu einer funktionsfähigen Struktur aufbauen kann. Wie dies im einzelnen chemisch realisiert wurde, ist beeindruckend, es ist atemberaubend, aber es ist letztlich austauschbar; für die Gesamtfunktion spielen die chemischen Details keine Rolle.

BEGRIFF INFORMATION

3. Und hier beginnt das Problem. Obwohl es von einem theoretischen Standpunkt aus klar ist, dass die Details noch nicht die eigentliche Geschichte erzählen, wird in den vielen umfangreichen Büchern über Genetik und Molekularbiologie die eigentliche ‚Story‘ nicht erzählt. Dies fängt schon an mit dem wichtigen Begriff der Information. Spätestens seit Schrödingers Buch von 1944 „What is Life?“ ist klar, dass das selbstreproduktive Verhalten von Zellen ohne das Genom nicht funktioniert. Und es wurde auch sehr bald der Begriff der Information eingeführt, um den ‚Inhalt‘ des Genoms theoretisch zu klassifizieren. Das Genom enthält ‚Informationen‘, aufgrund deren in einer Vererbung neue hinreichend ähnlich Strukturen entstehen können.

STATISTISCHER INFORMATIONSBEGRIFF

4. Leider wurde und wird der Informationsbegriff im Sinne des rein statistischen Informationsbegriffs von Shannon/ Weaver (1948) benutzt, der explizit Fragen möglicher Bedeutungsbezüge (Semantik) außen vor lässt. Damit ist er eigentlich weitgehend ungeeignet, der Rolle der im Genom verfügbaren Informationen gerect zu werden.

MEHR ALS STATISTIK

5. Einer, der diese Unzulänglichkeit des rein statistischen Informationsbegriffs für die Beschreibung der Rolle der Information im Kontext des Genoms und der Zelle samt ihrer Reproduktionsdynamik immer kritisiert hatte, war John Maynard Smith (1920 – 2004). In seinem Artikel “ The concept of information in biology“ von 2000 kann man dies wunderbar nachlesen.

6. Zwar hat auch Maynard Smith keine explizite übergreifende Theorie der Reproduktionsdynamik, aber er kann an verschiedenen Eigenschaften aufweisen, dass der rein statistische Informationsbegriff nicht ausreicht.

7. Während im Shannon-Weaver Modell ein fester Kode A von einem Sender in Transportereignisse übersetzt (kodiert) wird, die wiederum in den festen Kode A von einem Empfänger zurückübersetzt (dekodiert) werden, ist die Lage bei der Zelle anders.

8. Nimmt man an, dass der zu sendende Kode das DNA-Molekül ist, das in seiner Struktur eine potentielle Informationssequenz repräsentiert, dann ist der Sender eine Zelle in einer Umgebung. Der ‚DNA-Kode‘ (der feste Kode A) wird dann umgeschrieben (Transskription, Translation) in zwei verschiedene Kodes (mRNA, tRNA). Während man die Zustandsform des mRNA-Moleküls noch in Korrespondenz zum DNA-Kode sehen kann (abr nicht vollständig), enthalten die verschiedenen tRNA-Moleküle Bestandteile, die über den ursprünglichen DNA-Kode hinausgehen. Daraus wird dann eine Proteinstruktur erzeugt, die sowohl eine gewisse Kopie des ursprünglichen DNA-Moleküls (Kode A) enthält, aber auch zusätzlich einen kompletten Zellkörper, der mit dem Kode A nichts mehr zu tun hat. Außerdem gibt es den Empfänger bei Beginn der Übermittlung noch gar nicht. Der Empfänger wird im Prozess der Übermittlung erst erzeugt! Anders formuliert: beim biologischen Informationsaustausch im Rahmen einer Selbstreproduktion wird zunächst der potentielle Empfänger (eine andere Zelle) erzeugt, um dann den DNA-Kode im Empfänger neu zu verankern.

9. Innerhalb dieses Gesamtgeschehens gibt es mehrere Bereiche/ Phasen, in denen das Konzept eines rein statistischen Informationsbegriffs verlassen wird.

10. So weist Maynard Smith darauf hin, dass die Zuordnung von DNA-Sequenzen zu den später erzeugten Proteinen mindestens zweifach den statistischen Informationsbegriff übersteigt: (i) die erzeugten Proteinstrukturen als solche bilden keine einfache ‚Übersetzung‘ das DNA-Kodes verstanden als eine syntaktische Sequenz von definierten Einheiten eines definierten endlichen Alphabets. Die Proteinmoleküle kann man zwar auch als Sequenzen von Einheiten eines endlichen Alphabets auffassen, aber es handelt sich um ein ganz anderes Alphabet. Es ist eben nicht nur eine reine ‚Umschreibung‘ (‚Transkription‘), sondern eine ‚Übersetzung‘ (‚Translation‘, ‚Translatio‘), in die mehr Informationen eingehen, als die Ausgangssequenzen im DNA-Kode beinhalten. (ii) Der DNA-Kode enthält mindestens zwei Arten von Informationselementen: solche, die dann in Proteinstrukturen übersetzt werden können (mit Zusatzinformationen), und solche, die die Übersetzung der DNA-Informationselemente zeitlich steuern. Damit enthält der DNA-Kode selbst Elemente, die nicht rein statistisch zu betrachten sind, sondern die eine ‚Bedeutung‘ besitzen, eine ‚Semantik‘. Diese Bedeutung st nicht fixiert; sie kann sich ändern.

ALLGEMEINE ZEICHENLEHRE = SEMIOTIK

11. Für Elemente eines Kodes, denen ‚Bedeutungen‘ zugeordnet sind, gibt es in der Wissenschaft das begriffliche Instrumentarium der allgemeinen Zeichenlehre, spricht ‚Semiotik‘ (siehe z.B. Noeth 2000).

12. Nimmt man die empirischen Funde und die semiotische Begrifflichkeit ernst, dann haben wir es im Fall der Zelle also mit eindeutigen (und recht komplexen) Zeichenprozessen zu; man könnte von der Zelle in diesem Sinne also von einem ’semiotischen System‘ sprechen. Maynard Smith deutet den Grundbegriff von Jacques Lucien Monod (1910-1976) ‚gratuity‘ im Sinne, dass Signale in der Biologie ‚Zeichen‘ seien. Ob dies die Grundintention von Monod trifft, ist eine offene Frage; zumindest lässt die Maschinerie, die Monod beschreibt, diese Deutung zu.

13. Eine zusätzliche Komplikation beim biologischen Zeichenbegriff ergibt sich dadurch, dass eine Zelle ja nicht ‚isoliert‘ operiert. Eine Zelle ist normalerweise Teil einer Population in einer bestimmten Umgebung. Welche Strukturen der Proteinaufbauprozess (Wachstum, Ontogenese) auch hervorbringen mag, ob er gewisse Zeiten überdauert (gemessen in Generationen), hängt entscheidend davon ab, ob die Proteinstruktur in der Interaktion mit der Umgebung ‚hinreichend lange‘ jene ‚Arbeit‘ verrichten kann, die notwendig ist, um eine Selbstreproduktion zu ermöglichen.

14. Ob eine Proteinstruktur in diesem weiterführenden Sinne ‚lebensfähig‘ ist, hängt also entscheidend davon ab, ob sie zur jeweiligen Umgebung ‚passt‘. Eine lebensfähige Proteinstruktur ist in diesem Sinne – von einer höheren theoretischen Betrachtungsweise aus gesehen – nichts anderes als ein auf Interaktion basierendes ‚Echo‘ zur vorgegebenen Umgebung.

15. Dass dies ‚Echo‘ nicht ’stagniert‘, nicht ‚auf der Stelle tritt‘, nicht ‚um sich selbst kreist‘, liegt entscheidend daran, dass die ‚letzte‘ Struktur den Ausgangspunkt für ‚weitere Veränderungen‘ darstellt. Die Zufallsanteile im gesamten Selbstreproduktionsprozess fangen also nicht immer wieder ‚von vorne‘ an (also keine ‚Auswahl mit Zurücklegen‘), sondern sie entwickeln eine Informationsstruktur ‚weiter‘. In diesem Sinne bildet die Informationssequenz des DNA-Moleküls auch einen ‚Speicher‘, ein ‚Gedächtnis‘ von vergangenen erfolgreichen Versuchen. Je mehr Zellen in einer Population verfügbar sind, umso größer ist diese molekulare Erfolgsgedächtnis.

Diese Fortsetzung war nicht die letzte Zwischenreflexion. Es geht noch weiter: HIER

QUELLEN

Schroedinger, E. „What is Life?“ zusammen mit „Mind and Matter“ und „Autobiographical Sketches“. Cambridge: Cambridge University Press, 1992 (‚What is Life‘ zuerst veröffentlicht 1944; ‚Mind an Matter‘ zuerst 1958)
Claude E. Shannon, „A mathematical theory of communication“. Bell System Tech. J., 27:379-423, 623-656, July, Oct. 1948 (URL: http://cm.bell-labs.com/cm/ms/what/shannonday/paper.html; last visited May-15, 2008)
Claude E. Shannon; Warren Weaver (1948) „The mathematical theory of communication“. Urbana – Chicgo: University of Illinois Press.
John Maynard Smith (2000), „The concept of information in biology“, in: Philosophy of Science 67 (2):177-194
Noeth, W., Handbuch der Semiotik, 2. vollst. neu bearb. und erw. Aufl. mit 89 Abb. Stuttgart/Weimar: J.B. Metzler, xii + 668pp, 2000
Monod, Jacques (1971). Chance and Necessity. New York: Alfred A. Knopf

Einen Überblick über alle Blogbeiträge des Autors cagent nach Titeln findet sich HIER.

Buch: Die andere Superintelligenz. Oder: schaffen wir uns selbst ab? – Kapitel 5-neu

VORBEMERKUNG: Der folgende Text ist ein Vorabdruck zu dem Buch Die andere Superintelligenz. Oder: schaffen wir uns selbst ab?, das im November 2015 erscheinen soll.

Was ist Leben?

Erst die Erde

Etwa 9.2 Mrd Jahre nach dem sogenannten Big Bang kam es zur Entstehung unseres Sonnensystems mit der Sonne als wichtigstem Bezugspunkt. Nur ca. 60 Mio Jahre später gab es unsere Erde. Die Zeitspanne, innerhalb der Spuren von Leben auf der Erde bislang identifiziert wurden, liegt zwischen -4 Mrd Jahre von heute zurück gerechnet bis ca. -3.5 Mrd Jahre. Oder, vom Beginn der Erde aus gesehen, ca. 540 Mio Jahre bis ca. 1 Mrd Jahre nach der Entstehung der Erde .

Alte Bilder vom Leben

Wenn man vom Leben spricht, von etwas Belebtem im Gegensatz zum Unbelebtem, fragt man sich sofort, wie man ‚Leben‘ definieren kann? In der zurückliegenden Geschichte gab es viele Beschreibungs- und Definitionsversuche. Einer, der heute noch begrifflich nachwirkt, ist die Sicht der Philosophie der Antike (ca. -600 bis 650) . Hier wurde das ‚Atmen‘ (gr. ‚pneo‘) als charakteristisches Merkmal für ‚Lebendiges‘ genommen, wodurch es vom ‚Unbelebtem‘ abgegrenzt wurde. Aus dem ‚Atmen‘ wurde zugleich ein allgemeines Lebensprinzip abgeleitet, das ‚Pneuma‘ (im Deutschen leicht missverständlich als ‚Geist‘ übersetzt, im Lateinischen als ’spiritus‘), das sich u.a. im Wind manifestiert und ein allgemeines kosmologisches Lebensprinzip verkörpert, das sowohl die Grundlage für die psychischen Eigenschaften eines Lebewesens bildet wie auch für seine körperliche Lebendigkeit. In der Medizin gab es vielfältige Versuche, das Pneuma im Körper zu identifizieren (z.B. im Blut, in der Leber, im Herzen, im Gehirn und den Nerven). Im philosophischen Bereich konnte das Pneuma ein heißer Äther sein, der die ganze Welt umfasst. Eine andere Auffassung sieht das Pneuma zusammengesetzt aus Feuer und Luft, woraus sich alle Körper der Welt bilden. Das Pneuma wird auch gesehen als die ‚Seele‘, die allein das Leben des Körpers ermöglicht. Bei den Stoikern wird das Pneuma-Konzept zum allumfassenden Begriff einer Weltseele gesteigert. Mit der Zeit vermischte sich der Pneuma-Begriff mit dem Begriff ’nous‘ (Kurzform für ’noos‘)(Englisch als ‚mind‘ übersetzt; Deutsch ebenfalls als ‚Geist‘), um darin die kognitiv-geistige Dimension besser auszudrücken. Weitere einflussreiche begriffliche Koordinierungen finden statt mit dem lateinischen ‚mens‘ (Deutsch auch übersetzt mit ‚Geist‘) und dem hebräischen ‚ruach‘ (im Deutschan ebenfalls mit ‚Geist‘ übersetzt; bekannt in der Formulierung ‚Der Geist Gottes (= ‚ruach elohim‘) schwebte über den Wassern‘; in der Septuaginta, der griechischen Übersetzung der hebräischen Bibel, heißt es ‚pneuma theou‘ (= der Geist Gottes)) (Anmerkung: Diese Bemerkungen sind ein kleiner Extrakt aus der sehr ausführlichen begriffsgeschichtlichen Herleitung in der ‚Enzyklopädie Philosophie‘ (2010), herausgegeben von H.J. Sandkühler, Felix Meiner Verlag, Hamburg 2010. Buch: Von A bis Z, Kapitel: Geist,SS.792ff}

Die Zelle im Fokus

War es für die antiken Philosophen, Mediziner und Wissenschaftler noch praktisch unmöglich, die Frage nach den detaillierten Wirkprinzipien des ‚Lebens‘ genauer zu beantworten, erarbeitete sich die moderne Naturwissenschaft immer mehr Einsichten in die Wirkprinzipien biologischer Phänomene (bei Tieren, Pflanzen, Mikroben, molekularbiologischen Sachverhalten), so dass im Laufe des 20.Jahrhunderts klar wurde, dass die Gemeinsamkeit aller Lebensphänomene auf der Erde in jener Superstruktur zu suchen ist, die heute (biologische) Zelle genannt wird.

Alle bekannten Lebensformen auf der Erde, die mehr als eine Zelle umfassen (wir als Exemplare der Gattung homo mit der einzigen Art homo sapiens bestehen aus ca. 10^13 vielen Zellen), gehen zu Beginn ihrer körperlichen Existenz aus genau einer Zelle hervor. Dies bedeutet, dass eine Zelle über alle notwendigen Eigenschaften verfügt, sich zu reproduzieren und das Wachstum eines biologischen Systems zu steuern.

So enthält eine Zelle (Anmerkung: Für das Folgende benutze ich Kap.1 des wunderbaren Buches „Molecular Biology of the CELL“, 5.Aufl. 2008, hrsg. von B.Alberts et.al, New York: Garland Science, Taylor & Francis Group) alle Informationen, die notwendig sind, um sowohl sich selbst zu organisieren wie auch um sich zu reproduzieren. Die Zelle operiert abseits eines chemischen Gleichgewichts, was nur durch permanente Aufnahme von Energie realisiert werden kann. Obwohl die Zelle durch ihre Aktivitäten die Entropie in ihrer Umgebung ‚erhöht‘, kann sie gegenläufig durch die Aufnahme von Energie auch Entropie verringern. Um einen einheitlichen Prozessraum zu gewährleisten, besitzen Zellen eine Membran, die dafür sorgt, dass nur bestimmte Stoffe in die Zelle hinein- oder herauskommen.

Keine Definition für außerirdisches Leben

Obgleich die Identifizierung der Zelle samt ihrer Funktionsweise eine der größten Errungenschaften der modernen Wissenschaften bei der Erforschung des Phänomens des Lebens darstellt, macht uns die moderne Astrobiologie darauf aufmerksam, dass eine Definition der Lebensphänomene mit Einschränkung des Blicks auf die speziellen Bedingungen auf der Erde nicht unproblematisch ist. Wunderbare Bücher wie das Buch „Rare Earth: Why Complex Life Is Uncommon in the Universe“ (2000) (Anmerkung: erschienen im Verlag Copernikus/ Springer, New York.) von Peter Douglas Ward (Geboren 1949) und Donald Eugene Brownlee (Geboren 1943) oder das Buch „ASTROBIOLOGY. A Multidisciplinary Approach“ (2005) (Anmerkung: erschienen in San Francisco – Boston – New York et al. bei Pearson-Addison Wesley) von Jonathan I.Lunine (Geb. 1959) machen zumindest sichtbar, wo die Probleme liegen könnten. Lunine diskutiert in Kap.14 seines Buches die Möglichkeit einer allgemeineren Definition von Leben explizit, stellt jedoch fest, dass es aktuell keine solche eindeutige allgemeine Definition von Leben gibt, die über die bekannten erdgebundenen Formen wesentlich hinausgeht. (Vgl. ebd. S.436)

Schrödingers Vision

Wenn man die Charakterisierungen von Leben bei Lunine (2005) in Kap.14 und bei Alberts et.al (2008) in Kap.1 liest, fällt auf, dass die Beschreibung der Grundstrukturen des Lebens trotz aller Abstraktionen tendenziell noch sehr an vielen konkreten Eigenschaften hängen.

Erwin Rudolf Josef Alexander Schrödinger (1887-1961) , der 1944 sein einflussreiches Büchlein „What is Life? The Physical Aspect of the Living Cell“ veröffentlichte (Anmerkung: Based on Lectures delivered under the auspices of the Institute at Trinity College, Dublin, in February 1943, Cambridge: University Press. 1944. [B 12, B 18a.1] Ich selbst habe die Canto Taschenbuchausgabe der Cambridge University von 1992 benutzt. Diese Ausgabe enthält ‚What is Life?‘, ‚Mind from Matter‘, sowie autobiographischen Angaben und ein Vorwort on Roger Penrose)), kannte all die Feinheiten der modernen Molekularbiologie noch nicht (Anmerkung: Allerdings berichten sowohl James D. Watson in seinem Buch „DNA, the Secret of Life“ (Anmerkung: zusammen mit Berry, A. (2003), New York: Random House) wie auch ähnlich Francis Crick in seinem autobiographischen Buch „What Mad Pursuit“ (Anmerkung: What Mad Pursuit: A Personal View of Scientific Discovery (Basic Books reprint edition, 1990)), dass Schrödingers Schrift (bzw. einer seiner Vorträge) sie für ihre Erforschung der DNA stark angeregt hatte.). Schrödinger unterzog das Phänomen des Lebens einer intensiven Befragung aus Sicht der damaligen Physik. Auch ohne all die beeindruckenden Details der neueren Forschung wurde ihm klar, dass das hervorstechendste Merkmal des ‚Biologischen‘, des ‚Lebendigen‘ die Fähigkeit ist, angesichts der physikalisch unausweichlichen Zunahme der Entropie einen gegensätzlichen Trend zu realisieren; statt wachsender Unordnung als Entropie diagnostizierte er eine wachsende Ordnung als negative Entropie, also als etwas, was der Entropie entgegen wirkt.

Diesen Gedanken Schrödingers kann man weiter variieren und in dem Sinne vertiefen, dass der Aufbau einer Ordnung Energie benötigt, mittels der Freiheitsgrade eingeschränkt und Zustände temporär ‚gefestigt‘ werden können.

Fragt sich nur, warum?

Alberts et.al (2008) sehen das Hauptcharakteristikum einer biologischen Zelle darin, dass sie sich fortpflanzen kann, und nicht nur das, sondern dass sie sich selbstmodifizierend fortpflanzen kann. Die Realität biologischer Systeme zeigt zudem, dass es nicht nur um ‚irgendeine‘ Fortpflanzung ging, sondern um eine kontinuierlich optimierende Fortpflanzung.

Nimmt man versuchsweise einen abstrakten Betrachtungsstandpunkt ein, dann kann man vereinfachend annehmen, dass es sich bei biologischen Zellen um Systeme handelt, die u.a. mindestens eine Objektebene [O] und eine Metaebene [M] umfassen, mit einer geeigneten Abbildung [R], so dass man die Metaebene M in die Objektebene O mittels R abbilden kann $latex R: M \longmapsto O$ Damit könnte eine Reproduktion grundsätzlich gelingen, vorausgesetzt, das System mit seiner Struktur bleibt ‚lang genug‘ stabil.

Kann man solch eine ‚hinreichend lange‘ Stabilität garantieren, dann können minimale Systemstrukturen aufgebaut werden, und es können Reproduktionen vorgenommen werden. Wie dies im einzelnen geschieht, ist letztlich unwichtig. Die tatsächliche Realisierungsgeschichte biologischer Systeme auf der Erde ist von schwindelerregender Komplexität und zugleich von atemberaubender Schönheit. Tatsächlich gibt es an jedem Punkt des Prozesses Varianten (auch in der realen Geschichte), wenn aber bestimmte Strukturen erst einmal realisiert wurden, dann fungierten diese (Meta-)Strukturen als eine Art ‚Gedächtnis‘: alle Strukturelemente von M repräsentieren potentielle Objektstrukturen, die jeweils den Ausgangspunkt für die nächste ‚Entwicklungsstufe‘ bilden (sofern sie nicht von der Umwelt ‚aussortiert‘ werden).

Irrlicht Information

Forts. folgt.

Wer nicht warten will, bis die Fortsetzung hier erscheint, kann mitlesen, was zwischendurch gedacht und geschrieben wird, um zur Fortsetzung zu gelangen: HIER.

Einen Überblick über alle Blogbeiträge des Autors cagent nach Titeln findet sich HIER.