Archiv der Kategorie: KI – Künstliche Intelligenz

KÜNSTLICHE INTELLIGENZ im Spiegel der Menschen. Teil 1

Zeit: 8.Febr 24 – 3.März 24

Autor: Gerd Doeben-Henisch

Email: gerd@doeben-henisch.de

KONTEXT

Das Thema Mensch und Maschine durchzieht den gesamten Blog von Anfang an. Es liegt daher nahe, diese Thematik auch in Vorträgen zu thematisieren. Allerdings, jede der beiden Komponenten ‚Mensch‘ wie auch ‚Maschine‘ ist in sich sehr komplex; eine Wechselwirkung zwischen beiden umso mehr. Dazu ‚einfach mal so‘ einen Vortrag zu halten erscheint daher fast unmöglich, wie eine ‚Quadratur des Kreises‘. Dennoch lasse ich mich gelegentlich darauf ein.

Überblick

Im Teil 1 wird eine Ausgangslage beschrieben, die in Vorbereitung eines Vortrags angenommen worden ist. Im Rahmen des Vortrags konnte das Thema aber nur ansatzweise behandelt werden. In den nachfolgenden Texten soll die Themenstellung daher nochmals aufgegriffen und ausführlicher behandelt werden.

Ankündigung des Vortrags

Im offiziellen Ankündigungs-Flyer konnte man folgenden Text lesen:

Perspektive Vortragender

Das Eigentümliche von freien Vorträgen ist, dass man die Zusammensetzung des Publikums vorab nicht kennt. Man muss mit einer großen Vielfalt rechnen, was auch am 21.Febr 2024 der Fall war. Ein voller Saal, immerhin fast alle hatten schon mal Kontakt mit chatGPT gehabt, manche sogar sehr viel Kontakt. Wie ein roter Faden liefen aber bei allen Fragen der Art mit, was man denn jetzt von dieser Software halten solle? Ist sie wirklich intelligent? Kann sie eine Gefahr für uns Menschen darstellen? Wie soll man damit umgehen, dass auch immer mehr Kinder und Jugendliche diese SW benutzen ohne wirklich zu verstehen, wie diese SW arbeitet? … und weitere Fragen.

Als Vortragender kann man auf die Vielzahl der einzelnen Fragen kaum angemessen eingehen. Mein Ziel war es, ein Grundverständnis von der Arbeitsweise von chatGPT4 als Beispiel für einen chatbot und für generative KI zu vermitteln, und dieses Grundverständnis dann in Bezug zu setzen, wie wir Menschen mit dem Problem Zukunft umgehen: auf welche Weise kann chatGPT4 uns helfen, Zukunft gemeinsam ein wenig zu verstehen, so dass wir dadurch gemeinsam etwas rationaler und zielgerichteter handeln können.

Ob und wieweit mir dies dann faktisch im Vortrag und bei den Gesprächen gelungen ist, bleibt eine offene Frage. Bei einigen, die aufgrund ihrer individuellen Experimente mit chatGPT sich schon ein bestimmtes Bild von chatGPT gemacht hatten, sicher nicht. Sie waren so begeistert davon, was chatGPT alles kann, dass sie weiterführende Überlegungen eher abwehrten.

Absicht des Vortragenden

Wie schon angedeutet, gab es die Themenkomplexe (i) chatbots/ generative KI/ KI, (ii) Zukunft verstehen und gestalten sowie (iii) Ob und wie kann generative KI uns Menschen dabei helfen.

Chatbots/ Generative KI/ KI

Aufgrund der heute stark ausgefächerten Terminologie mit stark verschwommenen Bedeutungsrändern habe ich eine Skizze des Begriffsfelds in den Raum gestellt, um dann Eliza und chatGPT4 als Beispiel für chatbots/ generative KI/ maschinelles Lernen näher zu betrachten.

Das Programm Eliza [1,2] ist insoweit von historischem Interesse, als es der erste chatbot [3] war, der einige Berühmtheit erlangte. Trotz seiner einfachen Struktur (ohne jede explizite Wissensbasis) übte der chatbot eine starke Wirkung auf die Menschen aus, die mit dem Programm per Tastatur und Bildschirm interagierten. Alle hatten das Gefühl, dass der chatbot sie ‚versteht‘. Dies verweist auf Grundmuster der menschlichen Psychologie, Vertrauen zu schenken, wenn erlebte Interaktionsformen den persönlichen Erwartungen entsprechen.

Verglichen mit Eliza besitzt der chatbot chatGPT4 [4a,b,c] eine unfassbar große Datenbasis von vielen Millionen Dokumenten, sehr breit gestreut. Diese wurden miteinander ‚verrechnet‘ mit Blick auf mögliche Kontexte von Worten samt Häufigkeiten. Zusätzlich werden diese ‚Sekundärdaten‘ in speziellen Trainingsrunden an häufig vorkommende Dialogformen angepasst.

Während Eliza 1966 nur im Format eines Psychotherapeuten im Stil der Schule von Rogers [5] antworten konnte, weil das Programm speziell dafür programmiert war, kann chatGPT4 ab 2023 viele verschiedene Therapie-Formen nachahmen. Überhaupt ist die Bandbreite möglicher Interaktionsformen von chatGPT4 erheblich breiter. So kann man folgenden Formate finden und ausprobieren:

  1. Fragen beantworten …
  2. Texte zusammenfassen …
  3. Texte kommentieren …
  4. Texte entwerfen …
  5. Übersetzen …
  6. Text zu Bild …
  7. Text zu Video
  8. … und weitere …

Bewertung

Eine Software wie chatGBT4 zu benutzen ist das eine. Wie aber kann man solch eine Software bewerten?

Aus dem Alltag wissen wir, dass wir zur Feststellung der Länge eines bestimmten räumlichen Abschnitts ein standardisiertes Längenmaß wie ‚das Meter‘ benutzen oder für das Gewicht eines Objekts das standardisierte Gewichtsmaß ‚das Kilogramm‘.[6]

Wo gibt es eine standardisierte Maßeinheit für chatbots?

Je nachdem, für welche Eigenschaft man sich interessiert, kann man sich viele Maßeinheiten denken.

Im hier zur Debatte stehenden Fall soll es um das Verhalten von Menschen gehen, die gemeinsam mittels Sprache sich auf die Beschreibung eines möglichen Zustands in der Zukunft einigen wollen, so, dass die einzelnen Schritte in Richtung Ziel überprüfbar sind. Zusätzlich kann man sich viele Erweiterungen denken wie z.B. ‚Wie viel Zeit‘ wird die Erreichung des Ziels benötigen?‘, ‚Welche Ressourcen werden benötigt werden zu welchen Kosten?‘, ‚Wie viele Menschen mit welchen Fähigkeiten und in welchem zeitlichem Umfang müssen mitwirken? … und einiges mehr.

Man merkt sofort, dass es hier um einen ziemlich komplexen Prozess geht.

Um diesen Prozess wirklich als ‚Bezugspunkt‘ wählen zu können, der in seinen einzelnen Eigenschaften dann auch ‚entscheidbar‘ ist hinsichtlich der Frage, ob chatGPT4 in diesem Kontext hilfreich sein kann, muss man diesen Prozess offensichtlich so beschreiben, dass ihn jeder nachvollziehen kann. Dass man dies tun kann ist keineswegs selbstverständlich.

Anforderungen für eine gemeinsame Zukunftsbewältigung

BILD : Andeutung der Fragen, die beantwortet werden müssen, um möglicherweise eine Antwort zu bekommen.

ZUKUNFT KEIN NORMALES OBJEKT

Generell gilt, dass das mit dem Wort ‚Zukunft‘ Gemeinte kein normales Objekt ist wie ein Stuhl, ein Auto, oder ein Hund, der gerade über die Straße läuft. Zukunft kommt für uns immer nur in unserem Denken vor als Bild eines möglichen Zustands, das sich nach einer gewissen Zeit möglicherweise ‚bewahrheiten kann‘.

Wollen wir also möglichst viele Menschen in die Zukunft mitnehmen, dann stellt sich die Aufgabe, dass das gemeinsamen Denken möglichst viel von dem, was wir uns für die Zukunft wünschen, ‚voraus sehen‘ können muss, um einen Weg in ein mögliches gedachtes Weiterleben zu sichern.

BEISPIEL MIT BRETTSPIEL

Dies klingt kompliziert, aber anhand eines bekannten Brettspiels kann man dies veranschaulichen. Auf Deutsch heißt dies Spiel ‚Mensch ärgere Dich nicht‘ (auf dem Bild sieht man eine Version für die Niederlande).[7]

BILD : Spielbrett des Spiels ‚Mensch ärgere Dich nicht‘

BILD : Strukturelemente einer Spielsituation und die darin angenommenen Beziehungen. Die reale SPIELSITUATION wird im Text der SPIELANLEITUNG vorausgesetzt und beschrieben. Neben den ELEMENTEN der Spielsituation enthalten die SPIELREGELN Beschreibungen möglicher Aktionen, um die Spielsituation zu verändern sowie die Beschreibung einer möglichen Konfiguration von Elementen, die (i) als STARTSITUATION gelten soll wie auch als ZIELZUSTAND (ZIEL). Ferner gibt es eine ANLEITUNG, WER WAS WANN WIE tun darf.

Was man in der Gegenwart sieht, das ist ein Spielbrett mit diversen Symbolen und Spielsteinen. Zusätzlich gibt es noch den Kontext zum Spielbrett bestehend aus vier Spielern und einem Würfel. Alle diese Elemente zusammen bilden eine Ausgangslage oder Startzustand oder den aktuellen IST-Zustand.

Ferner muss man annehmen, dass sich in den Köpfen der Mitspieler ein Wissen befindet, aufgrund dessen die Mitspieler die einzelnen Elemente als Elemente eines Spiels erkennen können, das ‚Mensch ärgere dich nicht‘ heißt.

Um dieses Spiel praktisch spielen zu können, müssen die Spieler auch wissen, wer wann welche Veränderungen wie auf dem Spielbrett vornehmen darf. Diese Veränderungen werden beschrieben durch Spielregeln, zu denen es noch eine geschriebene Spielanleitung gibt, aus der hervorgehen muss, welche Regel wann wie von wem angewendet werden darf.

Wenn die Spieler nach den vorgegebenen Regeln Veränderungen auf dem Spielbrett vornehmen, dann kann das Spiel beliebig lange laufen, es sei denn, es gibt eine klar Beschreibung eines Zielzustands, der als Ziel und gleichzeitig als Ende vereinbart ist. Wenn dieser Zielzustand auf dem Brett eintreten sollte, dann wäre das Spiel beendet und jener Spieler, der den Zielzustand als erster erreicht, wäre dann ein Gewinner im Sinne des Spiels.

Nicht zu vergessen: Genauso wichtig die die Beschreibung eines Zielzustandes ist die Beschreibung eines Startzustands, mit dem das Spiel beginnen soll.

Für die Frage der Zukunft im Kontext Spiel wird sichtbar, dass die Zukunft in Gestalt eines Zielzustands zwar in Form einer textlichen Beschreibung existiert, aber nicht als reale Konfiguration auf dem Spielbrett. Es wird von den beteiligten Spielern aber angenommen, dass die beschrieben Zielkonfiguration durch wiederholte Ausführung von Spielregeln beginnend mit einer Startkonfiguration irgendwann im Verlaufe des Spiels eintreten kann. Im Fall des Eintretens der Zielkonfiguration als reale Konfiguration auf dem Spielbrett wäre dies für alle wahrnehmbar und entscheidbar.

Interessant in diesem Zusammenhang ist der Sachverhalt, dass die Auswahl eines Zielzustands nur möglich ist, weil die Vorgabe einer Startsituation in Kombination mit Spielregeln einen Raum von möglichen Zuständen markiert. Der Zielzustand ist dann immer die Auswahl einer spezifischen Teilmenge aus dieser Menge der möglichen Folgezuständen.

Spiel und Alltag

Wenn man sich den Alltag anschaut, auch dort, wo nicht explizit ein Spiel gespielt wird, dann kann man feststellen, dass sehr viele — letztlich alle ? — Situationen sich als Spiel interpretieren lassen. Ob wir die Vorbereitung eines Essens nehmen, den Tisch decken, Zeitung lesen, Einkaufen, Musik machen, Auto fahren …. alle diese Tätigkeiten folgen dem Schema, dass es eine Ausgangssituation (Startsituation) gibt, ein bestimmtes Ziel, das wir erreichen wollen, und eine Menge von bestimmten Verhaltensweisen, die wir gewohnt sind auszuführen, wenn wir das spezielle Ziel erreichen wollen. Verhalten wir uns richtig, dann erreichen wir — normalerweise — das gewünschte Ziel. Diese Alltagsregeln für Alltagsziele lernt man gewöhnlich nicht in er Schule, sondern durch die Nachahmung anderer oder durch eigenes Ausprobieren. Durch die Vielfalt von Menschen und Alltagssituationen mit unterschiedlichsten Zielen gibt es eine ungeheure Bandbreite an solchen Alltags-Spielen. Letztlich erscheinen diese als die Grundform menschlichen Verhaltens. Es ist die Art und Weise, wie wir als Menschen lernen und miteinander handeln. [8]

Im Unterschied zu expliziten Spielen verlaufen die Alltagsspiele nicht starr innerhalb der von der Spielanleitung beschriebenen Grenzen, sondern die Alltagsspiele finden innerhalb einer offenen Welt statt, sie sind ein kleiner Teil eines größeren dynamischen Gesamtgeschehens, welches dazu führen kann, dass während der Umsetzung eines Alltagsspiels andere Ereignisse die Umsetzung auf unterschiedliche Weise behindern können (Ein Telefonanruf unterbricht, Zutaten beim Kochen fehlen, beim Einkaufen findet man nicht den richtigen Gegenstand, …). Außerdem können Ziele im Alltag auch scheitern und können neben schlechten Gefühlen real auch negative Wirkungen erzeugen. Auch können Alltagsspiele irgendwann unangemessen werden, wenn sich die umgebende dynamische Welt soweit geändert hat, dass ein die Regeln des Alltagsspiels nicht mehr zum erhofften Ziel führen.

Vor diesem Hintergrund kann man vielleicht verstehen, dass explizite Spiele eine besondere Bedeutung haben: sie sind keine Kuriositäten im Leben der Menschen, sondern sie repräsentieren die normalen Strukturen und Prozesse des Alltags in zugespitzten, kondensierten Formaten, die aber von jedem Menschen mehr oder weniger sofort verstanden werden bzw. verstanden werden können.[9] Die Nichterreichung eines Zieles im expliziten Spiel kann zwar auch schlechte Gefühle auslösen, hat aber normalerweise keine weiteren reale negative Auswirkungen. Explizite Spiele ermöglichen es, ein Stück weit reale Welt zu spielen ohne sich dabei aber einem realen Risiko auszusetzen. Diese Eigenschaft kann für Mitbürger eine große Chance auch für den realen Alltag bieten.

Wissen und Bedeutung oder: Der Elefant im Raum

Ist man erst einmal aufmerksam geworden auf die Allgegenwart von Spielstrukturen in unserem Alltag, dann erscheint es fast ’normal‘, dass wir Menschen uns im Format des Spiels scheinbar schwerelos bewegen können. Wo immer man hinkommt, wen man auch immer trifft, das Verhalten im Format eines Spiels ist jedem vertraut. Daher fällt es meistens gar nicht auf, dass hinter dieser Verhaltensoberfläche einige Fähigkeiten des Menschen aktiv sind, die als solche alles andere als selbstverständlich sind.

Überall dort, wo mehr als ein Mensch sich im Format eines Spiels verhält, müssen alle beteiligten Menschen (Mitspieler, Mitbürger,…) in ihrem Kopf über ein Wissen verfügen, in dem alle Aspekte, die zu einem spielerischen Verhalten gehören, vorhanden (repräsentiert) sind. Wenn ein Spieler beim Fußballspiel nicht weiß, wann er im Abseits steht, macht er einen Fehler. Wer nicht weiß, dass man beim Einkaufen am Ende seine Waren bezahlen muss, macht einen Fehler. Wer nicht weiß, wie man bei der Essenszubereitung richtig schneidet/ würzt/ brät/ … verändert dies das erhoffte Ergebnis. Wer nicht weiß, wie er Bargeld aus dem Automat bekommt, hat ein Problem … Jeder lernt im Alltag, dass er wissen muss, um richtig handeln zu können. Was aber hat es genau mit diesem Wissen auf sich?

Und, um die Geschichte vollständig zu erzählen: Im Alltag operieren wir ständig mit Alltagssprache: wir produzieren Laute, die andere hören können und umgekehrt. Das Besondere an diesen Lauten ist, dass alle Teilnehmer des Alltags die eine gleiche Alltagssprache gelernt haben, diese Laute spontan in ihrem Kopf mit Teilen des Wissens verknüpfen, über das sie verfügen. Die gesprochenen und gehörten Laute sind daher nur ein Mittel zum Zweck. Als solche haben die Laute keine Bedeutung (was man sofort merken kann, wenn jemand die benutzte Alltagssprache nicht kennt). Aber für die, die die gleiche Alltagssprache im Alltag gelernt haben, stimulieren diese Laute in ihrem Kopf bestimmte Wissenselemente, falls wir über sie verfügen. Solche Wissenselemente, die sich durch die Laute einer gelernten Alltagssprache in einem Mitbürger stimulieren lassen, nennt man gewöhnlich sprachliche Bedeutung, wobei hier nicht nur die gehörten Laute alleine eine Rolle spielen, sondern normalerweise sind viele Kontexteigenschaften zusätzlich wichtig: Wie jemand etwas sagt, unter welchen Begleitumständen, in welcher Rolle usw. Meist muss man in der Situation des Sprechens anwesend sein, um all diese Kontextfaktoren erfassen zu können.

Hat man verstanden, dass jede geteilte Alltagssituation im Spielformat zentral zum notwendigen Alltagswissen auch eine Alltagssprache voraussetzt, dann wird auch klar, dass jedes explizite Spiel im Format einer Spielanleitung genau jenes Spielwissen bereit zu stellen versucht, welches man kennen muss, um das explizite Spiel spielen zu können. Im Alltag entsteht das notwendige Wissen durch Lernprozesse: durch Nachahmung und Ausprobieren baut jeder in seinem Kopf jenes Wissen auf, das er für ein bestimmtes Alltagshandeln benötigt. Für sich alleine braucht man nicht unbedingt einen Text, der das eigene Alltagshandeln beschreibt. Will man aber andere Mitbürger in sein Alltagsverhalten einbeziehen — gerade auch wenn es viele sein sollen, die nicht unbedingt am gleichen Ort sind –, dann muss man sein Alltagsverhalten mittels Alltagssprache ausdrücken.

Wissenschaftliches Denken und Kommunizieren

Für alle die, die nicht direkt mit wissenschaftlicher Arbeit zu tun haben, bildet Wissenschaft eine Zusammenballung von vielen unverständlichen Begriffen, Sprachen und Methoden. Dies führt in der Gegenwart leider vielfach zu einer Art Entfremdung der normalen Bürger von der Wissenschaft. Was nicht nur schade ist, sondern für eine Demokratie sogar gefährlich werden kann.[10,11]

Diese Entfremdung müsste aber nicht stattfinden. Die Alltagsspiele wie auch die expliziten Spiele, welche unsere natürlichen Wissens- und Verhaltensformen im Alltag darstellen, haben bei näherer Betrachtung die gleiche Struktur wie wissenschaftliche Theorien. Begreift man, dass Alltagsspiele strukturgleich mit wissenschaftlichen Theorien sind, dann kann man sogar entdecken, dass Alltagtheorien sogar noch umfassender sind als normale wissenschaftliche Theorien. Während eine empirisch Theorie (ET) erklären kann, was mit einer gewissen Wahrscheinlichkeit in einer möglichen nachfolgenden Situation passieren kann, falls gewisse Voraussetzungen in einer Situation gegeben sind, gehen Alltagstheorien über diese Beschreibungskraft in der Regel hinaus: In einer Alltagstheorie wird nicht nur gesagt, was passieren wird, wenn man in einer bestimmten Situation eine bestimmte Änderung vornimmt, sondern im Alltag wählt man normalerweise auch ein bestimmtes Ziel aus, das man mit Anwendung des Veränderungswissens erreichen möchte.

Im Unterschied zu einer normalen empirischen Theorie, die sich auf erklärende Zusammenhänge beschränkt, besteht im Alltagsprozess die beständige Herausforderung, den Lebensprozess des einzelnen wie jenen von unterschiedlichen Gruppen von Menschen bestmöglichst am Laufen zu halten. Dies aber geht nicht ohne explizite Ziele, deren Einlösung als Beitrag zur Erhaltung des alltäglichen Lebensprozesses angenommen wird.

Die normale Wissenschaft hat diesen Aspekt der Einbeziehung von Zielen in eine Theoriebildung noch nicht in ihre normale Arbeit integriert. Die Verknüpfung von Erklärungswissen in Form einer empirischen Theorie (ET) mit irgendwelchen Zielen überlässt die Wissenschaft bislang der Gesellschaft und ihren unterschiedlichen Gruppierungen und Institutionen. Dies kann gut sein, weil dadurch eine maximale Bandbreite an möglichen Ideen zur Sprache kommen kann; es kann aber auch schlecht sein, wenn mangels Verständnis von Wissenschaft und überhaupt aufgrund von mangelndem Wissen keine guten Ziel-Vorschläge zustande kommen.

Alltagstheorie (AT) und Empirische Theorie (ET)

Mancher wird sich an dieser Stelle vielleicht fragen, wie man sich jetzt genau die Struktur-Gleichheit von Alltagstheorien (AT) und Nachhaltigen Empirischen Theorien (NET) vorstellen kann. Hier ein kurze Beschreibung.

BILD : Skizze der Struktur einer empirischen Theorie ohne Ziele. Eine empirische Theorie (ET) mit Zielen wäre eine ’nachhaltige empirische Theorie (NET)‘. Siehe Text weiter unten.

Diese Skizze zeigt menschliche Akteure hier nicht als die Anwender einer Theorie — wie im Beispiel eines Brettspiels — sondern als Autoren einer Theorie, also jene Menschen, die Theorien in Interaktion mit dem realen Alltag entwickeln.

Hier wird davon ausgegangen, dass Theorie-Autoren im Normalfall irgendwelche Bürger sind, die ein Interesse eint, bestimmte Vorgänge in ihrem Alltag besser zu verstehen.

Zum Start müssen sie sich darauf einigen, welchen Ausschnitt aus ihrem Alltag sie als Startsituation (S) benutzen wollen. Diese Startsituation muss in einem Text beschrieben werden, der sich von allen Beteiligten als im Alltag zutreffend (wahr) erweist.

Aufgrund des verfügbaren Wissens über die bisherige Vergangenheit müssen die Theorie-Autoren sich darauf einigen, welche Arten von Veränderungen (V) sie für ihre Theorie benutzen wollen.

Schließlich müssen sie sich auch darüber einigen, auf welche Weise die ausgewählten Veränderungsbeschreibungen (V) auf eine gegebene Situation (S) so angewendet werden können, dass sich dadurch die Beschreibung jener Situation S1 ergibt, die durch die angewendeten Veränderungen entsteht. Abkürzend geschrieben: V(S)=S1.

Da sich in den meisten Fällen die angenommenen Veränderungsregeln V auch auf die neue nachfolgende Situation S1 wieder anwenden lässt — also V(S1)=S2 usw. –, reichen diese drei Elemente <S, V, Anwendung> aus, um aus einer Gegenwart S heraus mit Hilfe von Veränderungswissen bestimmte Zustände als möglich in einer Zukunft zu prognostizieren.

Dies beschreibt die Struktur und den Inhalt einer gewöhnlichen empirischen Theorie (ET).

Nachhaltige Empirische Theorie (NET) = ET + Ziele

Der Übergang von einer normalen empirischen Theorie (ET) zu einer nachhaltigen empirischen Theorie (NET) ist vergleichsweise einfach: man muss nur das empirische Wissen mit solchen Zielen (Z) verknüpfen, die aus der Gesellschaft heraus als interessante Kandidaten für eine mögliche gute Zukunft erwachsen.

BILD : Ergänzend zur normalen empirischen Theorie (ET) kann die Gesellschaft, die den Kontext zu einer empirischen Theorie bildet, Ziele (Z) generieren, von denen sie glaubt, dass sie für möglichst viele eine möglichst gute Zukunft unterstützen. Formulierte Ziele können zugleich als Benchmark benutzt werden, um aktuelle Zustände S daraufhin zu evaluieren, welche große Übereinstimmung (in %) sie mit dem gewählten Ziel Z aufweisen.

Während empirisches Wissen als solches wertneutral ist, d.h. keine bestimmte Richtung in eine mögliche Zukunft favorisiert, können aber die Wertvorstellungen, die die Auswahl von realen Fragestellungen leiten, indirekt dazu führen, dass wichtiges Wissen aufgrund von der Wissenschaft vorgelagerten Entscheidungen nicht generiert wird. 12]

Fortsetzung: Teil 2

Kann Maschinelles Lernen im Format einer generativen KI einen Beitrag zur Bildung von nachhaltigen empirischen Theorien (NET) leisten?

QUELLEN

[1] Eliza Computer Programm in wkp-en: https://en.wikipedia.org/wiki/ELIZA, ELIZA is an early natural language processing computer program developed from 1964 to 1967[1] at MIT by Joseph Weizenbaum.[2][3] Created to explore communication between humans and machines, ELIZA simulated conversation by using a pattern matching and substitution methodology that gave users an illusion of understanding on the part of the program, but had no representation that could be considered really understanding what was being said by either party.[4][5][6]

[2] Joseph Weizenbaum, ELIZA A Computer Program For the Study of Natural Language Communication Between Man And Machine, Communications of the ACM Volume 9 / Number 1, January 1966, pp: 36-45

[3] chatbot in wkp-de: https://de.wikipedia.org/wiki/Chatbot, „Ein Chatterbot, Chatbot oder kurz Bot ist ein textbasiertes Dialogsystem, das Chatten mit einem technischen System erlaubt. Er hat je einen Bereich zur Textein- und -ausgabe, über die sich in natürlicher Sprache mit dem System kommunizieren lässt. Chatbots können, müssen aber nicht in Verbindung mit einem Avatar benutzt werden. Technisch sind Chatbots näher mit einer Volltextsuchmaschine verwandt als mit künstlicher oder gar natürlicher Intelligenz. Mit der steigenden Computerleistung können Chatbot-Systeme allerdings immer schneller auf immer umfangreichere Datenbestände zugreifen und daher auch intelligente Dialoge für den Nutzer bieten, wie zum Beispiel das bei OpenAI entwickelte ChatGPT oder das von Google LLC vorgestellte Language Model for Dialogue Applications (LaMDA). Solche Systeme werden auch als virtuelle persönliche Assistenten bezeichnet. Es gibt auch Chatbots, die gar nicht erst versuchen, wie ein menschlicher Chatter zu wirken (daher keine Chatterbots), sondern ähnlich wie IRC-Dienste nur auf spezielle Befehle reagieren. Sie können als Schnittstelle zu Diensten außerhalb des Chats dienen, oder auch Funktionen nur innerhalb ihres Chatraums anbieten, z. B. neu hinzugekommene Chatter mit dem Witz des Tages begrüßen. Heute wird meistens durch digitale Assistenten wie Google Assistant und Amazon Alexa, über Messenger-Apps wie Facebook Messenger oder WhatsApp oder aber über Organisationstools und Webseiten auf Chatbots zugegriffen[1][2].“

[4] Generative KI als ‚Generativer Vortrainierter Transformer‘ (Generative pre-trained transformers GPT) in wkp-de, https://de.wikipedia.org/wiki/Generativer_vortrainierter_Transformer, „Generative vortrainierte Transformer (englisch Generative pre-trained transformers, GPT) sind eine Art großes Sprachmodell[1][2][3] und ein bedeutendes Framework für generative künstliche Intelligenz.[4][5] Der erste GPT wurde 2018 vom amerikanischen Unternehmen für künstliche Intelligenz (KI) OpenAI vorgestellt.[6] GPT-Modelle sind künstliche neuronale Netzwerke, die auf der TransformerArchitektur basieren, auf großen Datensätzen unbeschrifteten Textes vorab trainiert werden und in der Lage sind, neuartige, menschenähnliche Inhalte zu generieren.[2] Bis 2023 haben die meisten LLMs diese Eigenschaften[7] und werden manchmal allgemein als GPTs bezeichnet.[8] OpenAI hat sehr einflussreiche GPT-Grundmodelle veröffentlicht, die fortlaufend nummeriert wurden und die „GPT-n“-Serie bilden. Jedes dieser Modelle war signifikant leistungsfähiger als das vorherige, aufgrund zunehmender Größe (Anzahl der trainierbaren Parameter) und des Trainings. Das jüngste dieser Modelle, GPT-4, wurde im März 2023 veröffentlicht. Solche Modelle bilden die Grundlage für ihre spezifischeren GPT-Systeme, einschließlich Modellen, die für die Anweisungsbefolgung optimiert wurden und wiederum den ChatGPTChatbot-Service antreiben.[1] Der Begriff „GPT“ wird auch in den Namen und Beschreibungen von Modellen verwendet, die von anderen entwickelt wurden. Zum Beispiel umfasst eine Reihe von Modellen, die von EleutherAI erstellt wurden, weitere GPT-Grundmodelle. Kürzlich wurden auch sieben Modelle von Cerebras erstellt. Auch Unternehmen in verschiedenen Branchen haben auf ihren jeweiligen Gebieten aufgabenorientierte GPTs entwickelt, wie z. B. „EinsteinGPT“ von Salesforce (für CRM)[9] und „BloombergGPT“ von Bloomberg (für Finanzen).[10]

[4a] Die Firma openAI: https://openai.com/

[4b] Kurze Beschreibung: https://en.wikipedia.org/wiki/ChatGPT

[4c] Tutorial zu chatGPT: https://blogkurs.de/chatgpt-prompts/

[5] Person-Centered Therapy in wkp-en: https://en.wikipedia.org/wiki/Person-centered_therapy

[6] Messung in wkp-de: https://de.wikipedia.org/wiki/Messung

[7] Mensch ärgere Dich nicht in wkp-de: https://de.wikipedia.org/wiki/Mensch_%C3%A4rgere_Dich_nicht

[8] Elain Rich, 1983, Artificial Intelligence. McGraw-Hill Book Company. Anmerkung: In der Informatik der 1970iger und 1980iger Jahre hatte man gemerkt, dass die Beschränkung auf die Logik als Beschreibung von Realität zu einfach und zu umständlich ist. Konfrontiert mit dem Alltag wurden Begriffe aktiviert wie ‚Schema‘, ‚Frame (Rahmen)‘, ‚Script‘, ‚Stereotype‘, ‚Rule Model (Rollenmodell)‘. Doch wurden diese Konzepte letztlich noch sehr starr verstanden und benutzt. Siehe Kap.7ff bei Rich.

[9] Natürlich gibt es auch Spiele, die einen Umfang haben, der von den Spielern eine sehr intensive Beschäftigung verlangt, um sie wirklich voll zu verstehen. Ermöglichen solche komplexe Spiele aber zugleich wertvolle ‚Emotionen/ Gefühle‘ in den Spielern, dann wirkt die Komplexität nicht abschreckend, sondern kann zu einer lang anhaltenden Quelle von Spiellust werden, die in Spielsucht übergehen kann (und vielfach auch tatsächlich in Spielsucht übergeht).

[10] Warren Weaver, Science and the Citizens, Bulletion of the Atomic Scientists, 1957, Vol 13, pp. 361-365.

[11] Philipp Westermeier, 23.Nov. 2022, Besprechung Science and the Citizen von Warren Weaver, URL: https://www.oksimo.org/2022/11/23/besprechung-science-and-the-citizen-von-warren-weaver/

[12] Indirekt kann empirisches Wissen einen gewissen Einfluss auf eine mögliche Zukunft ausüben, indem bei der Auswahl einer zu erstellenden empirische Theorie (ET) gerade solche Aspekte nicht ausgewählt werden, die vielleicht für eine bestimmte Zielerreichung wichtig wären, jetzt aber eben nicht verfügbar sind. Dies kann sich vielfach manifestieren, z.B. durch eine Forschungspolitik, die von vornherein viele Themenfelder ausblendet, weil sie im Lichte aktueller Trends als nicht vorteilhaft eingestuft werden.

DER AUTOR

Einen Überblick über alle Beiträge von Autor cagent nach Titeln findet sich HIER.

Homo Sapiens: empirische und nachhaltig-empirische Theorien, Emotionen, und Maschinen. Eine Skizze

5.Aug 2023 – 29.Aug 2023 (10:37h)

Autor: Gerd Doeben-Henisch

Email: gerd@doeben-henisch.de

(Eine Englische Version findet sich hier: https://www.uffmm.org/2023/08/24/homo-sapiens-empirical-and-sustained-empirical-theories-emotions-and-machines-a-sketch/)

Kontext

Dieser Text stellt die Skizze zu einem Vortrag dar, der im Rahmen der Konferenz „KI – Text und Geltung. Wie verändern KI-Textgeneratoren wissenschaftliche Diskurse?“ (25./26.August 2023, TU Darmstadt) gehalten werden soll. [1] Die Englische Version des überarbeiteten Vortrags findet sich schon jetzt HIER: https://www.uffmm.org/2023/10/02/collective-human-machine-intelligence-and-text-generation-a-transdisciplinary-analysis/ . Die Deutsche Version des überarbeiteten Vortrags wird im Verlag Walter de Gruyter bis Ende 2023/ Anfang 2024 erscheinen. Diese Veröffentlichung wird hier dann bekannt gegeben werden.

Sehr geehrtes Auditorium,

In dieser Tagung mit dem Titel „KI – Text und Geltung. Wie verändern KI-Textgeneratoren wissenschaftliche Diskurse?“ geht es zentral um wissenschaftliche Diskurse und den möglichen Einfluss von KI-Textgeneratoren auf diese Diskurse. Der heiße Kern bleibt aber letztlich das Phänomen Text selbst, seine Geltung.

SICHTWEISEN-TRANS-DISZIPLINÄR

In dieser Konferenz werden zu diesem Thema viele verschiedene Sichten vorgetragen, die zu diesem Thema möglich sind.

Mein Beitrag zum Thema versucht die Rolle der sogenannten KI-Textgeneratoren dadurch zu bestimmen, dass aus einer ‚transdisziplinären Sicht‘ heraus die Eigenschaften von ‚KI-Textgeneratoren‘ in eine ’strukturelle Sicht‘ eingebettet werden, mit deren Hilfe die Besonderheiten von wissenschaftlichen Diskursen herausgestellt werden kann. Daraus können sich dann ‚Kriterien für eine erweiterte Einschätzung‘ von KI-Textgeneratoren in ihrer Rolle für wissenschaftliche Diskurse ergeben.

Einen zusätzlichen Aspekt bildet die Frage nach der Struktur der ‚kollektiven Intelligenz‘ am Beispiel des Menschen, und wie sich diese mit einer ‚Künstlichen Intelligenz‘ im Kontext wissenschaftlicher Diskurse möglicherweise vereinen kann.

‚Transdisziplinär‘ bedeutet in diesem Zusammenhang eine ‚Meta-Ebene‘ aufzuspannen, von der aus es möglich sein soll, die heutige ‚Vielfalt von Textproduktionen‘ auf eine Weise zu beschreiben, die ausdrucksstark genug ist, um eine ‚KI-basierte‘ Texterzeugung von einer ‚menschlichen‘ Texterzeugung unterscheiden zu können.

MENSCHLICHE TEXTERZEUGUNG

Die Formulierung ‚wissenschaftlicher Diskurs‘ ist ein Spezialfall des allgemeineren Konzepts ‚menschliche Texterzeugung‘.

Dieser Perspektivenwechsel ist meta-theoretisch notwendig, da es auf den ersten Blick nicht der ‚Text als solcher ‚ ist, der über ‚Geltung und Nicht-Geltung‘ entscheidet, sondern die ‚Akteure‘, die ‚Texte erzeugen und verstehen‘. Und beim Auftreten von ‚verschiedenen Arten von Akteuren‘ — hier ‚Menschen‘, dort ‚Maschinen‘ — wird man nicht umhin kommen, genau jene Unterschiede — falls vorhanden — zu thematisieren, die eine gewichtige Rolle spielen bei der ‚Geltung von Texten‘.

TEXTFÄHIGE MASCHINEN

Bei der Unterscheidung in zwei verschiedenen Arten von Akteuren — hier ‚Menschen‘, dort ‚Maschinen‘ — sticht sofort eine erste ‚grundlegende Asymmetrie‘ ins Auge: sogenannte ‚KI-Textgeneratoren‘ sind Gebilde, die von Menschen ‚erfunden‘ und ‚gebaut‘ wurden, es sind ferner Menschen, die sie ‚benutzen‘, und das wesentliche Material, das von sogenannten KI-Generatoren benutzt wird, sind wiederum ‚Texte‘, die als ‚menschliches Kulturgut‘ gelten.

Im Falle von sogenannten ‚KI-Textgeneratoren‘ soll hier zunächst nur so viel festgehalten werden, dass wir es mit ‚Maschinen‘ zu tun haben, die über ‚Input‘ und ‚Output‘ verfügen, dazu über eine minimale ‚Lernfähigkeit‘, und deren Input und Output ‚textähnliche Objekte‘ verarbeiten kann.

BIOLOGISCH-NICHT-BIOLOGISCH

Auf der Meta-Ebene wird also angenommen, dass wir einerseits über solche Akteure verfügen, die minimal ‚textfähige Maschinen‘ sind — durch und durch menschliche Produkte –, und auf der anderen Seite über Akteure, die wir ‚Menschen‘ nennen. Menschen gehören als ‚Homo-Sapiens Population‘ zur Menge der ‚biologischen Systeme‘, während ‚textfähige Maschinen‘ zu den ’nicht-biologischen Systemen‘ gehören.

LEERSTELLE INTELLIGENZ-BEGRIFF

Die hier vorgenommene Transformation des Begriffs ‚KI-Textgenerator‘ in den Begriff ‚textfähige Maschine‘ soll zusätzlich verdeutlichen, dass die verbreitete Verwendung des Begriffs ‚KI‘ für ‚Künstliche Intelligenz‘ eher irreführend ist. Es gibt bislang in keiner wissenschaftlichen Disziplin einen allgemeinen, über die Einzeldisziplin hinaus anwendbaren und akzeptierten Begriff von ‚Intelligenz‘. Für die heute geradezu inflatorische Verwendung des Begriffs KI gibt es keine wirkliche Begründung außer jener, dass der Begriff so seiner Bedeutung entleert wurde, dass man ihn jederzeit und überall benutzen kann, ohne etwas Falsches zu sagen. Etwas, was keine Bedeutung besitzt, kann weder wahr‘ noch ‚falsch‘ sein.

VORAUSSETZUNGEN FÜR TEXT-GENERIERUNG

Wenn nun die Homo-Sapiens Population als originärer Akteur für ‚Text-Generierung‘ und ‚Text-Verstehen‘ identifiziert wird, soll nun zunächst untersucht werden, welches denn ‚jene besonderen Eigenschaften‘ sind, die eine Homo-Sapiens Population dazu befähigt, Texte zu generieren und zu verstehen und sie ‚im alltäglichen Lebensprozess erfolgreich anzuwenden‘.

GELTUNG

Ein Anknüpfungspunkt für die Untersuchung der besonderen Eigenschaften einer Homo-Sapiens Text-Generierung und eines Text-Verstehens ist der Begriff ‚Geltung‘, der im Tagungsthema vorkommt.

Auf dem primären Schauplatz des biologischen Lebens, in den alltäglichen Prozessen, im Alltag, hat die ‚Geltung‘ eines Textes mit ‚Zutreffen‘ zu tun. Wenn ein Text nicht von vornherein mit einem ‚fiktiven Charakter‘ geplant wird, sondern mit einem ‚Bezug zum Alltagsgeschehen‘, das jeder im Rahmen seiner ‚Weltwahrnehmung‘ ‚überprüfen‘ kann, dann hat ‚Geltung im Alltag‘ damit zu tun, dass das ‚Zutreffen eines Textes überprüft‘ werden kann. Trifft die ‚Aussage eines Textes‘ im Alltag ‚zu‘, dann sagt man auch, dass diese Aussage ‚gilt‘, man räumt ihr ‚Geltung‘ ein, man bezeichnet sie auch als ‚wahr‘. Vor diesem Hintergrund könnte man geneigt sein fortzusetzen und zu sagen: ‚Trifft‘ die Aussage eines Textes ’nicht zu‘, dann kommt ihr ‚keine Geltung‘ zu; vereinfacht zur Formulierung, dass die Aussage ’nicht wahr‘ sei bzw. schlicht ‚falsch‘.

Im ‚realen Alltag‘ ist die Welt allerdings selten ’schwarz‘ und ‚weiß‘: nicht selten kommt es vor, dass wir mit Texten konfrontiert werden, denen wir aufgrund ihrer ‚gelernten Bedeutung‘ geneigt sind ‚eine mögliche Geltung‘ zu zuschreiben, obwohl es möglicherweise gar nicht klar ist, ob es eine Situation im Alltag gibt — bzw. geben wird –, in der die Aussage des Textes tatsächlich zutrifft. In solch einem Fall wäre die Geltung dann ‚unbestimmt‘; die Aussage wäre ‚weder wahr noch falsch‘.

ASYMMETRIE: ZUTREFFEN – NICHT-ZUTREFFEN

Man kann hier eine gewisse Asymmetrie erkennen: Das ‚Zutreffen‘ einer Aussage, ihre tatsächliche Geltung, ist vergleichsweise eindeutig. Das ‚Nicht-Zutreffen‘, also eine ‚bloß mögliche‘ Geltung, ist hingegen schwierig zu entscheiden.

Wir berühren mit diesem Phänomen der ‚aktuellen Nicht-Entscheidbarkeit‘ einer Aussage sowohl das Problem der ‚Bedeutung‘ einer Aussage — wie weit ist überhaupt klar, was gemeint ist? — als auch das Problem der ‚Unabgeschlossenheit unsres Alltags‘, besser bekannt als ‚Zukunft‘: ob eine ‚aktuelle Gegenwart‘ sich als solche fortsetzt, ob genau so, oder ob ganz anders, das hängt davon ab, wie wir ‚Zukunft‘ generell verstehen und einschätzen; was die einen als ’selbstverständlich‘ für eine mögliche Zukunft annehmen, kann für die anderen schlicht ‚Unsinn‘ sein.

BEDEUTUNG

Dieses Spannungsfeld von ‚aktuell entscheidbar‘ und ‚aktuell noch nicht entscheidbar‘ verdeutlicht zusätzlich einen ‚autonomen‘ Aspekt des Phänomens Bedeutung: hat sich ein bestimmtes Wissen im Gehirn gebildet und wurde dieses als ‚Bedeutung‘ für ein ‚Sprachsystem‘ nutzbar gemacht, dann gewinnt diese ‚assoziierte‘ Bedeutung für den Geltungsbereich des Wissens eine eigene ‚Realität‘: es ist nicht die ‚Realität jenseits des Gehirns‘, sondern die ‚Realität des eigenen Denkens‘, wobei diese Realität des Denkens ‚von außen betrachtet‘ etwas ‚Virtuelles‘ hat.

Will man über diese ‚besondere Realität der Bedeutung‘ im Kontext des ‚ganzen Systems‘ sprechen, dann muss man zu weitreichenden Annahmen greifen, um auf der Meta-Ebene einen ‚begrifflichen Rahmen‘ installieren zu können, der in der Lage ist, die Struktur und die Funktion von Bedeutung hinreichend beschreiben zu können. Dafür werden minimal die folgenden Komponenten angenommen (‚Wissen‘, ‚Sprache‘ sowie ‚Bedeutungsbeziehung‘):

  1. WISSEN: Es gibt die Gesamtheit des ‚Wissens‘, das sich im Homo-Sapiens Akteur im Laufe der Zeit im Gehirn ‚aufbaut‘: sowohl aufgrund von kontinuierlichen Interaktionen des ‚Gehirns‘ mit der ‚Umgebung des Körpers‘, als auch aufgrund von Interaktionen ‚mit dem Körper selbst‘, sowie auch aufgrund der Interaktionen ‚des Gehirns mit sich selbst‘.
  2. SPRACHE: Vom Wissen zu unterscheiden ist das dynamische System der ‚potentiellen Ausdrucksmittel‘, hier vereinfachend ‚Sprache‘ genannt, die sich im Laufe der Zeit in Interaktion mit dem ‚Wissen‘ entfalten können.
  3. BEDEUTUNGSBEZIEHUNG: Schließlich gibt es die dynamische ‚Bedeutungsbeziehung‘, ein Interaktionsmechanismus, der beliebige Wissenselemente jederzeit mit beliebigen sprachlichen Ausdrucksmitteln verknüpfen kann.

Jede dieser genannten Komponenten ‚Wissen‘, ‚Sprache‘ wie auch ‚Bedeutungsbeziehung‘ ist extrem komplex; nicht weniger komplex ist auch ihr Zusammenspiel.

ZUKUNFT UND EMOTIONEN

Neben dem Phänomen Bedeutung wurde beim Phänomen des Zutreffens auch sichtbar, dass die Entscheidung des Zutreffens auch von einer ‚verfügbaren Alltagssituation‘ abhängt, in der sich eine aktuelle Entsprechung ‚konkret aufzeigen‘ lässt oder eben nicht.

Verfügen wir zusätzlich zu einer ‚denkbaren Bedeutung‘ im Kopf aktuell über keine Alltagssituation, die dieser Bedeutung im Kopf hinreichend korrespondiert, dann gibt es immer zwei Möglichkeiten: Wir können diesem gedachten Konstrukt trotz fehlendem Realitätsbezug den ‚Status einer möglichen Zukunft‘ verleihen oder nicht.

Würden wir uns dafür entscheiden, einer ‚Bedeutung im Kopf‘ den Status einer möglichen Zukunft zu zusprechen, dann stehen meistens folgende zwei Anforderungen im Raum: (i) Lässt sich im Lichte des verfügbaren Wissens hinreichend plausibel machen, dass sich die ‚gedachte mögliche Situation‘ in ‚absehbarer Zeit‘ ausgehend von der aktuellen realen Situation ‚in eine neue reale Situation transformieren lässt‘? Und (ii) Gibt es ’nachhaltige Gründe‚ warum man diese mögliche Zukunft ‚wollen und bejahen‘ sollte?

Die erste Forderung verlangt nach einer leistungsfähigen ‚Wissenschaft‘, die aufhellt, ob es überhaupt gehen kann. Die zweite Forderung geht darüber hinaus und bringt unter dem Gewand der ‚Nachhaltigkeit‘ den scheinbar ‚irrationalen‘ Aspekt der ‚Emotionalität‘ ins Spiel: es geht nicht nur einfach um ‚Wissen als solches‘, es geht auch nicht nur um ein ’sogenanntes nachhaltiges Wissen‘, das dazu beitragen soll, das Überleben des Lebens auf dem Planet Erde — und auch darüber hinaus — zu unterstützen, es geht vielmehr auch um ein ‚gut finden, etwas bejahen, und es dann auch entscheiden wollen‘. Diese letzten Aspekte werden bislang eher jenseits von ‚Rationalität‘ angesiedelt; sie werden dem diffusen Bereich der ‚Emotionen‘ zugeordnet; was seltsam ist, da ja jedwede Form von ‚üblicher Rationalität‘ genau in diesen ‚Emotionen‘ gründet.[2]

WISSENSCHAFTLICHER DISKURS UND ALLTAGSSITUATIONEN

In diesem soeben angedeuteten Kontext von ‚Rationalität‘ und ‚Emotionalität‘ ist es nicht uninteressant, dass im Tagungsthema der ‚wissenschaftliche Diskurs‘ als Referenzpunkt thematisiert wird, um den Stellenwert textfähiger Maschinen abzuklären.

Es fragt sich, inwieweit ein ‚wissenschaftlicher Diskurs‘ überhaupt als Referenzpunkt für einen erfolgreichen Text dienen kann?

Dazu kann es helfen, sich bewusst zu machen, dass das Leben auf diesem Planet Erde sich in jedem Moment in einer unfassbar großen Menge von ‚Alltagssituationen‘ abspielt, die alle gleichzeitig stattfinden. Jede ‚Alltagssituation‘ repräsentiert für die Akteure eine ‚Gegenwart‘. Und in den Köpfen der Akteure findet sich ein individuell unterschiedliches Wissen darüber, wie sich eine Gegenwart in einer möglichen Zukunft ‚verändern kann‘ bzw. verändern wird.

Dieses ‚Wissen in den Köpfen‘ der beteiligten Akteure kann man generell ‚in Texte transformieren‘, die auf unterschiedliche Weise einige der Aspekte des Alltags ’sprachlich repräsentieren‘.

Der entscheidende Punkt ist, dass es nicht ausreicht, dass jeder ‚für sich‘ alleine, ganz ‚individuell‘, einen Text erzeugt, sondern dass jeder zusammen ‚mit allen anderen‘, die auch von der Alltagssituation betroffen sind, einen ‚gemeinsamen Text‘ erzeugen muss. Eine ‚kollektive‘ Leistung ist gefragt.

Und es geht auch nicht um ‚irgendeinen‘ Text, sondern um einen solchen, der so beschaffen ist, dass er die ‚Generierung möglicher Fortsetzungen in der Zukunft‘ erlaubt, also das, was traditionell von einem ‚wissenschaftlichen Text‘ erwartet wird.

Aus der umfangreichen Diskussion — seit den Zeiten eines Aristoteles — was denn ‚wissenschaftlich‘ bedeuten soll, was eine ‚Theorie‘ ist, was eine ‚empirische Theorie‘ sein soll, skizziere ich das, was ich hier das ‚minimale Konzept einer empirischen Theorie‘ nenne.

  1. Ausgangspunkt ist eine ‚Gruppe von Menschen‘ (die ‚Autoren‘), die einen ‚gemeinsamen Text‘ erstellen wollen.
  2. Dieser Text soll die Eigenschaft besitzen, dass er ‚begründbare Voraussagen‘ für mögliche ‚zukünftige Situationen‘ erlaubt, denen sich dann in der Zukunft ‚irgendwann‘ auch eine ‚Geltung zuordnen lässt‘.
  3. Die Autoren sind in der Lage, sich auf eine ‚Ausgangssituation‘ zu einigen, die sie mittels einer ‚gemeinsamen Sprache‘ in einen ‚Ausgangstext‘ [A] transformieren.
  4. Es gilt als abgemacht, dass dieser Ausgangstext nur ’solche sprachliche Ausdrücke‘ enthalten darf, die sich ‚in der Ausgangssituation‘ als ‚wahr‘ ausweisen lassen.
  5. In einem weiteren Text stellen die Autoren eine Reihe von ‚Veränderungsregeln‘ [V] zusammen, die ‚Formen von Veränderungen‘ an einer gegebenen Situation ins Wort bringen.
  6. Auch in diesem Fall gilt es als abgemacht, dass nur ’solche Veränderungsregeln‘ aufgeschrieben werden dürfen, von denen alle Autoren wissen, dass sie sich in ‚vorausgehenden Alltagssituationen‘ als ‚wahr‘ erwiesen haben.
  7. Der Text mit den Veränderungsregeln V liegt auf einer ‚Meta-Ebene‘ verglichen mit dem Text A über die Ausgangssituation, der relativ zum Text V auf einer ‚Objekt-Ebene‘ liegt.
  8. Das ‚Zusammenspiel‘ zwischen dem Text V mit den Veränderungsregeln und dem Text A mit der Ausgangssituation wird in einem eigenen ‚Anwendungstext‘ [F] beschrieben: Hier wird beschrieben, wann und wie man eine Veränderungsregel (in V) auf einen Ausgangstext A anwenden darf und wie sich dabei der ‚Ausgangstext A‘ zu einem ‚Folgetext A*‘ verändert.
  9. Der Anwendungstext F liegt damit auf einer nächst höheren Meta-Ebene zu den beiden Texten A und V und kann bewirken, dass der Anwendungstext den Ausgangstext A verändert wird.
  1. In dem Moment, wo ein neuer Folgetext A* vorliegt, wird der Folgetext A* zum neuen Anfangstext A.
  2. Falls der neue Ausgangstext A so beschaffen ist, dass sich wieder eine Veränderungsregel aus V anwenden lässt, dann wiederholt sich die Erzeugung eines neuen Folgetextes A*.
  3. Diese ‚Wiederholbarkeit‘ der Anwendung kann zur Generierung von vielen Folgetexten <A*1, …, A*n> führen.
  4. Eine Serie von vielen Folgetexten <A*1, …, A*n> nennt man üblicherweise auch eine ‚Simulation‘.
  5. Abhängig von der Beschaffenheit des Ausgangstextes A und der Art der Veränderungsregeln in V kann es sein, dass mögliche Simulationen ‚ganz unterschiedlich verlaufen können‘. Die Menge der möglichen wissenschaftlichen Simulationen repräsentiert ‚Zukunft‘ damit also nicht als einen einzigen, bestimmten Verlauf, sondern als eine ‚beliebig große Menge möglicher Verläufe‘.
  6. Die Faktoren, von denen unterschiedliche Verläufe abhängen, sind vielfältig. Ein Faktor sind die Autoren selbst. Jeder Autor ist ja mit seiner Körperlichkeit vollständig selbst Teil genau jener empirischen Welt, die in einer wissenschaftlichen Theorie beschrieben werden soll. Und wie bekannt, kann jeder menschliche Akteur seine Meinung jederzeit ändern. Er kann buchstäblich im nächsten Moment genau das Gegenteil von dem tun, was er zuvor gedacht hat. Und damit ist die Welt schon nicht mehr die gleiche, wie zuvor in der wissenschaftlichen Beschreibung angenommen.

Schon dieses einfache Beispiel zeigt, dass die Emotionalität des ‚Gut-Findens, des Wollens, und des Entscheidens‘ der Rationalität wissenschaftlicher Theorien voraus liegt. Dies setzt sich in der sogenannten ‚Nachhaltigkeitsdiskussion‘ fort.

NACHHALTIGE EMPIRISCHE THEORIE

Mit dem soeben eingeführten ‚minimalen Konzepts einer empirischen Theorie (ET)‘ lässt sich direkt auch ein ‚minimales Konzept einer nachhaltigen empirischen Theorie (NET)‘ einführen.

Während eine empirische Theorie einen beliebig großen Raum an begründeten Simulationen aufspannen kann, die den Raum von vielen möglichen Zukünften sichtbar machen, verbleibt den Akteuren des Alltags die Frage, was sie denn von all dem als ‚ihre Zukunft‘ haben wollen? In der Gegenwart erleben wir die Situation, dass die Menschheit den Eindruck erweckt, als ob sie damit einverstanden ist, das Leben jenseits der menschlichen Population mehr und mehr nachhaltig zu zerstören mit dem erwartbaren Effekt der ‚Selbst-Zerstörung‘.

Dieser in Umrissen vorhersehbare Selbst-Zerstörungseffekt ist aber im Raum der möglichen Zukünfte nur eine Variante. Die empirische Wissenschaft kann sie umrisshaft andeuten. Diese Variante vor anderen auszuzeichnen, sie als ‚gut‘ zu akzeptieren, sie ‚zu wollen‘, sich für diese Variante zu ‚entscheiden‘, liegt in jenem bislang kaum erforschten Bereich der Emotionalität als Wurzel aller Rationalität.

Wenn sich Akteure des Alltags für eine bestimmte rational aufgehellte Variante von möglicher Zukunft entschieden haben, dann können sie jederzeit mit einem geeigneten ‚Evaluationsverfahren (EVAL)‘ auswerten, wie viel ‚Prozent (%) der Eigenschaften des Zielzustandes Z‘ bislang erreicht worden sind, vorausgesetzt, der favorisierte Zielzustand wird in einen passenden Text Z transformiert.

Anders formuliert: in dem Moment, wo wir Alltagsszenarien über geeignete Texte in einen rational greifbaren Zustand transformiert haben, nehmen die Dinge eine gewisse Klarheit an und werden dadurch — in gewisser Weise — einfach. Dass wir solche Transformationen vornehmen und auf welche Aspekte eines realen oder möglichen Zustands wir uns dann fokussieren, das ist aber als emotionale Dimension der textbasierten Rationalität vor-gelagert.[2]

MENSCH-MASCHINE

Nach diesen vorbereitenden Überlegungen stellt sich die abschließende Frage, ob und wie die Hauptfrage dieser Tagung „Wie verändern KI-Textgeneratoren wissenschaftliche Diskurse?“ in irgendeiner Weise beantwortet werden kann?

Meine bisherigen Ausführungen haben versucht aufzuzeigen, was es bedeutet, dass Menschen kollektiv Texte erzeugen, die die Kriterien für einen wissenschaftlichen Diskurs erfüllen, der zudem die Anforderungen für empirische oder gar nachhaltig-empirische Theorien erfüllt.

Dabei zeigt sich, dass sowohl bei der Generierung eines kollektiven wissenschaftlichen Textes wie auch bei seiner Anwendung im Alltag ein enger Wechselbezug sowohl mit der gemeinsamen erfahrbaren Welt wie auch mit den dynamischen Wissens- und Bedeutungskomponenten in jedem Akteur eine Rolle spielen.

Der Aspekt der ‚Geltung‘ ist Teil eines dynamischen Weltbezugs, dessen Einschätzung als ‚wahr‘ beständig im Fluss ist; während der eine Akteur vielleicht dazu tendiert zu sagen „Ja, kann stimmen“, tendiert ein anderer Akteur vielleicht gerade zum Gegenteil. Während die einen eher dazu tendieren, eine mögliche Zukunftsvariante X zu favorisieren, wollen die anderen lieber die Zukunftsvariante Y. Rationale Argumente fehlen; die Gefühle sprechen. Während eine Gruppe gerade beschlossen hat, dem Plan Z zu ‚glauben‘ und ihn ‚umzusetzen‘, wenden sich die anderen ab, verwerfen Plan Z, und tun etwas ganz anderes.

Dieser unstete, unsichere Charakter des Zukunft-Deutens und Zukunft-Handelns begleitet die Homo Sapiens Population von Anbeginn. Der unverstandene emotionale Komplex begleitet den Alltag beständig wie ein Schatten.[2]

Wo und wie können ‚textfähige Maschinen‘ in dieser Situation einen konstruktiven Beitrag leisten?

Angenommen es liegt ein Ausgangstext A vor, dazu ein Veränderungstext V sowie eine Anleitung F, dann könnten heutige Algorithmen alle möglichen Simulationen schneller durchrechnen als es Menschen könnten.

Angenommen zusätzlich es läge auch noch ein Zieltext Z vor, dann könnte ein heutiger Algorithmus auch eine Auswertung zum Verhältnis zwischen einer aktuellen Situation als A und dem Zieltext Z berechnen.

Mit anderen Worten: wäre eine empirische oder eine nachhaltig-empirische Theorie mit ihren notwendigen Texten formuliert, dann könnte ein heutiger Algorithmus alle möglichen Simulationen und den Grad der Zielerfüllung automatisch schneller berechnen, als jeder Mensch allein.

Wie steht es aber mit der (i) Ausarbeitung einer Theorie bzw. (ii) mit der vor-rationalen Entscheidung für eine bestimmte empirische oder gar nachhaltig-empirische Theorie ?

Eine klare Antwort auf beide Fragen erscheint mir zum aktuellen Zeitpunkt kaum möglich, verstehen wir Menschen doch noch zu wenig, wie wir selbst im Alltag kollektiv Theorien bilden, auswählen, überprüfen, vergleichen und auch wieder verwerfen.

Meine Arbeitshypothese zum Thema lautet: dass wir sehr wohl lernfähige Maschinen brauchen werden, um in der Zukunft die Aufgabe erfüllen zu können, brauchbare nachhaltig-empirische Theorien für den gemeinsamen Alltag zu entwickeln. Wann dies aber real geschehen wird und in welchem Umfang scheint mir zum jetzigen Zeitpunkt weitgehend unklar.

ANMERKUNGEN

[1] https://zevedi.de/themen/ki-text/

[2] Das Sprechen über ‚Emotionen‘ im Sinne von ‚Faktoren in uns‘, die uns dazu bewegen, aus dem Zustand ‚vor dem Text‘ in den Zustand ‚geschriebener Text‘ überzugehen, der lässt sehr viele Aspekte anklingen. In einem kleinen explorativen Text „STÄNDIGE WIEDERGEBURT – Jetzt. Schweigen hilft nicht …“ ( https://www.cognitiveagent.org/2023/08/28/staendige-wiedergeburt-jetzt-schweigen-hilft-nicht-exploration/ ) hat der Autor versucht, einige dieser Aspekte anzusprechen. Beim Schreiben wird deutlich, dass hier sehr viele ‚individuell subjektive‘ Aspekte eine Rolle spielen, die natürlich nicht ‚isoliert‘ auftreten, sondern immer auch einen Bezug zu konkreten Kontexten aufblitzen lassen, die sich mit dem Thema verknüpfen. Dennoch, es ist nicht der ‚objektive Kontext‘, der die Kernaussage bildet, sondern die ‚individuell subjektive‘ Komponente, die im Vorgang des ‚ins-Wort-Bringens‘ aufscheint. Diese individuell-subjektive Komponenten wird hier versuchsweise als Kriterium für ‚authentische Texte‘ benutzt im Vergleich zu ‚automatisierten Texten‘ wie jene, die von allerlei Bots generiert werden können. Um diesen Unterschied greifbarer zu machen, hat der Autor sich dazu entschieden, mit dem zitierten authentischen Text zugleich auch einen ‚automatisierten Text‘ mit gleicher Themenstellung zu erzeugen. Dazu hat er chatGBT4 von openAI benutzt. Damit beginnt ein philosophisch-literarisches Experiment, um auf diese Weise vielleicht den möglichen Unterschied sichtbarer zu machen. Aus rein theoretischen Gründen ist klar, dass ein von chatGBT4 erzeugter Text im Ursprung niemals ‚authentische Texte‘ erzeugen kann, es sei denn, er benutzt als Vorlage einen authentischen Text, den er abwandeln kann. Dann ist dies aber ein klares ‚fake Dokument‘. Um solch einem Missbrauch vorzubeugen, schreibt der Autor im Rahmen des Experiments den authentischen Text zu erst und beauftragt dann chatGBT4 zur vorgegebenen Themenstellung etwas zu schreiben, ohne dass chatGBT4 den authentischen Text kennt, da er noch nicht über das Internet in die Datenbasis von chatGBT4 Eingang gefunden hat.

DER AUTOR

Einen Überblick über alle Beiträge von Autor cagent nach Titeln findet sich HIER.

DIE LETZTE GESCHICHTE DER MENSCHHEIT. Theaterstück. Notizen von einem Abend

Journal: Philosophie Jetzt – Menschenbild
ISSN 2365-5062, 24.Januar 2023 – 25.Januar 2023
URL: cognitiveagent.org, Email: info@cognitiveagent.org
Autor: Gerd Doeben-Henisch (cagent@cognitiveagent.org)

Kontext

Ein Theaterbesuch gestern Abend im Schauspiel Frankfurt. Ein junger Regisseur, Leon Bornemann, eine tolle Schauspielerin Tanja Merlin Graf, ein junger Autor Sören Hornung ( Mehr Informationen: https://www.schauspielfrankfurt.de/spielplan/a-z/die-letzte-geschichte-der-menschheit/ ).

Form

Der folgende Text stellt eine spontane Wiedergabe einiger Impressionen dar, die sich während und nach dem Theaterstück ergeben haben. Leider gab es nach der Aufführung keine Möglichkeit zu einem Gespräch mit dem Publikum, was schade ist: da wird mit viel Aufwand, Engagement, ja, vermutlich auch mit viel ‚Liebe‘, ein wunderbares Stück vorbereitet, und dann lässt man die ‚Wirkung‘ dieses Stücks quasi ‚ins Leere‘ laufen … natürlich nicht ganz ‚leer‘, da es ja immerhin ‚Menschen‘ sind, die in ihrem Erleben und Denken in der Direktheit des Geschehens ‚betroffen‘ sind, ob sie wollen oder nicht. Eine Wirkung, die man ja eigentlich ‚wollen sollte‘ als Theatertruppe, aber die Wirkungen werden in die ‚Einsamkeit des individuellen Erlebens‘ verbannt, so, als wolle man ja gar nicht wissen, was solch eine Aufführung ‚anrichtet‘.

Dabei ist es ja eigentlich toll, wenn eine Aufführung eine ‚Wirkung‘ hat.

Allerdings, wenn es nicht nur um ‚Unterhaltung‘ geht, sondern irgendwie doch auch um Mitteilen, Kommunizieren, Anregen, vielleicht sogar ‚zum Denken bringen‘ als Vorstufe eines möglichen ‚Verstehens‘ (was man einem Theaterstück unterstellen darf?), dann ist die ‚Wucht des Aufpralls des Bühnengeschehens‘ im individuellen Erleben zu groß — und sicher auch zu ‚komplex‘ –, als dass man dies alleine ohne Austausch, so einfach ‚verdauen‘ kann.

… also schreibe ich hier ein paar verstreute Impressionen auf.

DIE LETZTEN TAGE DER MENSCHHEIT (Stück)

Ich gebe hier jetzt nicht das Stück wieder. Wer es kennen lernen will, hat am 7.Februar 2023 nochmals Gelegenheit, es sich anzuschauen.

Worum es geht, wird einem gleich zu Beginn von einer weiblichen Person, die sich als Roboter darstellt, ‚ins Gesicht geredet‘: „Mein Name ist KARL. Ich bin eine KI und komme aus dem Jahr 5.144. So, jetzt ist es raus.“ Und zur Hintergrundgeschichte kann man erfahren, dass es um eine
„Künstliche Intelligenz aus der Zukunft geht, die „mithilfe einer selbstgebauten Zeitmaschine … in die Vergangenheit gereist [ist], um uns Menschen zu begegnen. Alles, was KARL über uns weiß, hat KARL auf Youtube gelernt. Beim Binge-Watching aller jemals produzierten Videos hat KARL leider verpasst, dass die Menschheit währenddessen ausgestorben ist. Jetzt ist KARL enorm einsam und vermisst die Menschen, die KARL nie persönlich Kennenlernen konnte. In KARLs postapokalyptischer Gegenwart (also unserer Zukunft bzw. der Zukunft der Erde, denn uns gibt es in der Zukunft, also in KARLs Gegenwart ja nicht mehr) sieht es insgesamt ziemlich trostlos aus. Durch eine Zeitverwerfung tritt KARL deshalb mit uns in Kontakt und möchte uns das Aussterben ausreden.“

Was dann folgt ist eine beeindruckende Einzeldarstellung der Schauspielerin, die ca. 48 Minuten lang ohne Pause eine Komposition von Körperhaltungen, Bewegungen und Monologen darbietet, die zu keinem Moment Spannung vermissen lassen.

Der Bühnenraum, durchgehend ohne Veränderungen, bietet in vielen Dimensionen Anregungen an, die bekannte Bilder aus dem Alltag wachrufen und im Zuschauer entsprechende Gefühle und gedankliche Assoziationen lebendig werden lassen.

Das Drehbuch führt den Zuschauer hinein in die Welt des Autors, der ein Bild von KI (Künstlicher Intelligenz) entstehen lässt, das letztlich den vielen Mustern ähnelt, die sich in den vielen Science Fiction Filmen (und zahllosen Science Fiction Romanen) [1] auch finden. Allerdings, die Art und Weise wie der Autor diese bekannten Bilder auf der Bühne durch eine einzige Schauspielerin — warum eigentlich nicht Frau + Mann + X? — umsetzt, wirkt in dieser Form packend, zieht einen in Bann.

Und diese KI wird instrumentalisiert zu einer Art ‚Spiegel der Menschheit‘, zum Menschen, und darin — indirekt — leicht anklagend auch an die Zuschauer, von denen der Autor annimmt, dass sie auch zu der Menschheit gehören, über die sein Stück handelt.

Auch hier, trotz innovativer Darstellungsform, die hier zum Vorschein kommenden Bilder sind die üblichen: die Menschheit ‚vergeigt‘ es, sie inszeniert ’sehenden Auges‘ ihren eigenen Untergang; warum wohl? Na ja, weil sie eben schlecht ist (obwohl sich viele doch so toll finden?).

Bei diesen Impressionen könnte man es belassen; immerhin hat man ja etwas ‚erlebt‘, ‚emotional‘, dazu ungewohnte kreative Bilder einer Bühne, einer Schauspielerin, von ungewohnten Dialogen und Bewegungen ….

ZWISCHENFRAGE(n)

Da ich als Autor Wissenschaftler bin (dann auch noch in der Nähe des Themas), aber auch Philosoph (Erkenntnistheorie und Wissenschaftsphilosophie), dann auch tatsächlich und real auch ‚Hochschul-Lehrer‘ (nicht nur ‚Forscher‘), habe ich zum Thema natürlich eine Meinung, auch zur ‚Form‘ als ‚Theaterstück‘ (Keine Angst, ich bin NICHT gegen Theater, eher für mehr Theater).

Was mich beschäftigt, und geradezu ‚weh tut‘, das sind die ‚Bilder in den Köpfen‘, die im Medium des Theaterstücks ’sichtbar‘ werden und darin ‚zur Wirkung kommen‘. Bilder einer KI, die es so weder gibt noch jemals geben wird; aber auch Bilder der Menschheit, die im ersten Moment so ‚plausibel‘ erscheinen‘, in einem zweiten Moment aber — wenn man über ‚andere Bilder‘ verfügt — nur noch teilweise plausibel sind, und in den Teilen, wo sie ’nicht plausibel sind‘, sind sie das, was man normalerweise als ‚falsch‘ versteht.

Folgt daraus, dass das Theaterstück ‚Fake News‘ verbreitet?

Würde man ‚Ja‘ sagen, dann würden letztlich alle Menschen täglich ‚Fake News‘ verbreiten, da jeder Mensch nur über ein kleines Fragment des ungeheuren Wissens verfügt, das zur Zeit die Bibliotheken, Datenbanken und Blogs dieser Welt überschwemmt, vielfach aufbereitet durch immer mehr Algorithmen, die alles, was sie finden, mit statistischen Modellen zu immer neuen Texten zusammenbauen, ohne jegliche Realitätskontrolle.[2]

Die wenigstens Menschen glauben, dass sie etwas ‚Falsches‘ tun, fühlen sich engagiert, sind oft voller Emotionen, die für sie Realität markieren.

‚Fake News‘ im Sinne von unfertigen oder falschen Texten sind aber — so scheint es — eher der ‚Normalfall‘, in den wir hineingeboren werden, der uns durch die Arbeitsweise unseres Gehirns — unbewusst ! — ‚angeboren‘ ist. Wenn wir keine besonderen Maßnahmen ergreifen, dann sind wir alle ohne Ausnahme jeden Tag ‚Fake News Produzenten‘, begleitet von vielen Emotionen.[3].

WISSENSCHAFT – SPIEL – THEATER ???

Wir leben in einer Welt, in der neben Wirtschaft und Wissenschaft das Theater immer noch eine gewisse gesellschaftliche (kulturelle!?) Anerkennung besitzt. ‚Spielen‘ besitzt keine gleichwertige Anerkennung, obgleich es die wichtigste allgemeine ‚Form des Lernens‘ ist, über die wir Menschen verfügen. Gibt es zwischen ‚Wissenschaft‘, ‚Theater‘ und ‚Spielen‘ einen irgendwie gearteten Zusammenhang?

‚Fake News‘, jenes Wissen, das in den Köpfen von Menschen existiert, aber keinen oder stark deformierten Zusammenhang mit der ‚realen Welt‘ besitzt, hat die Menschen von Anbeginn begleitet. Die Erkenntnis, dass ‚die Welt‘, die wir als gegeben voraussetzen, gar nicht die Welt ist, wie sie existiert, sondern zunächst mal nur die Welt, die unser Gehirn mit Hilfe unseres Körpers als Teil der realen Welt ‚in uns erzeugt‘ — für uns ‚real‘, verglichen aber mit der ‚realen Welt um uns herum (einschließlich unserer Körper) nur ‚virtuell‘ –, diese Erkenntnis ist vergleichsweise neu. In den ca. 3.5 Milliarden Jahre vor dem Auftreten des homo sapiens (unsere Lebensform) war sie noch nicht verfügbar. Und in den ca. 300.000 Jahren Geschichte des homo sapiens — also ‚unsere‘ Geschichte — beginnt sie erst in den letzten ca. 5000 Jahren ‚aufzublitzen‘, wird aber erst seit ca. 300 – 400 Jahren schrittweise systematisiert. Irgendwann nannten wir Menschen dies ‚Wissenschaft‘, ‚empirische Wissenschaft‘, die versucht, das ‚virtuelle Wissen im Kopf eines einzelnen Menschen‘ durch nachvollziehbare und reproduzierbare Experimente — zwischen Menschen — , mit der realen Welt abzugleichen. Das daraus entstandene und immer noch entstehende überprüfbare, reproduzierbare Wissen ist seitdem explodiert. Plötzlich können wir ‚in die Tiefen des Universums‘ schauen, können ‚in der Zeit rückwärts gehen‘, sogar zu den Anfängen des Lebens auf unserem Planeten, können in die ‚Tiefen der Materie‘ schauen, können in die Bausteine des Lebens schauen; nicht nur Atome und Moleküle, sondern auch in die Zellen, aus denen alle Lebensform bestehen, auch wir Menschen. Jeder einzelne Mensch besteht z.B. aus so vielen Zellen, wie 450 Galaxien im Format der Milchstraße Stern umfasst. Insgesamt gibt es auf dem kleinen blauen Planet Erde weit mehr biologische Zellen, als das bekannte Universum nach Hochrechnungen an Sternen besitzt! Anders gesagt, auf der unscheinbaren Erde hat sich im scheinbar so großen Universum eine ‚Zell-Universum‘ gebildet, das weit größer und um ein Vielfaches komplexer ist als das Universum der Sterne. Wir nennen es schlicht ‚Leben‘.

Was bedeutet dies?

Eigentlich bedeutet es sehr viel. Die sogenannten ‚heiligen Bücher‘ der Menschheit erzählen von all dem nichts. Wie auch.

Aber, was erzählen wir selbst, die wir ‚als Menschheit‘ diese — schaurig schönen — Ungeheuerlichkeiten entdeckt haben?

Die Wissenschaft als primäre ‚Akteurin‘ dieses Erkenntnisprozesses ‚verheddert sich‘ seit Jahren in ihren eigenen Datenmengen, im Sprachwirrwarr ‚zwischen den Disziplinen‘. In den Theatern dieser Welt begnügt man sich damit — täuscht der Eindruck? — , vom Abfall der täglichen Klischees zu leben (nur besser aufbereitet). Und jene Lernform, mit der alle Kinder dieser Welt ohne Lehrer und Schulen ihre Welt ‚fast von selbst‘ ‚erobern‘, die Form des ‚Spiels‘, fristet ein Schattendasein im Schlagschatten von Wissenschaft, offizieller Bildung und Theater, obgleich Menschen ein großes Bedürfnis haben, zu spielen.[4]

Im Rahmen der Hochschullehre experimentieren wir an der Frankfurt University of Applied Sciences seit Jahren mit neuen Lehrformaten, durch die die Studierenden — so die Idee — vielleicht besser erkennen können, welcher Zusammenhang zwischen dem Thema ‚Nachhaltige Entwicklung‘, der ‚Rolle der Bürger‘ und der ‚Wissenschaft‘ besteht, und wie man diese Themen für eine gemeinsame bessere Zukunft vereinen könnte. Unsere letzten Überlegungen dazu kann man im oksimo.org Blog nachlesen.[5] Bei diesen Experimenten, für die wir auf viele verschiedene ‚Instrumente‘ zurückgreifen, haben wir eher zufällig entdeckt, dass es eine starke strukturelle Ähnlichkeit zwischen dem Konzept einer ’nachhaltigen empirischen Theorie‘, dem Format ‚Spiel‘ und dem Format ‚Theaterstück‘ gibt (und vermutlich gibt es noch mehr potentielle Mitglieder dieser ‚Äquivalenzklasse‘).[6]

Aus diesen Erkenntnissen könnte man den Schluss ziehen, dass die bislang ‚harte Trennung‘ zwischen Wissenschaft (damit auch den Hochschulen), Spielen und Theater eine ‚Artefakt‘ eines kulturellen Musters ist, das noch stark in der ‚Vergangenheit‘ lebt und zu wenig in jener ‚Vor-Form von Zukunft‘, die wir brauchen, um unsere Chancen, als Menschheit auch in der ‚Zukunft‘ [7] leben zu können, zu erhöhen.

Post Script

Ich konnte diese Zeilen jetzt nur schreiben, weil ich dieses Theaterstück gesehen habe. Theaterstücke können — neben vielen anderen Aspekten –, wenn sie gut gemacht sind (dieses war gut ‚gemacht‘) , genau dieses bewirken: wie eine Art Katalysator jenes Wissen und Erleben heraus kitzeln, das uns auszeichnet. Sie müssten dann vielleicht aber auch den Mut haben und den Aufwand wagen, sich dem ‚Post Processing‘ ihrer Wirkungen zu stellen. Es geht nicht nur um das altertümliche Kunstverständnis eines esoterischen ‚Kunsterlebnisses‘; es geht sehr wohl um ‚Lernprozesse‘, an denen wir alle teilhaben sollten, um uns wechselseitig zu helfen, unser gemeinsames Dasein und mögliches Schicksal besser zu verstehen. Die im Stück apostrophierte ‚Einsamkeit‘ des einzelnen im Netzwerk der ’sozialen Medien‘, vor dem Terminal im Gespräch mit einer KI, die sollte vielleicht für Theaterbesucher nicht zwanghaft reproduziert werden. Wenn man schon erkennt, dass ‚Vereinsamung‘ ein Thema ist, dann müsste Theater sich hier vielleicht etwas ‚Moderneres‘ einfallen lassen, etwas, was dem ‚mehr Mensch sein‘ helfen könnte …

KOMMENTARE

[1] Eine kleine Liste von Science fiction Filmen (mit Kurzkommentar) findet sich hier: https://wiki.cognitiveagent.org/doku.php?id=cagent:sciencefiction

[2] Die KI-Forscher selbst sprechen hier davon, dass diese Algorithmen ‚träumen’…

[3] Demokratien sind hier besonders gefährdet, da ja alles über Mehrheiten läuft. Wenn einflussreiche Gruppen mit bestimmten Meinungsbildern die Gehirne der Bevölkerung ‚überschwemmen‘ (früher sprach man von ‚Propaganda‘ oder gar ‚Gehirnwäsche‘), dann kann man in einer Demokratie nahezu alles umsetzen, ohne zu Waffen greifen zu müssen. Und da Politiker nicht anders sind als ihre Wähler, merken viele nicht unbedingt, dass sie selbst zur Verstärkung von Fake News und ‚Zerstörung von Öffentlichkeit‘ beitragen ….(Woraus keineswegs folgt, dass Demokratien schlecht sind! Jedes tolle Instrument wirkt schlecht, wenn man es falsch bedient …)

[4] Laut statista ( https://de.statista.com/statistik/daten/studie/712928/umfrage/anzahl-der-computerspieler-in-deutschland/ ) gab es im Jahr 2020 allein in Deutschland ca. 34 Millionen Menschen, die Computerspiele machen, nicht die gezählt, die ’normale‘ Spiele spielen.

[5] Der ganze Blog widmet sich dem Thema ‚Bürgerwissenschaft 2.0‘ und ‚Nachhaltigkeit‘. Hier am Beispiel möglicher Lehrformate: https://www.oksimo.org/2022/11/04/anwendung-lehre/

[6] Siehe dazu die Überlegungen hier: https://www.oksimo.org/2022/12/14/nachhaltige-empirische-theorie-verschiedene-formate/

[7] Den wenigstens ist — so der Anschein — bewusst, dass die ‚Zukunft‘ kein ‚Objekt wie irgendein anderes‘ ist, sie ist ‚radikal unbekannt‘. Wir könne sie in ‚möglichen Umrissen‘ nur ‚erahnen‘ im Lichte eines Wissens, das ansatzweise die ‚Veränderungsdynamik‘ des Universums ‚versteht‘. Der homo sapiens als Teil der Biosphäre ist Teil dieser Veränderungsdynamik. Solange wir aber eher in ‚Fake News‘ verharren als in brauchbarem realem Wissen können wir natürlich nicht allzu viel Konstruktives tun; wir bestaunen dann nur die immer größeren Schäden, die wir auf dem Planeten, an der Biosphäre (zu der wir gehören) anrichten…. „Hier spricht KI Karl“ …

DER AUTOR

Einen Überblick über alle Beiträge von Autor cagent nach Titeln findet sich HIER.

KOLLEKTIVE MENSCH:MASCHINE INTELLIGENZ und das Konzept ‚Social Machines‘

Journal: Philosophie Jetzt – Menschenbild
ISSN 2365-5062, 2.-5.Dezember 2021, 13:12h
URL: cognitiveagent.org, Email: info@cognitiveagent.org
Autor: Gerd Doeben-Henisch (gerd@doeben-henisch.de)

KONTEXT

Der Autor dieses Textes ist involviert in die Ausarbeitung zur Theorie und zur praktischen Umsetzung eines neuen Konzeptes von ‚Kollektiver Mensch:Maschine Intelligenz‘, das unter dem Begriff ‚oksimo Paradigma‘ vorgestellt und diskutiert wird.[1] In diesem Zusammenhang ist es wichtig, den eigenen Standpunkt immer wieder mit anderen Positionen in der Literatur abzugleichen: Ist das Ganze letztlich doch nicht wirklich ‚Neu‘? Falls doch, in welchem Sinne neu? Interessant sind auch die Beziehungen zwischen den verschiedenen Konzepten, ihre historische Entwicklung.

In einer online-Veranstaltung am 30.November 2021 bekam der Autor von Jörn Lamla den Hinweis auf den Artikel ‚Social Machines‘. [2] Wie man in dem kurzen aber prägnanten Artikel in der englischen Wikipedia nachlesen kann [3], ist der Begriff ‚Social Machine‘ (‚Soziale Maschine‘) schon gut 150 Jahre alt, zeigt aber noch keine sehr klaren Konturen. Der Versuch, das ‚Soziale‘ mit der ‚Technologie‘, mit ‚Maschinen‘ — hier sind vernetzte Computer gemeint, letztlich der ‚Cyberspace‘ — begrifflich zu vernetzen, drängt sich auf, ist für Gesellschaftswissenschaften verführerisch, führt aber nicht automatisch zu präzisen Konzepten. Weder ‚das Soziale‘ noch ‚die Maschine‘ sind Begriffe, die aus sich heraus irgendwie klar sind. Umso gespannter kann man sein, was die Autoren meinen, wenn sie zum begrifflichen Konstrukt ‚Soziale Maschine‘ einen Text schreiben.

SOZIALE MASCHINEN

Im weiteren Text bekennen sich die Autoren zu der schwer fassbaren Semantik des Begriffs ‚Soziale Maschine‘, indem sie diverse Beispiele aus der Literatur zitieren, die ein viel schillerndes Bild bietet. Um für ihre Diskussion einen irgendwie gearteten begrifflichen Referenzpunkt zu gewinnen, führen sie dann ihrerseits eine ‚Definition‘ von ‚Sozialer Maschine‘ ein (ohne sich allerdings der Mühe zu unterziehen, die Vielfalt der bisherigen Positionen tatsächlich im einzelnen zu diskutieren).

Def 1: Social Machines

Ihre Definition lautet: „Social Machines sind soziotechnische Systeme, in denen die Prozesse sozialer Interaktion hybrid zwischen menschlichen und maschinellen Akteuren ablaufen und teilweise algorithmisiert sind.“

An dieser Stelle ist es eine offene Frage, ob diese Definition eine ‚adäquate Repräsentation‘ des vorausgehenden Diskurses zu Sozialen Maschinen darstellt, oder ob es sich nur um eine spezielle Setzung der Autoren handelt, deren Begründung nicht schlüssig aus dem bisherigen Diskurszusammenhang folgt.

Liest man die Definition der Autoren, dann fallen u.a. folgende Formulierungen auf: (i) dass die ‚Prozesse sozialer Interaktion‚ ‚hybrid‚ sein sollen; (ii) dass diese Prozesse zwischen ‚menschlichen und maschinellen Akteuren‚ ablaufen sollen, und (iii) dass diese ‚ teilweise algorithmisiert‚ sein sollen.

Hybrides Handeln

Angesichts des großen Bedeutungsspektrums des Ausdrucks ’soziale Interaktion‘ in der Literatur (dazu oft sehr theorieabhängig genutzt) ist an dieser Stelle nicht ganz klar, was mit sozialer Interaktion‘ gemeint sein soll. Dazu der Ausdruck ‚hybrid‘. Ab wann sind menschliche Handlungen hybrid? Handelt ein Mensch ‚hybrid‘ wenn er Werkzeuge benutzt? Handelt ein Mensch ‚hybrid‘, wenn er die Gegebenheiten der Natur nutzt, um Nahrung zu finden oder zu produzieren? Handelt ein Mensch ‚hybrid‘, wenn er andere Menschen ‚instrumentalisiert‘, um persönliche Ziele zu erreichen? Handelt ein Mensch ‚hybrid‘, wenn er eine Sprache benutzt, die er in einer Gesellschaft als Instrument der Kommunikation vorfindet? Warum sollte die Benutzung einer Maschine eine besondere Form von ‚hybridem Handeln‘ darstellen, wenn die Nutzung der Maschine für den ‚Inhalt der Aktion‘ ‚unwesentlich‘ ist?

Für die weitere Diskussion sei hier daher die Verabredung getroffen, dass immer dann, wenn ein Mensch in seiner Interaktion mit der Welt irgendwelche Umstände so benutzt, dass dieses Handeln ohne diese Bezugnahme nicht erklärbar wäre, von einer ‚allgemein hybriden Handlung‘ gesprochen werden soll. Da jede Interaktion mit der Umgebung ‚als Interaktion‘ in diesem Sinne ‚allgemein hybrid‘ ist, sagt der Ausdruck ‚allgemein hybrid‘ nicht allzu viel, außer, das er uns bewusst machen kann, dass wir im Handeln niemals nur ‚für uns‘ handeln, niemals nur ‚isoliert, autonom‘ handeln, sondern wir uns unausweichlich in einer ‚Wechselwirkung‘ mit ‚etwas anderem‘ befinden. Und dies liegt nicht am ‚Handeln als solchem‘ sondern in der Art und Weise, wie jegliches Handeln von Homo sapiens Exemplaren in der ‚inneren Struktur‘ eines Homo sapiens ‚verankert‘ ist.

Die Benutzung vieler Computerdienste (maschinelle Dienstleistungen) sind in diesem Sinne zwar ‚allgemein hybrid‘ insoweit ein Mensch zusätzliche Mittel für sein Handeln benutzt, aber ob man den die maschinelle Dienstleistung benutzt oder nicht, muss nicht notwendigerweise einen wesentlichen Einfluss auf den ‚Inhalt des Handelns‘ haben (außer dass diese Benutzung das Handeln ‚bequemer‘ oder ’schneller‘ oder … macht). Wenn die Autoren also die Bedeutung von ‚hybrid‘ in diesem Zusammenhang so betonen, stellt sich die Frage, was denn in dieser Interaktion so ‚besonders‘, so ’speziell‘ sein soll, dass es sich lohnt, dies hervor zu heben. Allein die Einbeziehung von ‚etwas anderem‘ in das menschliche Handeln geschieht seitdem es den Homo sapiens gibt, tatsächlich sogar schon viel länger, wenn man die evolutionäre Vorgeschichte des Homo sapiens berücksichtigt. Selbst unter Prä-Homo sapiens Lebensformen, die heute leben, ist ‚allgemein hybrides‘ Handeln verbreitet.

Menschliche und Maschinelle Akteure

Es fragt sich, ob mit der Konkretisierung des ‚technischen Anteils‘ im Ausdruck ’soziotechnische Systeme‘ zu ‚Maschinen‘ etwas gewonnen wird? Gibt es technische Systeme, die keine Maschinen sind? Was ist mit hochentwickelten Landwirtschaften, wie sie sich in der Zeit islamischer Besetzung in Spanien um und vor +1000 fanden: komplexe Bewässerungssysteme, komplexe Architektur, komplexe Organisationsformen machten aus Spanien eine blühende und fruchtbare Landschaft. Ist das auch Technologie, und dann sogar im eminenten Sinne soziotechnisch‘? Was ist mit den großartigen Bibliotheken in der Hochblüte des Islams mit vielen hundert Tausend Büchern? Was ist mit der Seeschifffahrt durch die letzten Jahrtausende, die Städte, den Bauwerken, den Straßen und Brücken, den … ? Der Begriff ‚technisches System‘ ist nicht besonders klar, genauso wenig der Begriff ‚Maschine‘. Wie ein kurzer Blick in die englische Wikipedia zeigt [8], hat der Begriff eine lange Geschichte mit einem starken Bedeutungswandel, der die Spuren vielfältiger kultureller Entwicklungen in sich aufgenommen hat. Welche Typen von Maschinen meinen die Autoren?

Durch die Kombination von ‚Maschine‘ und ‚Akteur‘ kommt auf jeden Fall eine besondere Note ins Spiel, da der Begriff des ‚Akteurs‘ — in sich auch nicht klar definiert! — die unscharfe Vorstellung assoziiert, dass damit ein ‚System‘ gemeint sein könnte, das ‚(selbständig?) handeln‘ kann — was immer genau ‚(selbständig) handeln‘ heißen mag –.

Im Englischen meint ‚Akteur‘ als ‚actor‘ schlicht Menschen, die als Schauspieler in einem Stück handeln [9]. Sie handeln aber tatsächlich nur partiell ’selbständig, aus sich heraus‘, insofern sie das vorgegebene Drehbuch zwar in den groben Linien ’nachspielen‘, im Detail der Rolle aber mit ihrem realen Verhalten diese Rolle ‚modifizieren‘ können; in der Art und Weise dieses ‚Modifizierens einer Rolle‘ meinen viele erkennen zu können, ob es sich um einen ‚großen Schauspieler‘ handelt.

In neueren technischen Kontexten gibt es viele Standards, u.a. auch UML (Unified Modeling Language). [10] In UML wird für den Bereich der Programmierung das Zusammenspiel, die Interaktion verschiedener ‚Rollen‘ in einem Interaktionsfeld strukturiert beschrieben. ‚Akteure‘ (‚actors‘) sind dann jene abgrenzbare Größen, die Ereignisse aus der Umgebung (Input) aufnehmen, wie auch auf die Umgebung durch Reaktionen (Output) reagieren können.[11]

Viele andere sprachliche Verwendungszusammhänge mit dem Begriff ‚Akteur‘ sind bekannt. Die Autoren bieten dazu keine Erläuterungen, weder für die Frage, warum sie den allgemeinen Begriff des ‚technischen Systems‘ auf ‚Maschinen als Akteure‘ einschränken noch, welche Art von ‚Akteuren‘ sie genau meinen.

Teilweise Algorithmisiert

Der heutige Begriff des ‚Algorithmus‘ im Kontext von programmierbaren Maschinen [12] hat eine lange Vorgeschichte im Kontext der Mathematik (von heute aus ca. 4.500 Jahre rückwärts), wird aber seit der Verfügbarkeit von real programmierbaren Maschinen (‚Computern‘) seit ca. 1930 vornehmlich für jene Befehlslisten verwendet, mit denen programmierbare Maschinen gesteuert werden.[13] Der Ausdruck der Autoren, dass ’soziale Interaktionen‘ ‚teilweise algorithmisiert‘ sind, wirft von daher mindestens eine Frage auf: Was an einer sozialen Interaktion soll algorithmisiert‘ sein, wenn doch nach allgemeinem Verständnis nur programmierbare Maschinen von einem Algorithmus gesteuert werden können?

Nehmen wir an, dass hier soziotechnische Systeme gemeint sind, die — vereinfachend — aus Akteuren bestehen, die sowohl biologische und nicht-biologische Systeme sein können. Im angenommenen Fall sind diese Akteure auf der einen Seite weiter spezialisiert zu ‚biologischen System‘, die ‚Homo sapiens Exemplare‘ darstellen, und auf der anderen Seite ‚programmierbare Maschinen‘. Von den programmierbaren Maschinen ist bekannt, dass sie — per Definition — über ein ‚Programm‘ verfügen können, das die Eigenschaften eines ‚Algorithmus‘ besitzt. In einer ‚Interaktion‘ zwischen Homo sapiens Akteuren und programmierbaren Maschinen würden — Annahme — die Homo sapiens Akteure so handeln, wie sie immer handeln: Bezugnehmend auf ihre Wahrnehmung der Umgebung würden sie auf der Basis der bis dahin erworbenen Erfahrungen und aktuellen Motivationslagen auf diese Umgebung reagieren; dieses ‚Muster‘ von ‚Wahrnehmung + innere Zustände + Reagieren‘ würde dann einen groben Rahmen für den Begriff einer ‚Handlung‘ zur Verfügung stellen, die bezogen auf eine Situation mit einem anderen Akteur als ‚Gegenüber‘ dann als ‚Interaktion‘ bezeichnet werden könnte. [14] Jede Art von ‚Interaktion‘ in dieser Sicht wäre ‚allgemein hybrid‘, sofern das ‚Gegenüber‘ zu einem Homo sapiens Exemplar nicht wieder ein anderes Homo sapiens Exemplar wäre, also allgemein ‚kein biologisches System‘! Insofern ‚programmierbare Maschinen‘ sehr spezielle Formen von Maschinen — und generell von technischen Systemen — darstellen, die in er ‚Rolle eines Akteurs‘ auftreten können, hätten wir das Muster einer ‚allgemein hybriden‘ Interaktion, die sich zunächst nicht von irgendwelchen anderen Interaktionen des Homo sapiens Exemplars mit irgendwelchen nicht-biologischen Systemen unterscheidet.

An dieser Stelle könnte man dann die Frage stellen, ob und wie die Interaktion eines Homo sapiens Exemplars mit einer programmierbaren Maschine irgendwelche Besonderheiten aufweisen kann verglichen mit einer ‚allgemein hybriden Interaktion‘?

Nach diesen ersten Fragen an die Autoren hier die Interpretation, die die Autoren selbst zu ihrer Definition geben.

Def. 2: Soziotechnisches System

Interessant ist die Formulierung „… verstehen wir unter einem soziotechnischen System ein komplexes Gefüge, welches Menschen, Hard- und Software, organisationale und soziale Prozesse für gegebene Aufgaben oder Ziele miteinander interagieren lässt.“

Das zuvor ermittelte Schema von zwei Akteuren unterschiedlicher Art (biologisch und nicht-biologisch, im letzteren Fall ‚programmierbare Maschinen‘), wird hier in einem Bündel von vier Faktoren gesehen: (i) Menschen, (ii) Hard- und Software, (iii) ‚organisationale und soziale Prozesse‘, sowie (iv) ‚Aufgaben und Ziele‘. Diese vier Faktoren sind dynamisch so verknüpft, dass es ‚Aufgaben und Ziele‘ sind, bezogen auf diese die anderen drei Faktoren in Wechselwirkungen treten. Normalerweise würde man annehmen, dass es die Interaktionen von ‚Menschen‘ einerseits und ‚Hard- und Software‘ andererseits sind, durch die ‚Prozesse‘ stattfinden. In der Formulierung der Autoren liest es sich aber so, als ob ‚organisationale und soziale Prozesse‘ einen eigenständigen Faktor neben ‚Menschen‘ und ‚Hard- und Software‘ bilden, und zwar so, dass alle drei Faktoren interagieren. Also, ein ‚Prozess‘ interagiert mit einem Menschen oder einer Hard- und Software und umgekehrt. Eine sehr ungewöhnliche Vorstellung.

In einem sehr verbreiteten Verständnis von ‚Prozess‘ [15] ist ein Prozess eine Serie von Aktivitäten, die ineinandergreifen, um ein ‚Ergebnis‘ zu produzieren. Je nach Kontext (Disziplin, Anwendungsbereich) können die Aktivitäten sehr unterschiedlich aussehen, ebenso das erzielte Ergebnis.[15] Ergänzend ist es ein verbreitetes Verständnis von ‚Aktion’/’Aktivität‘, dass es sich um ein Ereignis handelt, das von einem ‚Agenten’/ ‚Akteur‘ für eine bestimmte ‚Absicht’/ ‚Ziel‘ herbeigeführt wird, das ‚in‘ dem handelnden Akteur ‚verankert‘ ist. [16]

In diesem Verständnishorizont sind es also Agenten/ Akteure, die unter dem Einfluss von Zielen bestimmte Ereignisse erzeugen — als handeln, indem sie Aktionen ausführen –, die zusammen genommen als ein ‚Prozess‘ verstanden werden können. In diesem Sinne sind ‚Prozesse‚ keine ’normalen Objekte‘ der realen Welt sondern begriffliche Konstrukte, die sich in den Köpfen von Akteuren bilden können, um eine Folge von konkreten Ereignissen — stark abstrahierend — als einen ‚Prozess‘ zu verstehen. Von einem ‚Prozess‘ zu sprechen verlangt daher von den Beteiligten, sich jeweils darüber zu vergewissern, welche Abfolge von Ereignissen (Handlungen) zum aktuellen Begriff eines Prozesses gehören sollen.

Bemerkenswert ist auch, dass die Ziele — die intendierten Ergebnisse — ebenfalls nicht als ’normale Objekte‘ vorkommen, sondern primär ‚in den Akteuren‘ verankert sind, und es eine der schwierigsten Aufgaben in jedem Prozess ist, zwischen allen beteiligten Akteuren zu klären, was man unter dem ‚gemeinsamen‘ Ziel — eventuell individuell ganz unterschiedlich gedacht — so zu verstehen hat, dass es zwischen allen Beteiligten ‚klar genug‘ ist. [17] Da Ziele keine realen Objekte sind, sondern immer nur ‚innere Objekte‘ der Akteure, ist eine vollständige Klärung der ‚gemeinten Bedeutung‘ generell nur annäherungsweise über aufzeigbare Beispiele möglich.

Versucht man der Intention der Autoren zu folgen, dann wären Prozesse Entitäten, die mit Menschen und/oder Hard- und Software interagieren können. Hierin klingt irgendwie an, als ob Prozesse soziale Realitäten sind, die als solche greifbar sind und mit denen Menschen interagieren können so wie mit anderen Gegebenheiten. Da die Autoren den Begriff der ‚Interaktion‘ bzw. der ‚Aktion‘ bislang nicht geklärt haben, bleibt der Versuch des Verstehens an dieser Stelle ‚mit sich alleine‘.

Im Lichte eines verbreiteten Verständnisses sind Prozesse höchstens in einem sehr abstrakten Sinne ’soziale Realitäten‘, die mit Menschen sowie Hard- und Software ‚interagieren‘. Nehmen wir z.B. einen beliebigen Planungsprozess in einer Firma oder einer Behörde. Ein Chef kann z.B. einen Mitarbeiter davon in Kenntnis setzen, dass er ab morgen in dem Planungsprozess Px mitarbeiten soll. Damit wird der Mitarbeiter Mitglied der Projektgruppe PGx zum Planungsprozess Px. Als Mitglied der Projektgruppe startet für das neue Mitglied ein Kommunikationsprozess, innerhalb dessen er sich ein ‚inneres Bild‘ von dem Projekt und seinen Aufgaben machen kann. In dem Maße, wie der Mitarbeiter aufgrund seines ‚inneren Bildes‘ versteht, was genau seine Aufgaben mitsamt einem spezifischen Aufgabenumfeld sind, kann der Mitarbeiter anfangen, ‚etwas zu tun‘, d.h. er kann ‚gezielt Handlungen vornehmen‘. Im ‚Stattfinden‘ seiner Handlungen und durch die möglichen ‚erfahrbaren Resultaten‘ können die anderen Mitglieder der Projektgruppe ‚wahrnehmen‘, was der neue Mitarbeiter tut und sie können die neuen ‚Wahrnehmungen‘ mit ihrem ‚inneren Bild des Projektes‘ ‚abgleichen‘: passen die Handlungen und Ergebnisse des neuen Mitarbeiters zu ‚ihrem inneren Bild‘ des Prozesses?

Im Lichte dieses Beispiels würde das Konzept einer ‚Interaktion zwischen Menschen und einem Prozess‘ letztlich zurück übersetzt werden müssen zu einer ‚Interaktion zwischen Menschen‘, da ein Prozess niemals als solcher als ein ‚erfahrbares Objekt‘ existiert, sondern immer nur als ‚abstraktes Konzept‘ im ‚Innern von Menschen‘, die über Kommunikation verbunden mit Handlungen und aufzeigbaren Artefakten miteinander interagieren. Kann man solchen Kommunikationen und Interaktionen mit Artefakten ein gewisses ‚Format‘ zuordnen, dann sprechen wir von einem ‚Prozess‘, der durch Akteure — hier Menschen — in einer Abfolge typischer Handlungen ’stattfindet‘.

Def. 2*: Soziotechnisches System

An dieser Stelle des Rekonstruktionsversuchs würde man die Formulierung der Autoren wie folgt ‚um-formulieren‘ können: „… verstehen wir unter einem soziotechnischen System ein komplexes Gefüge bestehend aus Menschen und Hard- und Software, die aufgrund von akzeptierten Zielen so miteinander interagieren können, dass organisationale und soziale Prozesse stattfinden, die zu Änderungen in der bestehenden Umgebung führen können.

Möglicherweise meinen die Autoren auch, dass die Tatsache, dass eine Gruppe von Menschen aufgrund von festgelegten Zielen längere Zeit in einem bestimmten Format miteinander so interagieren, dass andere dieses Vorgehen ‚in ihrem Innern‘ als ein ‚Prozess‘ erkennen, und diese ‚Wahrnehmung und Interpretation‘ für die ‚Beobachter‘ eine irgendwie geartete ‚Wirkung entfaltet, dass solch eine ‚Wirkung im Innern‘ als ‚Teil einer Interaktion‘ der Beobachter mit dem beobachtbaren Prozess verstanden werden kann. Eine solche Ausweitung der Bedeutung von normalen ‚Wahrnehmungsprozessen‘ zu ‚Interaktionsprozessen‘ würde aber für eine Analyse wenig attraktiv erscheinen.

Der Ausdruck ‚Gefüge‚, den die Autoren benutzen, klingt ein wenig ‚altmodisch‘. Nach mehr als 100 Jahren diverse Strukturwissenschaften sollte man das Wort ‚Gefüge‘ doch vielleicht eher durch den Ausdruck ‚Struktur‚ ersetzen. [18] Eine ‚Struktur‘ liegt vor, wenn man verschiedene Komponenten unterscheiden kann, hier z.B. ‚Menschen‘ und ‚Hard- und Software‘, und diese Komponenten können in Form ‚typischer‘ Handlungen miteinander interagieren, also etwa

SOZIOTECHNISCHES SYSTEM (ST) gdw ST = <Menschen, Hard-/Software, …, Interaktionen, …>

Die Elemente ‚Absicht‘, ‚Ziel‘, ‚inneres Bild von…‘ usw. würden dann in einer eigenständigen Sub-Struktur ‚Mensch‘ oder ‚menschlicher Akteur‘ verortet, da ein Mensch als eine ‚eigenständige Struktur‘ aufgefasst werden kann, etwa:

MENSCH(M) gdw M = <Bilder, Ziele, …, Handlungen, …>

Die beiden Strukturen ST und M würden sogar eine kleine ‚Hierarchie‚ bilden: die Struktur M wäre eingebettet in die Struktur ST.

Offen ist dabei noch, in welchen Sinne ‚Hard- und Software‘ überhaupt interagieren können.

Def 3: Prozesse sozialer Interaktion

sind sich dynamisch ändernde Abfolgen sozialer Aktionen zwischen Individuen und/oder Gruppen.

Die Unklarheit, die durch Def. 2 noch darin gegeben war, als ob ‚organisationale und soziale Prozesse‘ quasi ‚gleichberechtigte‘ Faktoren neben Akteuren, Hard- und Software sind, wird durch Def. 3 aufgehoben. In der Formulierung von Def. 3 sind ‚Prozesse sozialer Interaktion‘ ‚Abfolgen sozialer Aktionen‘, die ‚zwischen Individuen und/oder Gruppen‘ stattfinden, und die sich ‚dynamisch ändern‘ können. Diese Lesart entspricht weitgehend dem Formulierungsvorschlag Def 2*.

Def. 4: Hybridität

Unter ihrer Hybridität schließlich verstehen wir, dass an diesen Prozessen inhärent sowohl maschinelle als auch menschliche Akteure wesentlich beteiligt sind.

Anders formuliert sagen die Autoren, dass ‚Prozesse sozialer Interaktion‘ dann hybrid sind, wenn in solchen Prozessen sowohl ‚maschinelle als auch ‚menschliche Akteure‘ beteiligt sind.

Mit Blick auf die Diskussion zum Ausdruck ‚hybrid‘ im Anschluss an Def. 1 beschränkt sich die Formulierung von Def. 4 zunächst darauf, nur zu fordern, dass im Rahmen von ‚Prozessen sozialer Interaktionen‘ neben dem Akteurstyp ‚Mensch‘ auch der Akteurstyp ‚Maschine‘ vorkommt. Wie solch eine Interaktion aussieht, welche Eigenschaften sie auszeichnen, bleibt hier noch offen. In der vorausgehenden Diskussion war ja schon thematisiert worden, dass menschliche Akteure andere nicht-menschliche Mittel — also auch Maschinen (welche Typen von Maschinen?) — ‚unwesentlich‘ benutzen können. Damit war gemeint, dass man zwar eine programmierbare Maschine (Computer) zum ‚Text schreiben‘ benutzen kann, dass der Computer hier aber keine ‚wesentliche‘ Rolle spielt; er macht das Erstellen von Texten vielleicht ‚einfacher‘, wäre aber generell nicht notwendig.

Den folgenden Text kann man grob als eine Serie von ‚Annahmen‘ über die Wirklichkeit bezeichnen, vermischt mit impliziten Folgerungen, in denen die bisherige Einleitung weiter ausdifferenziert wird.

Ziel der Diskussion bleibt es, zu klären, wie sich das Konzept der ‚kollektiven Mensch:Maschine Intelligenz‘ aus dem oksimo Paradigma zum Konzept der ‚Sozialen Maschine‘ verhält.

ANNAHME-Hybridisierung 1

Die Autoren benennen drei Komponenten ‚Webtechnologie‘ — mit dem Attribut ‚mobil‘ ergänzt –, ‚lernende Bots‘ und ‚KI‘, wodurch „Sozialität und Maschine“ zunehmend verschmelzen. Daraus ziehen sie den Schluss: „Die menschlichen und nichtmenschlichen Komponenten der Social Machine sind folglich immer schwerer voneinander zu unterscheiden und zu trennen, was als paradigmatischer Trend zur fortschreitenden Hybridisierung der Social Machine bezeichnet werden kann“.

Der Kern der Schlussfolgerung fokussiert in der Idee, dass der „Trend zur fortschreitenden Hybridisierung“ offensichtlich sei.

Wenn nach Def. 4 von den Autoren festgehalten wird, dass man unter „Hybridität“ verstehen sollte, „dass an diesen Prozessen inhärent sowohl maschinelle als auch menschliche Akteure wesentlich beteiligt sind“, dann fragt man sich, was man sich unter dem ‚Fortschreiten einer Hybridisierung‘ verstehen soll. Die bloße Vermehrung der ‚Anzahl‘ der beteiligten Faktoren ‚Menschen‘ oder ‚Maschinen‘ kann es wohl nicht sein. Zumindest gibt die Def. 4 dies nicht her.

Die Autoren sprechen vor ihrer Schlussfolgerung davon, dass „Sozialität und Maschine zunehmend verschmelzen„. Dies kann man so interpretieren, dass die ‚fortschreitende Hybridisierung‘ zusammenhängt mit einer ‚Verschmelzung‘ von Sozialität und Maschine. Der Ausdruck ‚verschmelzen‘ wurde von den Autoren zuvor nicht eigens definiert. Die eher sprachliche Deutung von ‚Verschmelzung‘ von Worten scheint nicht gemeint zu sein.[19] Der bedeutungsnahe Ausdruck ‚Fusion‘ bietet eine Vielzahl von Varianten. [20] Welche Variante meinen die Autoren. Dass so ungleiche Wirklichkeiten wie ‚Sozialität‘ und ‚Maschinen‘ ‚verschmelzen‘, dafür fehlt jeglicher Ansatzpunkt einer sinnvollen Interpretation.

Um dieses Dilemma aufzulösen könnte der Ausdruck „… sind folglich immer schwerer voneinander zu unterscheiden und zu trennen …“ einen Hinweis liefern. Wenn man das ‚unterscheiden‘ und ‚trennen‘ nicht auf reale Sachverhalte — wie Sozialität und Maschine — bezieht sondern auf die ‚Verarbeitung von Sinneseindrücken im Innern des Menschen‘, dann könnte man sich eine Interpretation vorstellen, in der durch die Art und Weise, wie Sozialität und Maschine in der Umwelt ‚vorkommen‘, im menschlichen Akteur ‚Vorstellungen‘ auslöst, in denen das menschliche Denken eine klare Unterscheidung immer weniger leisten kann. Dann wäre die angenommene Verschmelzung der Autoren ein rein kognitives/ mentales Problem der menschlichen Akteure, die sich in Interaktion mit einer Umwelt befinden, in der mindestens Menschen und Maschinen vorkommen, aber auf eine Weise, die eine klare Unterscheidung kognitiv/ mental schwer macht.

Dies führt zu folgendem Formulierungsvorschlag:

ANNAHME-Hybridisierung 1 *

Meine Formulierung würde dann lauten: „Menschliche und nichtmenschliche Akteure (hier Maschinen) können in einer Weise in der Umwelt vorkommen, dass es für die beteiligten Menschen in ihren mentalen/ kognitiven Bildern von der Welt immer schwerer wird, diese Akteure klar voneinander zu unterscheiden und zu trennen.

Zu beachten ist auch, dass die Autoren zu Beginn des Abschnitts von drei unterschiedlichen Komponenten sprechen (‚Webtechnologie‘ — mit dem Attribut ‚mobil‘ ergänzt –, ‚Bots‘ und ‚KI‘), die im Gefolge dann offensichtlich dem Ausdruck ‚Maschine‘ zugeschlagen werden. Der Ausdruck ‚Maschine‘ wurde aber bislang nicht wirklich definiert. Auch sei der Ausdruck ‚Hard- und Software‘ erinnert, der in Def. 2 von den Autoren benutzt wird. Nach den Kontexten gehört dieser auch in das Bedeutungsfeld ‚Maschine‘, so wie es die Autoren praktizieren. Halten wir an dieser Stelle fest:

Def. 5 Maschine (indirekt abgeleitet):

Für die Autoren repräsentieren die Ausdrücke ‚Hard- und Software‘, ‚Webtechnologie (mit Aspekten der ‚Mobilität‘), ‚lernende Bots‘ und ‚KI‘ Aspekte des Bedeutungsfelds ‚Maschine‘, wie es im Kontext der Begriffe ’soziotechnisches System‘ bzw. ‚Soziale Maschine‘ implizit angenommen wird.

In der ‚realen Welt‘ beschreiben die aufgelisteten Ausdrücke (‚Hard- und Software‘, ‚Webtechnologie (mit Aspekten der ‚Mobilität‘), ‚lernende Bots‘ und ‚KI‘ ) ganz unterschiedliche Sachverhalte, deren Verhältnis zueinander keinesfalls trivial ist. Dies sei hier ganz kurz angedeutet:

Webtechnologie, Mobil, Hard- und Software

Der Begriff ‚Webtechnologie‚ ist in sich eher unklar, was mit dem unklaren Begriff ‚Web‚ zusammenhängt. Die englische Wikipedia listet mögliche Bedeutungsvarianten auf und verweist bei ‚web‘ auch auf das ‚World Wide Web [WWW]‘.[21] Die wichtige Botschaft ist [22], dass das WWW nicht das Internet ist, sondern das Internet als Basistechnologie voraussetzt. Das WWW selbst ist eine reine Softwareangelegenheit, wodurch es möglich ist, mittels eines speziellen Adresssystems (URLs) Signale zwischen diesen Adressen hin und her zu schicken. Die Art und Weise, wie dieser Signalaustausch formal stattfinden soll, regelt ein ‚Protokoll‘ (das ‚Hypertext Transfer Protocol‘ [HTTP]; mit zusätzlicher Sicherheit als HTTPS). Auf Seiten der Anwender benötigt man dazu eine Software, die ‚Browser‚ genannt wird, und innerhalb des Internets benötigt man einen Server, auf dem eine Software läuft, die ‚Webserver‚ genannt wird. Die ‚Mobilität‘ des WWW ist keine direkte Eigenschaft des WWW selbst sondern ergibt sich aus veränderten technischen Bedingungen des vorausgesetzten Internets: mobile Endgeräte, auf denen eine Browser Software installiert ist, erlauben eine Kommunikation innerhalb des WWWs.[23] Während das WWW eine reine Software ist, kann man fragen, was denn dann mit ‚Webtechnologie‘ gemeint sein soll? Wenn mit ‚Webtechnologie‘ auch ‚Software‘ gemeint ist, dann wäre der Begriff ‚Technologie‘ stark ausgeweitet. Das ‚Internet‘ — eine spezielle Kombination aus Hardware und Software — wird als ‚Netzwerk von Netzwerken‘ gesehen, innerhalb dessen ganz unterschiedliche Kommunikationsprotokolle am Werk sind, die ganz unterschiedliche Informationsquellen und Dienste ermöglichen. Das WWW ist eine Komponenten unter vielen.[24] Mit ‚Netzwerk‚ ist in diesem Kontext ein ‚Computernetzwerk‚ gemeint. Es besteht aus unterschiedlichen ‚Computern‚, die über geeignete ‚Verbindungen‘ und ‚Verbindungstechnologien‘ miteinander so verknüpft sind, dass Signalpakete entsprechend vereinbarten Protokollen hin und her gesendet werden können. Computer verstehen sich hier immer als Kombinationen aus Hard- und Software.[25] Als umfassender Begriff für die Vielfalt der Technologien und Anwendungen, die durch das ‚Internet‘ möglich sind, gibt es schon sehr früh — zumindest im Englischen Sprachraum — den Begriff ‚Cyberspace‚.[26]

Lernende Bots

Generell gibt es verschiedene Typen von bots. [27] Im allgemeinen ist ein bot im Internet eine Softwareanwendung, die automatisch bestimmte Aufgaben ausführt.[28] Wikipedia selbst benutzt z.B. über 2500 Wikipedia-typische Bots, um die mehr als 54 Mio. Wikipedia-Seiten zu verwalten.[29] Für die Interaktion mit Menschen gibt es u.a. den Typ des ‚Chatbots‘ [30]: die Software eines Chatbots versucht das Verhalten von Menschen anzunähern. Dies gelingt bislang aber nicht wirklich gut.[30] Ein spezielles, aber schon viele Jahre andauerndes Einsatzfeld von künstlicher Intelligenz Techniken sind Computerspiele, in denen ‚Nicht-Spieler Charaktere‘ (’non-player characters‘ [NPCs) das Spielgeschehen anreichern. Diese erledigen sehr vielfältige Aufgaben und sind keineswegs mit einem ‚menschenähnlichen‘ Spielcharakter zu vergleichen.[31] Insgesamt ist der Begriff ‚lernend‘ im Kontext von ‚Bots‘ generell sehr unscharf: einmal, weil der Ausdruck ‚bot‘ nicht einheitlich definiert ist, und zum anderen, weil der Begriff ‚lernend‘ im Kontext von ‚Künstlicher Intelligenz [KI]‘ bzw. ‚Maschinellem Lernen [ML]‘ keinesfalls klar ist. Das Feld ist zu uneinheitlich. [32]

KI (Künstliche Intelligenz)

Der Ausdruck ‚KI‘ — Abkürzung für ‚Künstliche Intelligenz‘ (heute oft auch einschränkend ‚ML‘ für maschinelles Lernen) — bezeichnet ein Teilgebiet der Informatik, das bislang keine klare Definition bietet, da schon der Begriff der ‚Intelligenz‘ selbst nicht klar definiert ist.[32], [33] Aufgrund der Unklarheit im Zusammenhang mit dem Begriff der ‚Intelligenz‘ bei biologischen Systemen — obgleich es hier einige Definitionen gibt, die für eingeschränkte Bereiche sehr brauchbar sind — versucht die Englischsprachige Informatik das Problem dadurch zu lösen, dass sie den Begriff AI nur für den Bereich nicht-biologischer Systeme — hier speziell für programmierbare Maschinen — definieren will. Programmierbare Maschinen mit KI können sowohl ihre Umwelt partiell wahrnehmen als auch dann — meist unter Zuhilfenahme systeminterner Zustände — wieder auf die Umwelt reagieren. Zusätzlich wird für solche Systeme mit künstlicher Intelligenz postuliert, dass sie ‚Zielen (‚goals‘) folgen können.[34]

Diese scheinbare Erleichterung, sich vom ursprünglichen Phänomenfeld der Intelligenz bei biologischen Systemen abzukoppeln, weil eine befriedigende Definition von Intelligenz hier schwierig ist, hat aber tatsächlich zu keiner befriedigenden Situation geführt. Sowohl der Intelligenzbegriff eingeschränkt auf programmierbare Maschinen ist heute nicht wirklich klar, noch ist es bislang möglich, zwischen dem Verhalten biologischer und nicht-biologischer Systeme dadurch eine brauchbare Verhältnisbestimmung aufzubauen. Dies führt dann z.T. zu der bizarren Situation, dass spezielle Leistungen von programmierbaren Maschinen für Bereich X, wo Maschinen dem Menschen überlegen sind, als generelle Aussage über das Verhältnis von Maschinen und Menschen benutzt werden, ohne dass man jene Bereiche, in denen biologische Systeme den programmierbaren Maschinen haushoch überlegen sind, überhaupt noch thematisiert. Es ist dem ai100-Report zu verdanken, dass er neu darauf aufmerksam macht, dass es durch diese asymmetrische Diskussion bislang unmöglich ist, genauer zu bestimmen, wie maschinelle Intelligenz der menschlichen Intelligenz konstruktiv unterstützen könnte.[32]

FORTSETZUNG folgt…

ANMERKUNGEN

Hinweis: Wenn in den Anmerkungen Quellen aus dem Internet angegeben werden, dann ergibt sich die Zeit des letzten Aufrufs aus dem Datum der Abfassung dieses Beitrags, die im Kopf des Artikels angegeben ist.

[1] Dazu gibt es einige Beiträge in diesem Philosophie-Jetzt- Blog, und in zwei anderen Blogs uffmm.org mit dem Schwerpunkt ‚Theorie‘ und dem Blog oksimo.org mit dem Schwerpunkt ‚Anwendungen‘.

[2] Claude Draude · Christian Gruhl · Gerrit Hornung · Jonathan Kropf · Jörn Lamla · JanMarco Leimeister · Bernhard Sick · Gerd Stumme , 2021, „Social Machines„, Informatik Spektrum, https://doi.org/10.1007/s00287-021-01421-4, Springer

[3] Social Machine, Wikipedia [EN]: https://en.wikipedia.org/wiki/Social_machine

[4] Berners-Lee, Tim; J. Hendler (2009). „From the Semantic Web to social machines: A research challenge for AI on the World WideWeb“ (PDF). Artificial Intelligence. 174 (2): 156–161. doi:10.1016/j.artint.2009.11.010.

[5] Markus Luczak-Roesch, Ramine Tinati, Kieron O’Hara, Nigel Shadbol, (2015), Socio-technical Computation, CSCW’15 Companion, March 14–18, 2015, Vancouver, BC, Canada. ACM 978-1-4503-2946-0/15/03, http://dx.doi.org/10.1145/2685553.2698991

[6] Luczak-Roesch, M.; Tinati, R.; Shadbolt, N. (2015). When Resources Collide: Towards a Theory of Coincidence in Information Spaces (PDF). WWW 2015 Companion. ACM. pp. 1137–1142. doi:10.1145/2740908.2743973. ISBN9781450334730. S2CID17495801.

[7] Cristianini, Nello; Scantamburlo, Teresa; Ladyman, James (4 October 2021). „The social turn of artificial intelligence“ (PDF). AI & Society: 0. doi:10.1007/s00146-021-01289-8.

[8] Der Begriff ‚machine‘ (Maschine) in der Wikipedia [EN]: https://en.wikipedia.org/wiki/Machine

[9] Der Begriff ‚actor‘ in der Wikipedia [EN] für die Rolle des Schauspielers: https://en.wikipedia.org/wiki/Actor

[10] Der Begriff ‚UML (Unified Modeling Language)‘ in der Wikipedia [EN]: https://en.wikipedia.org/wiki/Unified_Modeling_Language

[11] Der Begrifff ‚actor‘ in der Wikipedia [EN] im Rahmen des technischen Standards UML: https://en.wikipedia.org/wiki/Actor_(UML)

[12] Nicht alle Maschinen sind programmierbar, können aber meistens — im Prinzip — nach Bedarf mit programmierbaren Maschinen erweitert werden.

[13] Der Begriff ‚algorithm‘ in der Wikipedia [EN]: https://en.wikipedia.org/wiki/Algorithm

[14] Wenn man den Begriff ‚Interaktion‘ auf solche Situationen beschränken würde, in denen ein Homo sapiens Akteur mit einem anderen Akteur (biologisch oder nicht-biologisch) handelt, dann würde es auch Handlungen geben, die keine typische Interaktion mit anderen Akteuren repräsentieren, z.B. wenn ich einen Kaffee oder Tee oder … trinke, oder ich esse einen Apfel, ich fahre mit dem Fahrrad, ….

[15] Der Begriff ‚process‚ in der Wikipedia [EN]: https://en.wikipedia.org/wiki/Process

[16] Der Begriff ‚activities‚ in der Wikipedia [EN]: https://en.wikipedia.org/wiki/Action_(philosophy)

[17] Im Systems Engineering wird dieser Sachverhalt als ’semantic gap‘ bezeichnet, siehe z.B.: Doeben-Henisch, G., Wagner, M. [2007] Validation within Safety Critical Systems Engineering from a Computation Semiotics Point of View, Proceedings of the IEEE Africon2007 Conference, ISBN 0-7803-8606-X, Paper-ID 701

[18] Der Begriff ‚structure‚ in der Wikipedia [EN]: https://en.wikipedia.org/wiki/Structure

[19] Der Ausdruck ‚Verschmelzung‚ in der Wikipedia [DE]: https://de.wikipedia.org/wiki/Verschmelzung_(Grammatik)

[20] Der Ausdruck ‚Fusion‚ in der Wikipedia [DE]: https://de.wikipedia.org/wiki/Fusion

[21] Der Ausdruck ‚web‚ in der Wikipedia [EN]: https://en.wikipedia.org/wiki/Web

[22] Der Ausdruck ‚World Wide Web‚ in der Wikipedia [EN]: https://en.wikipedia.org/wiki/World_Wide_Web

[23] Der Ausdruck ‚mobile‚ in der Wikipedia [EN]: https://en.wikipedia.org/wiki/Mobile

[24] Der Ausdruck ‚Internet‚ in der Wikipedia [EN]: https://en.wikipedia.org/wiki/Internet

[25] Der Ausdruck ‚Computer network‘ in der Wikipedia [EN]: https://en.wikipedia.org/wiki/Computer_network

[26] Der Ausdruck ‚cyberspace‚ in der Wikipedia [EN]: https://en.wikipedia.org/wiki/Cyberspace

[27] Der Ausdruck ‚bot‚ in der Wikipedia [EN]: https://en.wikipedia.org/wiki/Bot

[28] Der Ausdruck ‚Internet bot‘ in der Wikipedia [EN]: https://en.wikipedia.org/wiki/Internet_bot

[29] Der Ausdruck ‚bots‚ in der Wikipedia [EN]: https://en.wikipedia.org/wiki/Wikipedia:Bots

[30] Der Ausdruck ‚chatbot‚ in der Wikipedia [EN] : https://en.wikipedia.org/wiki/Chatbot

[31] Der Ausdruck ‚Artificial intelligence in video games‚ in der Wikipedia [EN]: https://en.wikipedia.org/wiki/Artificial_intelligence_in_video_games

[32] Michael L. Littman, Ifeoma Ajunwa, Guy Berger, Craig Boutilier, Morgan Currie, Finale Doshi-Velez, Gillian Hadfield, Michael C. Horowitz, Charles Isbell, Hiroaki Kitano, Karen Levy, Terah Lyons, Melanie Mitchell, Julie Shah, Steven Sloman, Shannon Vallor, and Toby Walsh. “Gathering Strength, Gathering Storms: The One Hundred Year Study on Artificial Intelligence (AI100) 2021 Study Panel Report.” Stanford University, Stanford, CA, September
2021. Doc: http://ai100.stanford.edu/2021-report. Report: https://ai100.stanford.edu/sites/g/files/sbiybj18871/files/media/file/AI100Report_MT_10.pdf

[33] Der Ausdruck ‚KI (Künstliche Intelligenz)‚ — auch ‚ML (Maschinelles Lernen)‘ in der Wikipedia [DE] : https://de.wikipedia.org/wiki/K%C3%BCnstliche_Intelligenz

[34] Der Ausdruck ‚Artificial intelligence [AI]‘ in der Wikipedia [EN] : https://en.wikipedia.org/wiki/Artificial_intelligence

Some Soundexperiment from the past …

DER AUTOR

Einen Überblick über alle Beiträge von Autor cagent nach Titeln findet sich HIER.

PRAKTISCHE KOLLEKTIVE MENSCH-MASCHINE INTELLIGENZ by design. MMI Analyse. Teil 1

Journal: Philosophie Jetzt – Menschenbild
ISSN 2365-5062, 16.Februar 2021
URL: cognitiveagent.org, Email: info@cognitiveagent.org
Autor: Gerd Doeben-Henisch (gerd@doeben-henisch.de)

Letzte Änerung: 26.2.2021 (Anmerkung zum Begriff ‚Alltagssprache‘ ergänzt)

KONTEXT

In diesem Beitrag soll das Konzept einer praktischen kollektiven Mensch-Maschine Intelligenz by design weiter entwickelt werden. Im unmittelbar vorher gehenden Beitrag wurde die grundlegende Problemstellung sowie die gewählte (Zukunfts-)Vision in einer ersten Annäherung umrissen. In diesem Text geht es jetzt darum, etwas konkreter zu skizzieren, wie diese (Zukunfts-)Vision aussehen könnte bzw. sollte.

Bisher zum Thema veröffentlicht:

MMI ANALYSE – AUSGANGSPUNKT

Der Ausgangspunkt der MMI-Analyse ist gegeben durch die ersten Angaben zur Zukunfts-Vision (Siehe Schlussabschnitt in [1]). Diese Vision umschreibt mit wenigen Worten, welcher Zustand in der Zukunft angezielt wird. Die Vision selbst sagt nichts zur Begründung, nichts zu den Motiven; diese werden vorausgesetzt. Die Vision beschreibt nur, was sein soll.

Beliebige Menschen spielen Zukunft

Zentraler Gedanke ist, dass eine beliebige Gruppe von Menschen auf eine eher spielerische Weise dabei unterstützt werden soll, für eine selbst gewählte Problemstellung und ein selbst gewähltes Ziel schrittweise einen Lösungsweg zu konstruieren.

Ein Drehbuch schreiben

Diese Konstruktion eines Lösungsweges ist vergleichbar mit dem Schreiben eines Drehbuchs in einer Alltagssprache, die alle Beteiligten hinreichend beherrschen.[2] Dies setzt voraus, dass der Prozess der Wirklichkeit — vereinfachend — gedacht wird als eine Folge von Situationen (oder auch Zuständen), in der eine Nachfolgesituation S‘ aus einer vorausgehenden Situation S durch das Stattfinden von mindestens einer beobachtbaren Veränderung hervorgegangen ist. Im Grenzfall ist es nur die Veränderung einer Uhr, deren Zeitanzeigen in der Nachfolgesituation S‘ ‚größer‘ sind als in der Situation S.[3] Im Kontext einer Folge von beschreibbaren Situationen kann man die Veränderungen in der Form von Veränderungs-Regeln fassen: Man sagt: wenn die Bedingung C in einer aktuellen Situation S erfüllt ist, dann sollen mit der Wahrscheinlichkeit π die Aussagen Eplus der Situation S hinzugefügt werden, um die Nachfolgesituation S‘ zu generieren, und die Aussagen Eminus sollen von S weggenommen werden, um die Nachfolgesituation S‘ zu generieren.

Bezug zu einer Situation

Diese Redeweise setzt voraus, dass davon ausgegangen wird, dass der Text des Drehbuchs sich auf eine reale Situation S bezieht, und die einzelnen Ausdrücke des Textes Eigenschaften der realen Situation beschreiben. Die Menge der Ausdrücke in einem Drehbuch, die sich auf eine bestimmte Situation S beziehen, bilden also Repräsentanten von realen Eigenschaften der vorausgesetzten realen Situation. Verändert sich die vorausgesetzte Situation in ihren beobachtbaren Eigenschaften, dann drückt sich dies darin aus, dass sich auch die Ausdrücke im Drehbuch verändern müssen: kommen neue Eigenschaften hinzu, müssen neue Ausdrücke hinzu kommen. Verschwinden Eigenschaften, dann müssen die entsprechenden Ausdrücke verschwinden. Wechselt also z.B. die Verkehrsampel von Rot auf Orange, dann muss z.B. der Ausdruck ‚Die Ampel ist rot‘ ersetzt werden durch die Aussage ‚Die Ampel ist orange‘. Dann wäre die Menge Eminus = {Die Ampel ist rot}, und die Menge Eplus = {Die Ampel ist orange}.

Das Drehbuch hat zwei Teile …

Das Drehbuch für die gemeinsame spielerische Planung einer gewünschten Zukunft besteht also mindestens aus zwei Teilen:

  1. Einer Ausgangssituation S, von der aus man starten will, und
  2. einer Menge von Veränderungsregeln X, die sagen, wann man eine gegebene Situation in welcher Weise abändern darf.

Vergleich mit einem Spiel

Diese Konstellation kann man ohne weiteres mit einem Spiel vergleichen:

  1. Es gibt die Startsituation (z.B. ein bestimmtes Spielbrett oder eine Spielfeld mit Spielobjekten und Spielern)
  2. Es gibt vereinbarte Spielregeln, anhand deren man in einer gegebenen Situation etwas tun darf.

Regeln jederzeit abändern

In dem hier angenommenen Szenario eines Drehbuchs für die gemeinsame spielerische Planung einer gewünschten Zukunft gibt es allerdings zwei Besonderheiten: Die eine besteht darin, dass die Ausgangslage und die Spielregeln von den Spielern selbst aufgestellt werden und jederzeit nach Absprache geändert werden können.

Leitbild Zukunft als Maßstab

Die andere Besonderheit resultiert aus der Tatsache, dass die Teilnehmer hier zu Beginn auch explizit ein Leitbild für die Zukunft formulieren. Dieses kann zwar auch jederzeit nach Absprache wieder abgeändert werden, so lange es aber gilt, dient dieses Leitbild als Maßstab für die Beurteilung, ob und in welchem Umfang der Prozess der fortschreitenden Veränderung ( = der Spielprozess!) das zuvor vereinbarte Leitbild erreicht hat.

In gewisser Weise entspricht die Bewertung einer Situation anhand eines vereinbarten Leitbildes dem Konzept des ‚Gewinnens‘ in normalen Spielen: beim Gewinnen wird in einem Spiel ein Zustand erreicht, der sich anhand zuvor vereinbarter Kriterien als ‚Gewinnsituation‚ für mindestens einen beteiligten Spieler klassifizieren lässt. Man sagt dann, dass dieser Spieler ‚gewonnen‘ hat.

Bei der Verwendung des Konzepts einer Zukunftsvision als Leitbild kann man das Leitbild dazu benutzen, um eine beliebige Situation dahingehend zu klassifizieren, ob und wenn ja in welchem Umfang diese Situation dem Leitbild ‚entspricht‘. Explizite Zukunftsbilder ermöglichen also die ‚Bewertung‘ einer Situation. Ohne solch eine Möglichkeit wäre jede Situation gleichwertig mit jeder anderen Situation. Es wäre dann nicht möglich, eine ‚Richtung‘ für einen Prozess zu definieren.

ALLTAGSSPRACHE

Diejenige Sprache, die jeder Mensch von Kindheit an lernt und benutzt, das ist die Alltagssprache, also die Sprache, die jeder in seinem Alltag spricht und die — normalerweise — auch von den Mitmenschen benutzt wird. [5a] Durch das Voranschreiten einer Globalisierung und der damit einhergehenden Vermischung von Alltagswelten, vermengen sich verschiedene Sprachen, was bei einzelnen zur Mehrsprachigkeit führt, auf der anderen Seite zur Zunahme von Übersetzungen. Übersetzungen durch Menschen können vergleichsweise ‚gut‘ sein (wer kann dies eigentlich überprüfen?), die heute zunehmenden Angebote von computerbasierten Übersetzungen sind aber dennoch auf dem Vormarsch, weil man ihren Einsatz sehr leicht ’skalieren‘ kann: ein Programm kann viele Millionen Menschen gleichzeitig ‚bedienen‘, dazu eher ‚einheitlich‘, und solch ein maschinelles Übersetzungsprogramm kann — wie salopp gesagt wird — ‚lernen‘.[4] Die Gesamtheit dieser maschinellen Verfahren hat aber dennoch keinen Zugang zu den eigentlichen Bedeutungsfunktionen von Alltagssprache, die in den Gehirnen der Sprecher-Hörer verortet sind. [5]

Aufgrund dieser Sachlage soll das neue Verfahren die Vorteile und Nachteile der verschiedenen Möglichkeiten auf neue Weise optimal verknüpfen. Primär soll der Anwender seine Alltagssprache — und zwar jede — voll benutzen können.

Zur Alltagssprache gehören mehrere ‚Mechanismen‘ [6], die es zulassen, dass man sie beliebig erweitern kann, und auch, dass man in der Alltagssprache über die Alltagssprache sprechen kann.[7] Diese Eigenschaften machen die Alltagssprache zu den stärksten Ausdruckssystemen, die wir kennen.[8]

Zu den möglichen — und vorgesehenen — Erweiterungen der Alltagssprache gehören z.B. beliebige Parametermengen mit zugehörigen Operationen auf diesen Parametern. Ein ‚Parameter‘ wird hier verstanden als ein Name, dem irgendein Wert (z.B. ein numerischer Wert) zugeordnet sein kann (z.B. eine Einwohnerzahl, ein finanzieller Betrag, ein Temperaturwert …). Parameter mit numerischen Werten kann man z.B. Addieren, Subtrahieren, Multiplizieren usw.

Zum Sprechen über andere Ausdrücke gehört die Möglichkeit, dass man beliebige Abstraktionen bilden kann. Schon wenn wir über sogenannte normale Gegenstände sprechen wie ‚Stuhl‘, ‚Tasse‘, ‚Tisch‘, ‚Hund‘ usw. benutzen wir sprachliche Ausdrücke, die nicht für ein einzelnes Objekt stehen, sondern für ganze Mengen von konkreten Dingen, die wir alle gelernt haben, als ‚Stuhl‘, ‚Tasse‘, ‚Tisch‘, ‚Hund‘ usw. zu bezeichnen. Auf einem Tisch können bei mehreren Personen beim Frühstück ganz viele Gegenstände stehen, die wir alle als ‚Tasse‘ bezeichnen würden, obwohl sie sich u.a. durch Form, Farbe und Material unterscheiden.[9]

SIMULATION

Normale Formen von Drehbüchern bestimmen das Geschehen auf der Bühne oder in einem Film. Auf der Bühne beginnt man mit einer Eingangsszene, in der unterschiedliche Akteure in einer bestimmten Umgebung (Situation) anfangen, zu handeln, und durch das Handeln werden Veränderungen bewirkt: in den Akteuren (meist nicht so fort direkt sichtbar, aber dann in den Reaktionen), in der räumlichen Anordnung der Dinge, in der Beleuchtung, in Begleitgeräuschen, … Im Film ist es die Abfolge der Bilder und deren Füllungen.

Im Fall von Brettspielen fangen die beteiligten Spieler an, mit Blick auf erlaubte Regeln, den aktuellen Spielstand und die möglichen Gewinnsituationen in der Zukunft zu handeln. Dieses Handeln bewirkt eine schrittweise Änderung der jeweils aktuellen Spielsituation.

In abgewandelter Form passiert in einem Krimi oder in einem Roman nichts anderes: literarisch begabte Menschen benutzen das Mittel der Alltagssprache um Situationen zu beschreiben, die sich schrittweise durch Ereignisse oder das Verhalten von Menschen ändern. Noch eine Variante stellt die Gattung Hörspiel dar: statt eine Geschichte zu lesen hört man beim Hörspiel zu und lässt sich mit hinein nehmen in ein Geschehen, das sich von Situation zu Situation fortbewegt und den Hörer — wenn er sich angesprochen fühlt — geradezu mitreißen kann.

In der vorliegenden Anwendung gibt es alle Zutaten — Gegenwart, Zukunft, mögliche Maßnahmen –, aber wie kommt es hier zu einer Abfolge von Situationen?

Im einfachsten Fall setzten sich die Autoren der Texte zusammen und prüfen durch eigene Lektüre der Texte und Regeln, welche der Regeln aktuell angewendet werden könnten und sie wenden die Regeln an. Auch so würde eine Folge von Texten entstehen, wobei jeder Text eine Situation beschreibt. Erst die Start-Situation, dann die Anwendung von passenden Regeln, die zu einer Veränderung des Textes führt und damit zu einer neuen Situation.

Wir wissen von uns Menschen, dass wir dies im Alltag können (z.B. jeder Heimwerker — oder auch Hobby-Bastler — benutzt eine Bauanleitung, um aus den Einzelteilen des Bausatzes schrittweise ein komplexes Gebilde zusammen zu bauen). Wenn die Texte umfangreicher werden und wenn die Zahl der Regeln deutlich zunimmt, dann kommt man mit dieser händischen (manuellen) Methode bald an praktische Grenzen. In diesem Moment wäre es sehr schön, man könnte sich helfen lassen.

Viele Menschen benutzen heutzutage zum Schreiben von Texten, zum Rechnen, zum Malen, zum Komponieren, den Computer, obwohl es ja eigentlich auch ohne den Computer gehen würde. Aber mit einem Rechenblatt viele Rechnungen miteinander zu verknüpfen und dann ausrechnen zu lassen ist einfach bequemer und — in den komplexen Fällen — sogar die einzige Möglichkeit, die Arbeit überhaupt zu verrichten. Computer müssen nichts verstehen, um Zeichenketten bearbeiten zu können.

Diese formale Fähigkeit eines Computers soll für diese Anwendung genutzt werden: wenn ich die Text-Version einer Situation habe wie z.B. S1 = {Das Feuer ist fast erloschen.} und ich habe eine Veränderungsregel der Art: X1 = {Wenn C1 zutrifft dann füge Eplus1 dazu und nehme Eminus1 weg}, konkret C1 = {Das Feuer ist fast erloschen.}, Eplus1 = {Lege Holz nach.}, Eminus1 = {Leer}, dann ist es für einen Computer ein leichtes festzustellen, dass die Bedingung C1 in der aktuellen Situation S1 erfüllt ist und dass daher die Aussage Lege Holz nach. hinzugefügt werden soll zu S1, was zur neuen Situation S2 führt: S2 = {Das Feuer ist fast erloschen. Lege Holz nach.} Wenn es jetzt noch die Regel geben würde X2 mit C2 = {Lege Holz nach.}, Eplus2 ={Das Feuer brennt.}, Eminus2={Das Feuer ist fast erloschen.}, dann könnte der Computer ‚ohne Nachzudenken‘ die nächste Situation S3 erzeugen mit S3 = {Das Feuer brennt.}

Dieses einfache Beispiel demonstriert das Prinzip einer Simulation: man hat eine Ausgangssituation S0, man hat eine Menge von Veränderungsregeln im oben angedeuteten Format X= Wenn C in S erfüllt ist, dann füge Epluszu S dazu und nimm Eminus von S weg, und man hat einen Akteur, der die Veränderungsregeln auf eine gegebene Situation anwenden kann. Und diese Anwendung von Regeln erfolgt so oft, bis entweder keine Regeln mehr anwendbar sind oder irgendein Stopp-Kriterium erfüllt wird.

Schreibt man für den Ausdruck Die Menge der Veränderungsregeln X wird auf eine Situation S angewendet, was zur Nachfolgesituation S‘ führt verkürzend als: X(S)=S‘, ergibt die wiederholte Anwendung von X eine Serie der Art: X(S)= S‘, X(S‘)= S“, …, X(Sn-1)= Sn. Dies bedeutet, dass die Folge der Text-Zustände <S‘, S“, …, Sn> einen Simulationsverlauf repräsentieren. Man kann dann sehr gut erkennen, was passiert, wenn man bestimmte Regeln immer wieder anwendet.

In der vorliegenden Anwendung sollen solche durch Computer unterstützte Simulationen möglich sein, tatsächlich sogar noch mit einigen weiteren Feinheiten, die später näher beschrieben werden.

SIMULATION MIT BEWERTUNG

Wie zuvor schon im Text beschrieben wurde, kann man eine gegebene Situation S immer dann klassifizieren als erfüllt Eigenschaft K, wenn man über geeignete Kriterien K verfügt. In der vorliegenden Anwendung kann der Anwender eine Vision formulieren, eine Beschreibung, welcher Zustand in der Zukunft eintreten sollte.

Im Rahmen der Simulation soll es daher möglich sein, dass nach jeder Anwendung von Veränderungsregeln X mitgeteilt wird, in welchem Ausmaß die vorgegebene Vision V im aktuellen Zustand S eines Simulationsverlaufs schon enthalten ist. Die Aussagekraft einer solchen Klassifikation, die eine Form von Bewertung darstellt, hängt direkt von der Differenziertheit der Vision ab: je umfangreicher und detaillierter der Text der Vision ist, um so konkreter und spezifischer kann die Bewertung vorgenommen werden.

LERNFÄHIGE ALGORITHMEN (KI)

So, wie im Fall der Simulation der Computer dem Menschen bei ausufernden manuellen Tätigkeiten helfen kann, diese zu übernehmen, so ergibt sich auch für die Frage der Auswertung eines Simulationsverlaufs sehr schnell die Frage: könnte man auch ganz andere Simulationsverläufe bekommen, und welche von den vielen anderen sind eigentlich im Sinne eines vorgegebenen Zielkriteriums besser?

Tatsächlich haben wir es mit dem Ensemble einer Anfangssituation, einer Zukunftsvision und einer Menge von Veränderungsregeln mit einem Problemraum zu tun, der sehr schnell sehr umfangreich sein kann. Eine einzelne Simulation liefert immer nur einen einzigen Simulationsverlauf. Tatsächlich lässt der Problemraum aber viele verschiedene Simulationsverläufe zu. In den meisten Fällen ist eine Erkundung des Problemraumes und das Auffinden von interessanten Simulationsverläufen von großem Interesse. Der Übergang von einem Suchprozess zu einem lernenden Prozess ist fließend.

In der vorliegenden Anwendung soll von der Möglichkeit einer computergestützten lernende Suche Gebrauch gemacht werden.

QUELLENANGABEN und ANMERKUNGEN

[1] Siehe dazu den Schluss des Textes von Gerd Doeben-Henisch, 15.2.2021, PRAKTISCHE KOLLEKTIVE MENSCH-MASCHINE INTELLIGENZ by design. Problem und Vision, https://www.cognitiveagent.org/2021/02/15/praktische-kollektive-mensch-maschine-intelligenz-by-design-problem-und-vision/https://www.cognitiveagent.org/2021/02/15/praktische-kollektive-mensch-maschine-intelligenz-by-design-problem-und-vision/

[2] Denkbar ist natürlich, dass partiell mit Übersetzungen gearbeitet werden muss.

[3] Dieses Modell der Zerlegung der Wirklichkeit in Zeitscheiben entspricht der Arbeitsweise, wie das menschliche Gehirn die jeweils aktuellen sensorischen Signale für ein bestimmtes Zeitintervall ‚zwischen-puffert‘, um die Gesamtheit der Signale aus diesem Zeitintervall dann nach bestimmten Kriterien als eine Form von Gegenwart abzuspeichern und daraus dann Vergangenheit zu machen.

[4] Damit dies möglich ist, landen alle Texte auf einem zentralen Server, der mit statistischen Methoden ganze Texte nach Methoden des sogenannten ‚maschinellen Lernens‘ analysiert, statistische Verwendungskontexte von Ausdrücken erstellt, angereichert durch diverse sekundäre Zusatzinformationen.

[5] Was diese bedingt lernfähigen Algorithmen an Übersetzungsleistungen ermöglichen, ist sehr wohl erstaunlich, aber es ist prinzipiell begrenzt. Eine vertiefte Analyse dieser prinzipiellen Begrenzungen führt in die Entstehungszeit der modernen formalen Logik, der modernen Mathematik sowie in die theoretischen Grundlagen der Informatik, die letztlich ein Abfallprodukt der Meta-logischen Diskussion in der Zeit von ca. 1900 bis 1940 ist. Wenn also die angezielte Anwendung die volle Breite der Alltagssprache nutzen können soll, dann reicht es nicht, die prinzipiell Bedeutungsfernen Verfahren der Informatik wie bisher einzusetzen.

[5a] Das Phänomen ‚Alltagssprache‘ ist bei näherer Betrachtung äußerst komplex. In einem anderen Beitrag habe ich einige der grundlegenden Aspekte versucht, deutlich zu machen: Gerd Doeben-Henisch, 29.Januar 2021, SPRACHSPIEL und SPRACHLOGIK – Skizze. Teil 1, https://www.cognitiveagent.org/2021/01/29/sprachspiel-und-sprachlogik-skizze-teil-1/

[6] … von denen die formale Logik nicht einmal träumen kann.

[7] In der formalen Logik sind Spracherweiterungen im vollen Sinne nicht möglich, da jede echte Erweiterung das System ändern würde. Möglich sind nur definitorische Erweiterungen, die letztlich Abkürzungen für schon Vorhandenes darstellen. Das Sprechen in einer gegebenen Sprache L über Elemente der Sprache L — also meta-sprachliches Sprechen –, ist nicht erlaubt. Aufgrund dieser Einschränkung konnte Goedel seinen berühmten Beweis von der Unmöglichkeit führen, dass ein formales System sowohl Vollständig als auch Widerspruchsfrei ist. Dies ist der Preis, den formale Systeme dafür zahlen, dass ’nichts falsch machen können‘ (abgesehen davon, dass sie von sich aus sowieso über keine Bedeutungsdimension verfügen)).

[8] Während formale Systeme — und Computer, die nach diesen Prinzipien arbeiten — durch diese Elemente inkonsistent und un-berechenbar werden, kann das menschliche Gehirn damit fast mühelos umgehen!

[9] Unser Gehirn arbeitet schon immer mit beliebigen Abstraktionen auf beliebigen Ebenen.

FORTSETZUNG

Eine Fortsetzung findet sich HIER.

DER AUTOR

Einen Überblick über alle Beiträge von Autor cagent nach Titeln findet sich HIER.

Stöcker: Das Experiment sind wir. Leseeindruck Teil 1

Journal: Philosophie Jetzt – Menschenbild
ISSN 2365-5062, 10.Dezember 2020
URL: cognitiveagent.org, Email: info@cognitiveagent.org
Autor: Gerd Doeben-Henisch (gerd@doeben-henisch.de)

Christian Stöcker, Das Experiment sind wir: Unsere Welt verändert sich so atemberaubend schnell, dass wir von Krise zu Krise taumeln. Wir müssen lernen, diese enorme Beschleunigung zu lenken, 2020, Herausgeber : Karl Blessing Verlag

VORWORT

Im Vorwort kündigt der Autor an, dass es in seinem Buch um die große Beschleunigung geht, die unsere Welt charakterisiert, die aber im Alltag kaum bemerkbar ist, weil wir Menschen uns aufgrund unserer großen Lernfähigkeit schnell an Veränderungen gewöhnen. Damit fallen uns viele Veränderungen nicht wirklich auf, obwohl sie stattfinden. Und fallen sie uns dann doch irgendwie auf, reagieren wir Menschen oft mit nostalgischen Attitüden, die uns unsere Vergangenheit verklären lassen, um den Druck des Neuen zu mindern, oder aber – die etwas radikalere Version – wir werden zu „Akzelerationalisten“, jene, die einen kommenden Zusammenbruch kommen sehen, ihn gar herbeisehnen und sogar durch Gewaltaktionen aktiv herbei zu führen suchen.

Patentrezepte will der Autor nicht anbieten, aber einige Themen, von denen er glaubt, dass sie in diesem Kontext wichtig sind. So verweist er auf „lernende Maschinen“, auf „unsere Vorstellung von Bildung, Biotechnologie und das Weltklima“, auf „Suchmaschinen, soziale Netzwerke und Psychologie“, „Informationstheorie und Achtsamkeit“. Weitere Themen, die er für zentral hält sind „neuronale Netze“, „DNA – Manipulation“, „kognitive Verzerrungen“ oder „Klima – Kipp – Punkte“.

Für den Autor hängen all diese Themen letztlich untereinander zusammen und er erhofft sich, dass daraus ein neues „Gesamtbild“ möglich wird, das es uns ermöglicht, unseren Platz als Menschen darin besser zu verstehen.

NACHWORT

Im Nachwort stellt er zunächst heraus, dass wir alle ein Produkt der Evolution sind, einem mittlerweile fast vier Milliarden Jahre andauerndem Prozess, der dem Universum – zumindest vorübergehend – eine wachsende Ordnung, eine wachsende Komplexität abringt. Für den Autor sind wir die einzige Spezies, die weiß, dass sie ein Produkt der Evolution ist, und die weiß wie klein und verletzlich der Planet Erde in dem gewaltigen, einsamen Universum ist. Wir sind aber auch die einzige Spezies, die mit der Kraft ihres Gehirns Technologien schaffen konnte, die in den letzten 200 Jahren, den Planeten nachhaltig ins Ungleichgewicht gebracht hat (Ozeane, Klima, …).

Die ungewöhnlich hoch ausgeprägte Lernfähigkeit paart sich mit der Fähigkeit zur sozialen Kooperation, die Erfahrung und Wissen über einzelne Gruppen und Generationen hinweg weiter geben und wirken lassen kann. Die strukturellen Prinzipien der Evolution wurden in neue Entwicklungsprinzipien übersetzt wie freier Wettbewerb und weltweite Bildung, Forschung und Medizin.

Der Autor hofft, dass diese Fähigkeiten ausreichen werden, dass wir als Menschen die aktuellen Herausforderungen meistern werden.

REFLEXION 1

Die Evolution als primäres Referenzsystem zu wählen, innerhalb deren sich die Phänomene des Lebens ereignen, erscheint angemessen. Dass die biologisch-strukturelle Evolutionsmechanismen vom Menschen – wie auch in einfacheren Formen von einigen anderen biologischen Lebensformen – durch eine Vielzahl immer komplexerer sozialer Kooperationsformen erweitert wurden, das erwähnt der Autor, aber es ist nicht erkennbar, dass er diese Dimension in seinen Überlegungen systematisch einbezogen hat.

Die von ihm angeschnittenen Themen heben stark ab auf neue Technologien, speziell auf neue Technologien der sogenannten künstlichen Intelligenz in der abgeschwächten Form des maschinellen Lernens. Prominent hier sind künstliche neuronale Netze wie jene von der google Firma Deepmind, die selbständig das Go-Spiel in wenigen Tagen so gut gelernt haben, dass sie die besten Spieler der Welt schlagen konnten (‚AlphaGo‘), oder das Programm ‚AlphaFold‘, das Proteinstrukturen und Antibiotika finden kann.

Betrachtet man die ungeheure Vielfalt menschlicher Aktivitäten, menschlichen Wissens, menschlicher Technologien, und berücksichtigt zugleich die wachsende Schwierigkeit des Menschen, mit seinen eigenen Produkten, mit der Vielfalt dieses Wissens so umzugehen, dass es allen Menschen gut geht, dass alle Menschen glücklich sein können, dass alle genügend ernährt sind, dass wir keine Ausgrenzungen und Kriege mehr haben, keine Umweltzerstörung usw. Dann kann – oder muss – man die Frage aufwerfen, ob einzelne spezielle Technologien ausreichen, eine ganze Lebensform, ja letztlich auch alle anderen Lebensformen (!) in einen Lebenszustand zu versetzen, der die reale Komplexität des Ganzen sowohl kognitiv wie auch physisch und emotional zu integrieren vermag.

Die heutigen neuen Technologien begrenzter künstlicher Intelligenz sind mit Sicherheit extrem wichtig, um das menschliche Denken zu ergänzen, aber die Frage, wie wir Menschen miteinander, gemeinsam Wissen erwerben, miteinander teilen und für alle nutzbringend anwenden liegt auf einem ganz anderen Komplexitätsniveau. Die Betonung der Geschwindigkeit durch den Autor — die alles betreffende exponentielle Beschleunigung — verweist auf einen wichtigen Aspekt, aber dieser Hinweis nützt wenig, wenn wir nicht in die Lage versetzt werden, damit gemeinsam und nachhaltig umzugehen. Ein kurzer Blick auf unsere täglichen Kommunikationssysteme wie auch unsere aktuelles Bildungssysteme (und unsere aktuellen politischen Prozesse, und …) zeigen unmissverständlich, dass wir aktuell in keiner Weise so aufgestellt sind, dass wir mit den anstehenden Problemen angemessen umgehen können. Die Wissenschaft selbst – irgendwie der heiße Kern unserer Rationalität – wird zur Zeit substantiell von ihrer eigenen Vielfalt gebeutelt. Immer mehr Spezialisierung, aber immer weniger Integration. An den Universitäten gibt es eine Vielzahl von Themen, aber keine Integration. Es gibt aktuell ja nicht einmal die leiseste Idee, wie eine Integration von Vielfalt konkret gelebt werden kann, ohne die Vielfalt dabei zu zerstören. Gewiss, wir haben viele Parolen – Interdisziplinarität, Diversität, Nachhaltigkeit, … – aber wir haben keinerlei methodischen Ansätze, wie dies im großen Maßstab bei der Vielfalt der Sprachen, Kulturen und sonstigen Systeme konkret funktionieren soll? AlphaGo, AlphaFold, und noch mehr spezielle Algorithmen könnten helfen, wenn wir gemeinsam wüssten, was wir zusammen denn wollen.

Für spezielle Aspekte unserer Gegenwart erscheint mir das Buch des Autors für alle die, die sich da noch nicht auskennen, sehr hilfreich. Für die zentrale Frage nach einer neuen Kultur des integrierten Handelns bei Vielfalt sehe ich in diesem Buch auf den ersten Blick aber keine Ansätze. Der ganze Komplex humaner Kognition mit Emotion, weitgehend eingebettet in unbewusste Gehirnprozesse, kooperativ nur über Kommunikation, fehlt für mich auf den ersten Blick weitgehend.

ALLE BEITRÄGE VON CAGENT

Einen Überblick über alle Beiträge von Autor cagent nach Titeln findet sich HIER.

WAS IST DER MENSCH?

Journal: Philosophie Jetzt – Menschenbild
ISSN 2365-5062 20.Juli 2020
URL: cognitiveagent.org
Email: info@cognitiveagent.org
Autor: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

AKTUALISIERUNGEN: Letzte Aktualisierung 21.7.2020 (Korrekturen; neue Links)

KONTEXT

In den vielen vorausgehenden Beiträgen in diesem Blog wurde die Frage nach dem Menschen, was das angemessene Bild vom Menschen sein könnte, schon oft gestellt. Möglicherweise wird diese Frage auch in der Zukunft sich immer wieder neu stellen, weil wir immer wieder auf neue Aspekte unseres Menschseins stoßen. Ich bin diese Tage auf einen Zusammenhang gestoßen, der mir persönlich in dieser Konkretheit neu ist (was nicht ausschließt, dass andere dies schon ganz lange so sehen). Hier einige weitere Gedanken dazu.

DER MENSCH IN FRAGMENTEN

In der evolutionsbiologischen Perspektive taucht der homo sapiens — also wir — sehr, sehr spät auf. Vom Jahr 2020 aus betrachtet, bilden wir den aktuellen Endpunkt der bisherigen Entwicklung wohl wissend, dass es nur ein Durchgangspunkt ist in einem Prozess, dessen Logik und mögliche Zielrichtung wir bislang nur bedingt verstehen.

Während man bei der Betrachtung der letzten Jahrtausende Menschheitsgeschichte bisweilen den Eindruck haben könnte, dass die Menschen sich als Menschen als etwas irgendwie Besonderes angesehen haben (was die Menschen aber nicht davon abgehalten hat, sich gegenseitig zu bekämpfen, sich zu bekriegen, sich regelrecht abzuschlachten), könnte man bei der Betrachtung der letzten 100 Jahre den Eindruck gewinnen, als ob die Wissenschaft die Besonderheit des Menschen — so es sie überhaupt gab — weitgehend aufgelöst hat: einmal durch die Einbettung in das größere Ganze der Evolution, dann durch einen vertieften Blick in die Details der Anatomie, des Gehirns, der Organe, der Mikro- und Zellbiologie, der Genetik, und schließlich heute durch das Aufkommen digitaler Technologien, der Computer, der sogenannten künstlichen Intelligenz (KI); dies alles lässt den Menschen auf den ersten Blick nicht mehr als etwas Besonders erscheinen.

Diese fortschreitende Fragmentierung des Menschen, des homo sapiens, findet aber nicht nur speziell beim Menschen statt. Die ganze Betrachtungsweise der Erde, des Universums, der realen Welt, ist stark durch die empirischen Wissenschaften der Gegenwart geprägt. In diesen empirischen Wissenschaften gibt es — schon von ihrem methodischen Ansatz her — keine Geheimnisse. Wenn ich nach vereinbarten Messmethoden Daten sammle, diese in ein — idealerweise — mathematisches Modell einbaue, um Zusammenhänge sichtbar zu machen, dann kann ich möglicherweise Ausschnitte der realen Welt als abgeschlossene Systeme beschreiben, bei denen der beschreibende Wissenschaftler außen vor bleibt. Diese partiellen Modelle bleiben notgedrungen Fragmente. Selbst die Physik, die für sich in Anspruch nimmt, das Ganze des Universums zu betrachten, fragmentiert die reale Welt, da sich die Wissenschaftler selbst, auch nicht die Besonderheiten biologischen Lebens generell, in die Analyse einbeziehen. Bislang interessiert das die meisten wenig. Je nach Betrachtungsweise kann dies aber ein fataler Fehler sein.

DER BEOBACHTER ALS BLINDE FLECK

Die Ausklammerung des Beobachters aus der Beschreibung des Beobachtungsgegenstands ist in den empirischen Wissenschaften Standard, da ja das Messverfahren idealerweise invariant sein soll bezüglich demjenigen, der misst. Bei Beobachtungen, in denen der Beobachter selbst das Messinstrument ist, geht dies natürlich nicht, da die Eigenschaften des Beobachters in den Messprozess eingehen (z.B. überall dort, wo wir Menschen unser eigenes Verhalten verstehen wollen, unser Fühlen und Denken, unser Verstehen, unser Entscheiden, usw.). Während es lange Zeit eine strenge Trennung gab zwischen echten (= harten) Wissenschaften, die strikt mit dem empirischen Messideal arbeiten, und jenen quasi (=weichen) Wissenschaften, bei denen irgendwie der Beobachter selbst Teil des Messprozesses ist und demzufolge das Messen mehr oder weniger intransparent erscheint, können wir in den letzten Jahrzehnten den Trend beobachten, dass die harten empirischen Messmethoden immer mehr ausgedehnt werden auch auf Untersuchungen des Verhaltens von Menschen, allerdings nur als Einbahnstraße: man macht Menschen zwar zu Beobachtungsgegenständen partieller empirischer Methoden, die untersuchenden Wissenschaftler bleiben aber weiterhin außen vor. Dieses Vorgehen ist per se nicht schlecht, liefert es doch partiell neue, interessante Einsichten. Aber es ist gefährlich in dem Moment, wo man von diesem — immer noch radikal fragmentiertem — Vorgehen auf das Ganze extrapoliert. Es entstehen dann beispielsweise Bücher mit vielen hundert Seiten zu einzelnen Aspekten der Zelle, der Organe, des Gehirns, aber diese Bücher versammeln nur Details, Fragmente, eine irgendwie geartete Zusammenschau bleibt aus.

Für diese anhaltende Fragmentierung gibt es sicher mehr als einen Grund. Einer liegt aber an der Wurzel des Theoriebegriffs, der Theoriebildung selbst. Im Gegensatz zu einer weit verbreiteten Anschauung entstehen Theorien, Modelle, also jene begrifflichen Gebilde, mit denen wir einzelne Daten deuten, nicht aus einem Automatismus, sondern sie beruhen auf gedanklichen Entscheidungen in den Köpfen der Wissenschaftler selbst: grundsätzlich gibt es immer mehr als eine Option, wie ich etwas angehen will. Jede Option verlangt also eine Entscheidung, eine Wahl aus einem großen Bereich von Möglichkeiten. Die Generierung einer Theorie ist von daher immer ein komplexer Prozess. Interessanterweise gibt es in kaum einer der heutigen empirischen Disziplinen das Thema Wie generieren wir eine Theorie? als eigene Themenstellung. Obwohl hier viele Grundentscheidungen fallen, obwohl hier viel Komplexität rational aufgehellt werden müsste, betreiben die sogenannten harten Wissenschaften hier ein weitgehend irrationales Geschäft. Das Harte an den empirischen Wissenschaften gründet sich in diesem Sinne nicht einmal in einer weichen Reflexion; es gibt schlicht gar keine offizielle Reflexion. Die empirischen Wissenschaften sind in dieser Hinsicht fundamental irrational. Dass sie trotz ihrer fundamentalen Irrationalität interessante Detailergebnisse liefern kann diesen fundamentalen Fehler in der Wurzel nur bedingt ausgleichen. Die interessante Frage ist doch, was könnten die empirischen Wissenschaften noch viel mehr leisten, wenn sie ihre grundlegende Irrationalität an der Wurzel der Theoriebildung schrittweise mit Rationalität auffüllen würden?

HOMO SAPIENS – DER TRANSFORMER

(Ein kleiner Versuch, zu zeigen, was man sehen kann, wenn man die Grenzen der Disziplinen versuchsweise (und skizzenhaft) überschreitet)

Trotz ihrer Irrationalität an der Wurzel hat die Evolutionsbiologie viele interessante Tatbestände zum homo sapiens sichtbar gemacht, und andere Wissenschaften wie z.B. Psychologie, Sprachwissenschaften, und Gehirnwissenschaft haben weitere Details beigesteuert, die quasi ‚auf der Straße‘ herumliegen; jeder produziert für sich fleißig partielle Modelle, aber niemand ist zuständig dafür, diese zusammen zu bauen, sie versuchsweise zu integrieren, mutig und kreativ eine Synthese zu versuchen, die vielleicht neue Aspekte liefern kann, mittels deren wir viele andere Details auch neu deuten könnten. Was Not tut ist eine Wissenschaft der Wissenschaften, nicht als Privatvergnügen eines einzelnen Forschers, sondern als verpflichtender Standard für alle. In einer Wissenschaft der Wissenschaften wäre der Beobachter, der Forscher, die Forschergruppe, selbst Teil des Untersuchungsgegenstandes und damit in der zugehörigen Meta-Theorie aufzuhellen.

Anmerkung: Im Rahmen der Theorie des Engineering gibt es solche Ansätze schon länger, da das Scheitern eines Engineeringprozesses ziemlich direkt auf die Ingenieure zurück schlägt; von daher sind sie äußerst interessiert daran, auf welche Weise der Faktor Mensch — also auch sie selbst — zum Scheitern beigetragen hat. Hier könnte die Wissenschaft eine Menge von den Ingenieuren lernen.

Neben den vielen Eigenschaften, die man am homo sapiens entdecken kann, erscheinen mir drei von herausragender Bedeutung zu sein, was sich allerdings erst so richtig zeigt, wenn man sie im Zusammenspiel betrachtet.

Faktor 1: Dass ein homo sapiens einen Körper [B, body] mit eingebautem Gehirn [b, brain] hat, unterscheidet ihn nicht unbedingt von anderen Lebensformen, da es viele Lebensformen im Format Körper mit eingebautem Gehirn gibt. Dennoch ist schon mal festzuhalten, dass der Gehirn-Körper [b_B] eines homo sapiens einen Teil der Eigenschaften seiner Realwelt-Umgebung [RW] — und der eigene Körper gehört aus Sicht des Gehirns auch zu dieser Realwelt-Umgebung — ausnahmslos in neuronale Zustände [NN] im Gehirn verwandelt/ transformiert/ konvertiert und diese neuronale Zustände auf vielfältige Weise Prozesshaft bearbeitet (Wahrnehmen, Speichern, Erinnern, Abstrahieren, Assoziieren, bewerten, …). In dieser Hinsicht kann man den Gehirn-Körper als eine Abbildung, eine Funktion verstehen, die u.a. dieses leistet: b_B : RW —–> RW_NN. Will man berücksichtigen, dass diese Abbildung durch aktuell verfügbare Erfahrungen aus der Vergangenheit modifiziert werden kann, dann könnte man schreiben: b_B : RW x RW_NN —–> RW_NN. Dies trägt dem Sachverhalt Rechnung, dass wir das, was wir aktuell neu erleben, automatisch mit schon vorhandenen Erfahrungen abgleichen und automatisch interpretieren und bewerten.

Faktor 2: Allein schon dieser Transformationsprozess ist hochinteressant, und er funktioniert bis zu einem gewissen Grad auch ganz ohne Sprache (was alle Kinder demonstrieren, wenn sie sich in der Welt bewegen, bevor sie sprechen können). Ein homo sapiens ohne Sprache ist aber letztlich nicht überlebensfähig. Zum Überleben braucht ein homo sapiens das Zusammenwirken mit anderen; dies verlangt ein Minimum an Kommunikation, an sprachlicher Kommunikation, und dies verlangt die Verfügbarkeit einer Sprache [L].

Wir wir heute wissen, ist die konkrete Form einer Sprache nicht angeboren, wohl aber die Fähigkeit, eine auszubilden. Davon zeugen die vielen tausend Sprachen, die auf dieser Erde gesprochen werden und das Phänomen, dass alle Kinder irgendwann anfangen, Sprachen zu lernen, aus sich heraus.

Was viele als unangenehm empfinden, das ist, wenn man als einzelner als Fremder, als Tourist in eine Situation gerät, wo alle Menschen um einen herum eine Sprache sprechen, die man selbst nicht versteht. Dem Laut der Worte oder dem Schriftzug eines Textes kann man nicht direkt entnehmen, was sie bedeuten. Dies liegt daran, dass die sogenannten natürlichen Sprachen (oft auch Alltagssprachen genannt), ihre Bedeutungszuweisungen im Gehirn bekommen, im Bereich der neuronalen Korrelate der realen Welt RW_NN. Dies ist auch der Grund, warum Kinder nicht von Geburt an eine Sprache lernen können: erst wenn sie minimale Strukturen in ihren neuronalen Korrelaten der Außenwelt ausbilden konnten, können die Ausdrücke der Sprache ihrer Umgebung solchen Strukturen zugeordnet werden. Und so beginnt dann ein paralleler Prozess der Ausdifferenzierung der nicht-sprachlichen Strukturen, die auf unterschiedliche Weise mit den sprachlichen Strukturen verknüpft werden. Vereinfachend kann man sagen, dass die Bedeutungsfunktion [M] eine Abbildung herstellt zwischen diesen beiden Bereichen: M : L <–?–> RW_NN, wobei die sprachlichen Ausdrücke letztlich ja auch Teil der neuronalen Korrelate der Außenwelt RW_NN sind, also eher M: RW_NN_L <–?–>RW_NN.

Während die grundsätzliche Fähigkeit zur Ausbildung einer bedeutungshaltigen Sprache [L_M] (L :_ Ausrucksseite, M := Bedeutungsanteil) nach heutigem Kenntnisstand angeboren zu sein scheint, muss die Bedeutungsrelation M individuell in einem langen, oft mühsamen Prozess, erlernt werden. Und das Erlernen der einen Sprache L_M hilft kaum bis gar nicht für das Erlernen einer anderen Sprache L’_M‘.

Faktor 3: Neben sehr vielen Eigenschaften im Kontext der menschlichen Sprachfähigkeit ist einer — in meiner Sicht — zusätzlich bemerkenswert. Im einfachen Fall kann man unterscheiden zwischen den sprachlichen Ausdrücken und jenen neuronalen Korrelaten, die mit Objekten der Außenwelt korrespondieren, also solche Objekte, die andere Menschen zeitgleich auch wahrnehmen können. So z.B. ‚die weiße Tasse dort auf dem Tisch‘, ‚die rote Blume neben deiner Treppe‘, ‚die Sonne am Himmel‘, usw. In diesen Beispielen haben wir auf der einen Seite sprachliche Ausdrücke, und auf der anderen Seite nicht-sprachliche Dinge. Ich kann mit meiner Sprache aber auch sagen „In dem Satz ‚die Sonne am Himmel‘ ist das zweite Wort dieses Satzes grammatisch ein Substantiv‘. In diesem Beispiel benutze ich Ausdrücke der Sprache um mich auf andere Ausdrücke einer Sprache zu beziehen. Dies bedeutet, dass ich Ausdrücke der Sprache zu Objekten für andere Ausdrücke der Sprache machen kann, die über (meta) diese Objekte sprechen. In der Wissenschaftsphilosophie spricht man hier von Objekt-Sprache und von Meta-Sprache. Letztlich sind es zwei verschiedenen Sprachebenen. Bei einer weiteren Analyse wird man feststellen können, dass eine natürliche/ normale Sprache L_M scheinbar unendlich viele Sprachebenen ausbilden kann, einfach so. Ein Wort wie Demokratie z.B. hat direkt kaum einen direkten Bezug zu einem Objekt der realen Welt, wohl aber sehr viele Beziehungen zu anderen Ausdrücken, die wiederum auf andere Ausdrücke verweisen können, bis irgendwann vielleicht ein Ausdruck dabei ist, der Objekte der realen Welt betrifft (z.B. der Stuhl, auf dem der Parlamentspräsident sitzt, oder eben dieser Parlamentspräsident, der zur Institution des Bundestages gehört, der wiederum … hier wird es schon schwierig).

Die Tatsache, dass also das Sprachvermögen eine potentiell unendlich erscheinende Hierarchie von Sprachebenen erlaubt, ist eine ungewöhnlich starke Eigenschaft, die bislang nur beim homo sapiens beobachtet werden kann. Im positiven Fall erlaubt eine solche Sprachhierarchie die Ausbildung von beliebig komplexen Strukturen, um damit beliebig viele Eigenschaften und Zusammenhänge der realen Welt sichtbar zu machen, aber nicht nur in Bezug auf die Gegenwart oder die Vergangenheit, sondern der homo sapiens kann dadurch auch Zustände in einer möglichen Zukunft andenken. Dies wiederum ermöglicht ein innovatives, gestalterisches Handeln, in dem Aspekte der gegenwärtigen Situation verändert werden. Damit kann dann real der Prozess der Evolution und des ganzen Universums verändert werden. Im negativen Fall kann der homo sapiens wilde Netzwerke von Ausdrücken produzieren, die auf den ersten Blick schön klingen, deren Bezug zur aktuellen, vergangenen oder möglichen zukünftigen realen Welt nur schwer bis gar nicht herstellbar ist.

Hat also ein entwickeltes Sprachsystem schon für das Denken selbst eine gewisse Relevanz, spielt es natürlich auch für die Kommunikation eine Rolle. Der Gehirn-Körper transformiert ja nicht nur reale Welt in neuronale Korrelate b_B : RW x RW_NN —–> RW_NN (mit der Sprache L_B_NN als Teil von RW_NN), sondern der Gehirn-Körper produziert auch sprachliche Ausdrücke nach außen b_B : RW_NN —–> L. Die sprachlichen Ausdrücke L bilden von daher die Schnittstelle zwischen den Gehirnen. Was nicht gesagt werden kann, das existiert zwischen Gehirnen nicht, obgleich es möglicherweise neuronale Korrelate gibt, die wichtig sind. Nennt man die Gesamtheit der nutzbaren neuronalen Korrelate Wissen dann benötigt es nicht nur eine angemessene Kultur des Wissens sondern auch eine angemessene Kultur der Sprache. Eine Wissenschaft, eine empirische Wissenschaft ohne eine angemessene (Meta-)Sprache ist z.B. schon im Ansatz unfähig, mit sich selbst rational umzugehen; sie ist schlicht sprachlos.

EIN NEUES UNIVERSUM ? !

Betrachtet man die kontinuierlichen Umformungen der Energie-Materie vom Big Bang über Gasnebel, Sterne, Sternenhaufen, Galaxien und vielem mehr bis hin zur Entstehung von biologischem Leben auf der Erde (ob auch woanders ist komplexitätstheoretisch extrem unwahrscheinlich, aber nicht unmöglich), dort dann die Entwicklung zu Mehrzellern, zu komplexen Organismen, bis hin zum homo sapiens, dann kommt dem homo sapiens eine einzigartig, herausragende Rolle zu, der er sich bislang offensichtlich nicht richtig bewusst ist, u.a. möglicherweise auch, weil die Wissenschaften sich weigern, sich professionell mit ihrer eigenen Irrationalität zu beschäftigen.

Der homo sapiens ist bislang das einzig bekannte System im gesamten Universum, das in er Lage ist, die Energie-Materie Struktur in symbolische Konstrukte zu transformieren, in denen sich Teile der Strukturen des Universums repräsentieren lassen, die dann wiederum in einem Raum hoher Freiheitsgrade zu neue Zuständen transformiert werden können, und diese neuen — noch nicht realen — Strukturen können zum Orientierungspunkt für ein Verhalten werden, das die reale Welt real transformiert, sprich verändert. Dies bedeutet, dass die Energie-Materie, von der der homo sapiens ein Teil ist, ihr eigenes Universum auf neue Weise modifizieren kann, möglicherweise über die aktuellen sogenannten Naturgesetze hinaus.

Hier stellen sich viele weitere Fragen, auch alleine schon deswegen, weil der Wissens- und Sprachaspekt nur einen kleinen Teil des Potentials des homo sapiens thematisiert.

IN ZWEI WELTEN LEBEN …

Journal: Philosophie Jetzt – Menschenbild, ISSN 2365-5062, 23.Juli 2019
URL: cognitiveagent.org
Email: info@cognitiveagent.org
Autor: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

KONTEXT

Nach einer längeren Schreibpause, hier ein kurzes Blitzlicht …

SCHWEIGEN IST VIELDEUTIG

Es ist ja ein beliebter Topos, über das Schweigen zu sinnieren. Korrespondiert es mit einem ‚Nichts‘ oder ist es nur ein Artefakt vielschichtiger, sich wechselseitig in Bann haltender Aktivitäten, die sich ’nach Außen quasi ‚aufheben’…

Dies ist ein Bild. Für mein Schweigen trifft weder das eine noch das andere zu. Tatsächlich ist bei mir die letzte Zeit extrem dicht angefüllt mit Aktivitäten, Denken, Schreiben, ja auch mit Programmieren, eine moderne Form des Schreibens. Letzteres leider in unserer Kultur von schöngeistigen Menschen wenig geachtet, tatsächlich aber der Stoff, aus dem das Meiste ist, was wir heute für unser Leben benutzen.

DENKEN – VIELFÄLTIG – IM DENKEN DENKEN

Die vielfältigen Formen des Denkens zu katalogisieren und zu bewerten, dann eventuell noch hierarchisch zu gewichten, ist sicher reizvoll. Bis zu einem gewissen Grade und in gewissen Situationen mag dies sogar notwendig sein (Gesetzestexte, Rezepten, Bauanleitungen, Sportberichte, Finanzberichte ….), aber man verliert die Wahrheit aus dem Blick wenn man übersieht, dass alle diese verschiedenen Spezialformen Ausdrucksformen einer einzigen Sache sind, nämlich der Bemühung des menschlichen Geistes — realisiert in den vielen einzelnen Menschen — sich im Hier und Jetzt zurecht zu finden; zu verstehen, wie denn das alles zusammenhängt. Warum das alles so ist, wie es ist. Gibt es irgendwie ein Ziel für die Zukunft? Mehrere? Welches ist am günstigsten? Für wen? Aus welchem Grund?

Für mich war das Schreiben in diesem Block seit ca. 10 Jahren mein Versuch, mich selbst in ein Gespräch zu verwickeln, das mich zwang, Eindrücken, Fragen nachzugehen, die ich ohne dies Schreiben eher achtlos beiseite gelassen hätte. Natürlich, neben viel Spaß, Lust an der Sache, Neugierde, Entdeckerfreuden usw. war es auch weite Strecken mühsam, quälend, mit der ständigen Frage: Muss das so sein? Bringt das was? Im Rückblick, nach ca. 9000 Seiten Text, würde ich sagen, es hat — zumindest für mich — sehr viel gebracht. Ich habe begonnen, Dinge zu verstehen, von denen ich vorher nicht wusste, dass es sie gibt, Zusammenhänge, die mir verborgen waren, überraschende neue Ausblicke, Glücksgefühle, noch mehr Neugierde, viel Hoffnung, ein wachsendes Vertrauen in dieses unfassbare Wunder genannt Leben. Ich bin jetzt soweit, dass ich zumindest ahnen kann, dass das Leben viel größer, tiefer, komplexer, reicher, gewaltiger ist, als alles, was uns die bekannten alten Traditionen — vor allem die alten Religionen, aber auch Einzelbereiche der Wissenschaften — bisher erzählt haben oder heute noch erzählen.

Insofern habe ich aus dem bisherigen Schreib- und Reflexionsprozess viel Kraft gezogen, viel Hoffnung, viel neues Vertrauen, Unternehmenslust, mit dabei zu sein, wenn es geht, die Unfassbarkeit unseres Lebens weiter zu gestalten.

MITGESTALTEN …

Je mehr man diesen Wunsch hegt, nicht nur passiv aufzunehmen, nicht nur zu verstehen, um so schwieriger wird dann die Frage, wo steigt man ein? Was kann man als einzelner mit seinen jeweiligen Möglichkeiten konkret tun?

Leute, die mit markigen Sprüchen durch die Welt laufen, die vielfarbige Slogans verteilen, die einfache schwarz-weiß Bilder austeilen, gibt es genug. Alles ist sehr einfach…

Aber, das Wunder des Lebens ist — nicht wirklich einfach. Wir selbst sind zwar zunächst als ‚Hineingeworfene‘ auf den ersten Blick einfach, weil wir etwas sehr Komplexes sind, das Komplexeste, was es im ganzen Universum gibt, aber wir haben keinen Finger dafür krumm gemacht, wir finden das alles einfach so vor, wir können sofort loslegen, ohne große umständliche Prozesse zu durchlaufen (OK, es gibt mittlerweile in den meisten Kulturen komplexe selbst definierte Lernprozesse in Kindergärten, Schulen, Betrieben, Hochschulen usw.), aber wir müssen nicht verstehen, wie wir funktionieren, um zu funktionieren. Unser Körper, das Äquivalent von ca. 450 Galaxien im Format der Milchstraße, funktioniert für uns, ohne dass wir verstehen müssen (und auch tatsächlich nicht verstehen können, bislang) wie er funktioniert. Wir sind ein Wunderwerk des Universums und können ‚funktionieren‘, obwohl wir uns praktisch nicht verstehen.

Da beginnt meine zweite Story: auf Ganze gesehen weiß ich so gut wie nichts, nah besehen weiß ich aber mittlerweile zu viel, als dass ich einfach so tun könnte, nichts zu wissen 🙂

EINZELTEILE ZUSAMMEN SUCHEN

Im Rahmen meiner unterschiedlichen Lehr- und Forschungstätigkeiten, zwischendrin auch ’normale‘ berufliche Arbeiten, habe ich schrittweise viele wissenschaftliche Bereiche kennen lernen dürfen und dabei entdeckt, dass wir aktuell ein ‚Zusammenhangs-Problem‘ haben, will sagen, wir haben immer mehr einzelne Disziplinen,die je für sich hoch spezialisiert sind, aber die Zusammenhänge mit anderen Bereichen, ein Gesamtverständnis von Wissenschaft, gar doch noch mit dem ganzen Engineering, dies geht uns zusehends ab. Dies bedeutet u.a. dass ein neuer Beitrag oft gar nicht mehr richtig gewürdigt werden kann, da die Umrisse des Ganzen, für das etwas entdeckt oder entwickelt wurde, kaum noch greifbar sind. Dies ist das Fake-News-Problem der Wissenschaften.

Ob geplant oder spontan oder zufällig, ich kann es nicht genau sagen, jedenfalls habe ich vor einigen Jahren damit begonnen, zu versuchen, die Disziplinen, in denen ich tätig sein konnte, langsam, schrittweise, häppchenweise, zu systematisieren, zu formalisieren, und sie auf die mögliche Wechselwirkungen mit den anderen Bereichen hin abzuklopfen.

Zu Beginn sah dies alles sehr bruchstückhaft, eher harmlos aus.

Doch im Laufe der Jahre entwickelten sich Umrisse, entstanden immer deutlicher Querbezüge, bis dann so langsam klar wurde, ja, es gibt hier mögliche begriffliche Rahmenkonzepte, die sehr prominente und doch bislang getrennte Disziplinen auf eine Weise zusammen führen können, die so bislang nicht sichtbar waren.

MENSCH – MASCHINE – UND MEHR …

Mein Fixpunkt war das Thema Mensch-Maschine Interaktion (MMI) (Englisch: Human-Machine Interaction, HMI), von mir dann weiter entwickelt zum allgemeinen Actor-Actor Interaction (AAI) Paradigma. Mehr zufällig bedingt, genau genommen durch einen wunderbaren Freund, einem Südafrikaner, ein begnadeter Systems Engineer, habe ich auch sehr früh begonnen, das Thema Mensch-Maschine Interaktion immer auch im Kontext des allgemeineren Systems Engineerings zu denken (im englischsprachigen Raum ist das Paradigma des Systems Engineering sehr geläufig, im deutschsprachigen Bereiche gibt es viele Sonderkonzepte). Irgendwann haben wir angefangen, das Systems Engineering zu formalisieren, und im Gefolge davon habe ich dies ausgedehnt auf das Mensch-Maschine Paradigma als Teil des Systems Engineerings. Dies führte zu aufregenden Verallgemeinerungen, Verfeinerungen und letztlich auch Optimierungen. Es war dann nur eine Frage der Zeit, bis das ganze Thema Künstliche Intelligenz (KI) integriert werden würde. KI steht bislang theoretisch ein wenig verloren im Raum der vielen Disziplinen, kaum verortet im Gesamt der Wissenschaften, des Engineering, der allgemeine Kognitions-, Lern- und Intelligenztheorien der biologischen Disziplinen. Im Rahmen des AAI Paradigmas ist KI eine Subdisziplin, die eine spezielle Teilmenge von Akteuren in ihrem Verhalten beschreiben, modellieren und simulieren kann, aber eben nicht isoliert, sondern eingeordnet in den Gesamtrahmen von Engineering und Wissenschaft. Dies eröffnet viele aufregende Perspektiven und Anwendungsmöglichkeiten.

Und so wird es auch niemanden verwunden, dass mein Engagement für ein integriertes begriffliches System für Systems Engineering, MMI und KI zugleich auch ein starkes Engagement für die philosophische Dimension wurde.

Ein Leser dieses Blocks wird nicht verwundert sein, wenn ich feststelle, dass es gerade die intensive Beschäftigung mit dem Engineering und seiner Meta-Probleme waren, die mich zur Philosophie zurück geführt hatten. Nach meiner völligen Frustration mit der klassischen Philosophie während des ersten Anlaufs einer Promotion in Philosophie an der LMU München (ca. 1980 – 1983) — ein Roman für sich — fand ich viele wertvolle Erkenntnisse im intensiven Studium der Wissenschaftsphilosophie und einiger konkreter Wissenschaften. Das Engineering (mit Schwerpunkt Informatik) war dann noch bereichernder. Aber gerade hier, im Systems Engineering, bei dem Thema Mensch-Maschine, und ausgerechnet mitten in den Lerntheorien der KI, bin ich auf so viele grundlegende philosophische Fragen gestoßen, dass ich von da ab — fast notwendigerweise — wieder angefangen habe philosophisch zu denken. Eines der Hauptmotive für diesen Block.

Natürlich, das merkt man wohl auch schon beim Lesen, führt die Breite und Fülle dieser Aspekte dazu, dass man nicht schnell, und nicht immer konzise arbeiten kann. Man muss viele Fragen mehrfach bedenken, oft von verschiedenen Seiten aus, muss immer wieder von vorne anfangen, und wenn man dann meint, jetzt habe man man den Bogen doch gut hinbekommen, entdeckt man von einer anderen Seite so viele anderen Aspekte, Löcher, Unzulänglichkeiten, dass man gerade nochmals von vorne anfangen kann.

Wie schwierig es auch sein mag, die Umrisse eines Ganzen deuten sich doch mittlerweile immer stärker an, so stark, dass ich das Gefühl habe, dass dieser andere Block — uffmm.org–, mein Blog für das Engineering, ab jetzt mehr — oder gar die ganze — Aufmerksamkeit verlangt.

Denn, eine Folge von Zusammenhangs-Sichten ist, dass man — fast unaufhaltsam — immer weitere Zusammenhänge entdeckt. So ist natürlich eng verknüpft mit dem Mensch-Maschine Paradigma der gesamte Komplex der biologischen und psychologischen Verhaltenswissenschaften, dazu gehörig auch das, was man Kognitionswissenschaft nennt, und damit ganz viele weitere spezielle Disziplinen, die irgendwie den Menschen und sein Verhalten thematisieren (Semiotik, Linguistik, Soziologie, …).

Während das Lesen und Studieren einzelner Werke und Artikel aus diesen Bereichen ohne übergreifenden Zusammenhang oft so beliebig, und damit frustrierend, wirkt, gewinnen diese Werke bei einem expliziten begrifflichen Zusammenhang eine ganz andere Farbigkeit, leuchten auf, werden interessant. So ist mir dies z.B. in den letzten Monaten mit Büchern von Edelman, Gallistel und Gärdenfors gegangen (um einige Beispiele zu nennen).

Während es also einerseits darum geht, immer mehr prominente Beispiele aus den genannten Disziplinen in den neuen begrifflichen Rahmen einzuordnen, ist mir auch klar geworden, dass dies alles — so wunderbar das für sich genommen schon ist (obgleich noch im Prozess) — heute nicht mehr ausreichend ist, ohne eine hinreichende Softwareunterstützung, ohne Software-Modellierung und vielerlei Simulationsversionen. Schon ein rein empirisches verhaltenswissenschaftliches Buch wie das grundlegende Werk von Gallistel zur Organisation des biologischen Lernens bleibt ohne zugehörige Softewaremodelle irgendwie ein Torso, entsprechend auch die Werke von Gärdenfors zu Begriffs-Räumen (Conceptual Spaces). Ein positives Beispiel für Theorie und Computersimulation liefert Edelman in vielen Büchern, Artikeln und Programmen. Und ich weiß aus eigener Vorlesungserfahrung, dass die Vorlesungen zum dynamischen Lernen erste mit der zugehörigen Softwaremodellierung jene Farbe und Tiefe bekommen haben, die es heute braucht.

Für mich ergibt sich daraus, dass ich parallel zur Text-Version der Theorie — natürlich mit hinreichenden Formalisierungen — eine vollständige Softwareabdeckung brauche. Ohne diese wird das alles nur Stückwerk bleiben.

Damit entsteht ein ziemliches Aufgabenpaket: Systems Engineering mit Actor-Actor Paradigma, dazu KI integriert, bei AAI Kognitionswissenschaften integriert, und zu allem die notwendige Software.

Allerdings eine wichtige Dimension fehlt bei dieser Aufzählung noch: die allgemeine Philosophie und die Wissenschaftsphilosophie. Die allgemeine Philosophie und die Wissenschaftsphilosophie können zwar die Einzelwissenschaften nicht ersetzen, aber die Einzelwissenschaften ohne eine explizite allgemeine Philosophie und Wissenschaftsphilosophie gleichen einem Haufen gackernder Hühner, deren Einzelbeiträge schnell in Kakophonie umschlagen kann, wenn sie nicht integriert werden.

Also, im Prinzip ist sehr klar, wie es gehen soll, es konkret zu tun ist scheinbar unmöglich. Aber genau das ist es, worum es geht: das Leben als solches in diesem Universum ist die maximale Unmöglichkeit, aber dennoch ist es da, dennoch entwickelt es sich. Dieses Mysterium einer ungeheuren Kraft, das Unmögliche möglich zu machen, das ist das, was jeden Menschen, insbesondere jeden Wissenschaftler, antreiben sollte, ansonsten sind wir tatsächlich — möglicherweise — schlechter als alle denkbaren Roboter der Zukunft.

AUF DIE BAUSTELLE

Wie schon angedeutet, hat meine Theoriebaustelle einen Namen: uffmm.org . ‚uffmm‘ ist die Abkürzung eines ganzen Satzes. Ich verrate jetzt nicht, wie dieser Satz heißt. Schön wäre es, wenn er einmal wahr werden würde.

Wer will, kann die Ereignisse auf dem uffmm-Blog verfolgen, allerdings ist dort alles auf Englisch. Es ist nicht meine Sprache, ich fühle mich damit sprachlich amputiert, aber es ist die zur Zeit beste Arbeitssprache für den internationalen Raum.

Ich habe auch keine Ahnung, wie weit ich kommen werde.

Parallel betreibe ich noch ein Anwendungsprojekt mit Überschrift ‚Kommunalplanung als eGaming‚. Damit zielen wir auf alle ca. 11.000 Kommunen in Deutschland, mit einem neuen Ansatz für mehr Demokratie in einer digitalisierten Welt. Dieser Ansatz ist ein direkter Ausfluss der zuvor angedeuteten Theoriearbeit (plus Software).

Der Philosophie-Jetzt Block war der entscheidende Inkubator für diese Weiterentwicklung. Ob und wie sich dieser Blog weiter entwickelt, wird man sehen. Er war ganz und gar ungeplant, und so wird auch die weitere Zukunft sich ereignen 🙂

Einen Überblick über alle Blogeinträge von Autor cagent nach Titeln findet sich HIER.

Einen Überblick über alle Themenbereiche des Blogs findet sich HIER.

KI UND BIOLOGIE. Blitzbericht zu einem Vortrag am 28.Nov.2018

Journal: Philosophie Jetzt – Menschenbild, ISSN 2365-5062
29.Nov. 2018
URL: cognitiveagent.org
Email: info@cognitiveagent.org

Autor: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

LETZTE AKTUALISIERUNG: 1.Dez.2018, Anmerkung 1

KONTEXT

Im Rahmen einer öffentlichen Veranstaltung des Fachbereichs 2 ‚Informatik & Ingenieurwissenschaften‘ der Frankfurt University of Applied Sciences am 28.November 2018 mit dem Rahmenthema „Künstliche Intelligenz – Arbeit für Alle?“ hielt Gerd Doeben-Henisch einen kurzen Vortrag zum Thema „Verändert KI die Welt?“ Voraus ging ein Vortrag von Herrn Helmut Geyer „Arbeitsmarkt der Zukunft. (Flyer zur Veranstaltung: FRA-UAS_Fb2_Karte_KI-Arbeit fuer alle_Webversion )

EINSTIEG INS KI-THEMA

Im Kontext der Überlegungen zur Arbeitswelt angesichts des technologischen Wandels gerät die Frage nach der Rolle der Technologie, speziell der digitalen Technologie — und hier noch spezieller der digitalen Technologie mit KI-Anteilen – sehr schnell zwischen die beiden Pole ‚Vernichter von Arbeit‘, ‚Gefährdung der Zukunft‘ einerseits und ‚Neue Potentiale‘, ‚Neue Arbeit‘, ‚Bessere Zukunft‘, wobei es dann auch einen dritten Pol gibt, den von den ‚übermächtigen Maschinen‘, die die Menschen sehr bald überrunden und beherrschen werden.

Solche Positionen, eine Mischungen aus quasi-Fakten, viel Emotionen und vielen unabgeklärten Klischees, im Gespräch sachlich zu begegnen ist schwer bis unmöglich, erst Recht, wenn wenig Zeit zur Verfügung steht.

Doeben-Henisch entschloss sich daher, das Augenmerk zentral auf den Begriff ‚Künstliche Intelligenz‘ zu lenken und die bislang uneinheitliche und technikintrovertierte Begrifflichkeit in einen größeren Kontext zu stellen, der das begrifflich ungeklärte Nebeneinander von Menschen und Maschinen schon im Ansatz zu überwinden sucht.

ANDERE DISZIPLINEN

Viele Probleme im Kontext der Terminologie der KI im technischen Bereich erscheinen hausgemacht, wenn man den Blick auf andere Disziplinen ausweitet. Solche andere Disziplinen sind die Biologe, die Mikrobiologie sowie die Psychologie. In diesen Disziplinen beschäftigt man sich seit z.T. deutlich mehr als 100 Jahren mit komplexen Systemen und deren Verhalten, und natürlich ist die Frage nach der ‚Leistungsfähigkeit‘ solcher Systeme im Bereich Lernen und Intelligenz dort seit langem auf der Tagesordnung.

Die zunehmenden Einsichten in die unfassbare Komplexität biologischer Systeme (siehe dazu Beiträge in diesem Blog, dort auch weitere Links), lassen umso eindrücklicher die Frage laut werden, wie sich solche unfassbar komplexen Systeme überhaupt entwickeln konnten. Für die Beantwortung dieser Frage wies Doeben-Henisch auf zwei spannende Szenarien hin.

KOMMUNIKATIONSFREIE EVOLUTION

Entwicklungslogik vor der Verfügbarkeit von Gehirnen
Entwicklungslogik vor der Verfügbarkeit von Gehirnen

In der Zeit von der ersten Zelle (ca. -3.8 Mrd Jahren) bis zur Verfügbarkeit hinreichend leistungsfähiger Nervensysteme mit Gehirnen (ab ca. -300.000, vielleicht noch etwas früher) wurde die Entwicklung der Lebensformen auf der Erde durch zwei Faktoren gesteuert: (a) die Erde als ‚Filter‘, was letztlich zu einer bestimmten Zeit geht; (b) die Biomasse mit ihrer Reproduktionsfähigkeit, die neben der angenäherten Reproduktion der bislang erfolgreichen Baupläne (DNA-Informationen) in großem Umfang mehr oder weniger starke ‚Varianten‘ erzeugte, die ‚zufallsbedingt‘ waren. Bezogen auf die Erfolge der Vergangenheit konnten die zufälligen Varianten als ’sinnlos‘ erscheinen, als ’nicht zielführend‘, tatsächlich aber waren es sehr oft diese zunächst ’sinnlos erscheinenden‘ Varianten, die bei einsetzenden Änderungen der Lebensverhältnisse ein Überleben ermöglichten. Vereinfachend könnte man also für die Phase die Formel prägen ‚(Auf der dynamischen Erde:) Frühere Erfolge + Zufällige Veränderungen = Leben‘. Da zum Zeitpunkt der Entscheidung die Zukunft niemals hinreichend bekannt ist, ist die Variantenbildung die einzig mögliche Strategie. Die Geschwindigkeit der ‚Veränderung von Lebensformen‘ war in dieser Zeit auf die Generationsfolgen beschränkt.

MIT KOMMUNIKATION ANGEREICHERTE EVOLUTION

Nach einer gewissen ‚Übergangszeit‘ von einer Kommunikationsfreien zu einer mit Kommunikation angereicherte Evolution gab es in der nachfolgenden Zeit die Verfügbarkeit von hinreichend leistungsfähigen Gehirnen (spätestens mit dem Aufkommen des homo sapiens ab ca. -300.000)[1], mittels deren die Lebensformen die Umgebung und sich selbst ‚modellieren‘ und ‚abändern‘ konnten. Es war möglich, gedanklich Alternativen auszuprobieren, sich durch symbolische Kommunikation zu ‚koordinieren‘ und im Laufe der letzten ca. 10.000 Jahren konnten auf diese Weise komplexe kulturelle und technologische Strukturen hervorgebracht werden, die zuvor undenkbar waren. Zu diesen Technologien gehörten dann auch ab ca. 1940 programmierbare Maschinen, bekannt als Computer. Der Vorteil der Beschleunigung in der Veränderung der Umwelt – und zunehmend auch der Veränderung des eigenen Körpers — lies ein neues Problem sichtbar werden, das Problem der Präferenzen (Ziele, Bewertungskriterien…). Während bislang einzig die aktuelle Erde über ‚Lebensfähig‘ ‚oder nicht Lebensfähig‘ entschied, und dies das einzige Kriterium war, konnten die  Lebewesen mit den neuen Gehirnen  jetzt eine Vielzahl von Aspekten ausbilden, ‚partielle Ziele‘, nach denen sie sich verhielten, von denen oft erst in vielen Jahren oder gar Jahrzehnten oder gar noch länger sichtbar wurde, welche nachhaltigen Effekte sie haben.

Anmerkung 1: Nach Edelman (1992) gab es einfache Formen von Bewusstsein mit den zugehörigen neuronalen Strukturen ab ca. -300 Mio Jahren.(S.123) Danach hätte es  also ca. 300 Mio Jahre gedauert, bis   Gehirne, ausgehend von einem ersten einfachen Bewusstsein, zu komplexen Denkleistungen und sprachlicher Kommunikation in der Lage waren.

LERNEN und PRÄFERENZEN

Am Beispiel von biologischen Systemen kann man fundamentale Eigenschaften wie z.B. das ‚Lernen‘ und die ‚Intelligenz‘ sehr allgemein definieren.

Systematisierung von Verhalten nach Lernen und Nicht-Lernen
Systematisierung von Verhalten nach Lernen und Nicht-Lernen

In biologischer Sicht haben wir generell Input-Output-Systeme in einer unfassbar großen Zahl an Varianten bezüglich des Körperbaus und der internen Strukturen und Abläufe. Wie solch ein Input-Output-System intern im Details funktioniert spielt für das konkrete Leben nur insoweit eine Rolle, als die inneren Zustände ein äußerlich beobachtbares Verhalten ermöglichen, das wiederum das Überleben in der verfügbaren Umgebung ermöglicht und bezüglich spezieller ‚Ziele‘ ‚erfolgreich‘ ist. Für das Überleben reicht es also zunächst, einfach dieses beobachtbare Verhalten zu beschreiben.

In idealisierter Form kann man das Verhalten betrachten als Reiz-Reaktions-Paare (S = Stimulus, R = Response, (S,R)) und die Gesamtheit des beobachtbaren Verhaltens damit als eine Sequenz von solchen (S,R)-Paaren, die mathematisch eine endliche Menge bilden.

Ein so beschriebenes Verhalten kann man dann als ‚deterministisch‘ bezeichnen, wenn die beobachtbaren (S,R)-Paare ’stabil‘ bleiben, also auf einen bestimmten Reiz S immer die gleiche Antwort R erfolgt.

Ein dazu komplementäres Verhalten, also ein ’nicht-deterministisches‘ Verhalten, wäre dadurch charakterisiert, dass entweder (i) der Umfang der Menge gleich bleibt, aber manche (S,R)-Paare sich verändern oder (ii) der Umfang der Menge kann sich ändern. Dann gibt es die beiden interessanten Unterfälle (ii.1) es kommen nach und nach neue (S,R)-Paare dazu, die ‚hinreichend lang‘ ’stabil‘ bleiben, aber ab einem bestimmten Zeitpunkt ‚t‘ sich nicht mehr vermehren (die Menge der stabilen Elemente wird ‚eingefroren‘, ‚fixiert‘, ‚gezähmt‘, …), oder (ii.2) die Menge der stabilen (S,R)-Paare expandiert ohne Endpunkt.

Bezeichnet man diese Expansion (zeitlich ‚befristet‘ oder ‚unbefristet‘) als ‚Lernen‘, dann wird sichtbar, dass die ‚Inhalte des Lernens‘ (die korrespondierenden Repräsentationen der (S,R)-Paare in den internen Zuständen des Systems) einmal davon abhängen, was die Umgebung der Systeme ‚erlaubt‘, zum anderen, was die ‚inneren Zustände‘ des Systems an ‚Verarbeitung ermöglichen‘, sowie – sehr indirekt – über welche welche ‚internen Selektionskriterien‘ ein System verfügt.

Die ‚internen Selektionskriterien‘ werden hier kurz ‚Präferenzen‘ genannt, also Strategien, ob eher ein A oder ein B ’selektiert‘ werden soll. Wonach sich solche Kriterien richten, bleibt dabei zunächst offen. Generell kann man sagen, dass solche Kriterien primär ‚endogen‘ begründet sein müssen, dass sie aber nachgeordnet auch von außen (‚exogen‘) übernommen werden können, wenn die inneren Kriterien eine solche Favorisierung des exogenen Inputs ‚befürworten‘ (Beispiel sind die vielen Imitationen im Lernen bzw. die Vielzahl der offiziellen Bildungsprozesse, durch die Menschen auf bestimmte Verhaltens- und Wissensmuster trainiert (programmiert) werden). Offen ist auch, ob die endogenen Präferenzen stabil sind oder sich im Laufe der Zeit ändern können; desgleichen bei den exogenen Präferenzen.

Am Beispiel der menschlichen Kulturen kann man den Eindruck gewinnen, dass das Finden und gemeinsame Befolgen von Präferenzen ein bislang offenes Problem ist. Und auch die neuere Forschung zu Robotern, die ohne Terminierung lernen sollen (‚developmental robotics‘), hat zur Zeit das Problem, dass nicht ersichtlich ist, mit welchen Werten man ein nicht-terminiertes Lernen realisieren soll. (Siehe: Merrick, 2017)) Das Problem mit der Präferenz-Findung ist bislang wenig bekannt, da die sogenannten intelligenten Programme in der Industrie immer nur für klar definierte Verhaltensprofile trainiert werden, die sie dann später beim realen Einsatz unbedingt einhalten müssen.  Im technischen Bereich spricht man hier oft von einer ’schwachen KI‘. (Siehe: VDI, 2018) Mit der hier eingeführten Terminologie  wären dies nicht-deterministische Systeme, die in ihrem Lernen ‚terminieren‘.

INTELLIGENZ

Bei der Analyse des Begriffs ‚Lernen‘ wird sichtbar, dass das, was gelernt wird, bei der Beobachtung des Verhaltens nicht direkt ’sichtbar‘ ist. Vielmehr gibt es eine allgemeine ‚Hypothese‘, dass dem äußerlich beobachtbaren Verhalten ‚interne Zustände‘ korrespondieren, die dafür verantwortlich sind, ob ein ’nicht-lernendes‘ oder ein ‚lernendes‘ Verhalten zu beobachten ist. Im Fall eines ‚lernenden‘ Verhaltens mit dem Auftreten von inkrementell sich mehrenden stabilen (S,R)-Paaren wird angenommen, das den (S,R)-Verhaltensformen ‚intern‘ entsprechende ‚interne Repräsentationen‘ existieren, anhand deren das System ‚entscheiden‘ kann, wann es wie antworten soll. Ob man diese abstrakten Repräsentationen ‚Wissen‘ nennt oder ‚Fähigkeiten‘ oder ‚Erfahrung‘ oder ‚Intelligenz‘ ist für die theoretische Betrachtung unwesentlich.

Die Psychologie hat um die Wende zum 20.Jahrhundert mit der Erfindung des Intelligenztests durch Binet und Simon (1905) sowie in Weiterführung durch W.Stern (1912) einen Ansatz gefunden, die direkt nicht messbaren internen Repräsentanten eines beobachtbaren Lernprozesses indirekt dadurch zu messen, dass sie das beobachtbare Verhalten mit einem zuvor vereinbarten Standard verglichen haben. Der vereinbarte Standard waren solche Verhaltensleistungen, die man Kindern in bestimmten Altersstufen als typisch zuordnete. Ein Standard war als ein Test formuliert, den ein Kind nach möglichst objektiven Kriterien zu durchlaufen hatte. In der Regel gab es eine ganze Liste (Katalog, Batterie) von solchen Tests. Dieses Vorgehensweisen waren sehr flexibel, universell anwendbar, zeigten allerdings schon im Ansatz, dass die Testlisten kulturabhängig stark variieren konnten. Immerhin konnte man ein beobachtbares Verhalten von einem System auf diese Weise relativ zu vorgegebenen Testlisten vergleichen und damit messen. Auf diese Weise konnte man die nicht messbaren hypothetisch unterstellten internen Repräsentationen indirekt qualitativ (Art des Tests) und quantitativ (Anteil an einer Erfüllung des Tests) indizieren.

Im vorliegenden Kontext wird ‚Intelligenz‘ daher als ein Sammelbegriff für die hypothetisch unterstellte Menge der korrespondierenden internen Repräsentanten zu den beobachtbaren (S,R)-Paaren angesehen, und mittels Tests kann man diese unterstellte Intelligenz qualitativ und quantitativ indirekt charakterisieren. Wie unterschiedlich solche Charakterisierung innerhalb der Psychologie modelliert werden können, kann man in der Übersicht von Rost (2013) nachlesen.

Wichtig ist hier zudem, dass in diesem Text die Intelligenz eine Funktion des Lernens ist, das wiederum von der Systemstruktur abhängig ist, von der Beschaffenheit der Umwelt sowie der Verfügbarkeit von Präferenzen.

Mehrdimensionaler Raum der Intelligenzrpräsentanen
Mehrdimensionaler Raum der Intelligenzrpräsentanen

Aus Sicht einer solchen allgemeinen Lerntheorie kann man statt biologischen Systemen auch programmierbare Maschinen betrachten. Verglichen mit biologischen Systemen kann man den programmierbaren Maschinen ein Äquivalent zum Körper und zur Umwelt spendieren. Grundlagentheoretisch wissen wir ferner schon seit Turing (1936/7), dass programmierbare Maschinen ihr eigenes Programm abändern können und sie prinzipiell lernfähig sind. Was allerdings (siehe zuvor das Thema Präferenz) bislang unklar ist, wo sie jeweils die Präferenzen herbekommen sollen, die sie für eine ’nachhaltige Entwicklung‘ benötigen.

ZUKUNFT VON MENSCH UND MASCHINE

Im Licht der Evolution erscheint die  sich beschleunigende Zunahme von Komplexität im Bereich der biologischen Systeme und deren Populationen darauf hinzudeuten, dass mit der Verfügbarkeit von programmierbaren Maschinen diese sicher nicht als ‚Gegensatz‘ zum Projekt des biologischen Lebens zu sehen sind, sondern als eine willkommene Unterstützung in einer Phase, wo die Verfügbarkeit der Gehirne eine rapide Beschleunigung bewirkt hat. Noch bauen die biologischen Systeme ihre eigenen Baupläne  nicht selbst um, aber der Umbau in Richtung von Cyborgs hat begonnen und schon heute ist der Einsatz von programmierbaren Maschinen existentiell: die real existierenden biologischen Kapazitätsgrenzen erzwingen den Einsatz von Computern zum Erhalt und für die weitere Entwicklung. Offen ist die Frage, ob die Computer den Menschen ersetzen sollen. Der Autor dieser Zeilen sieht die schwer deutbare Zukunft eher so, dass der Mensch den Weg der Symbiose intensivieren wird und versuchen sollte, den Computer dort zu nutzen, wo er Stärken hat und zugleich sich bewusst sein, dass das Präferenzproblem nicht von der Maschine, sondern von ihm selbst gelöst werden muss. Alles ‚Böse‘ kam in der Vergangenheit und kommt in der Gegenwart vom Menschen selbst, nicht von der Technik. Letztlich ist es der Mensch, der darüber entscheidet, wie er die Technik nutzt. Ingenieure machen sie möglich, die Gesellschaft muss entscheiden, was sie damit machen will.

BEISPIEL EINER NEUEN SYMBIOSE

Der Autor dieser Zeilen hat zusammen mit anderen KollegenInnen in diesem Sommer ein Projekt gestartet, das darauf abzielt, dass alle 11.000 Kommunen in Deutschland ihre Chancen haben sollten, ihre Kommunikation und Planungsfähigkeit untereinander dramatisch zu verbessern, indem sie die modernen programmierbaren Maschinen in neuer ‚intelligenter‘ Weise für ihre Zwecke nutzen.

QUELLEN

  • Kathryn Merrick, Value systems for developmental cognitive robotics: A survey, Cognitive Systems Research, 41:38 – 55, 2017
  • VDI, Statusreport Künstliche Intelligenz, Oktober 2018, URL: https://www.vdi.de/vdi-statusbericht-kuenstliche-intelligenz/ (zuletzt: 28.November 2018)
  • Detlef H.Rost, Handbuch der Intelligenz, 2013: Weinheim – Basel, Beltz Verlag
  • Joachim Funke (2006), Kap.2: Alfred Binet (1857 – 1911) und der erste Intelligenztest der Welt, in: Georg Lamberti (Hg.), Intelligenz auf dem Prüfstand. 100 Jahre Psychometrie, Vandenhoek & Ruprecht
  • Alfred Binet, Théodore Simon: Methodes nouvelles pour le diagnostiqc du niveau intellectuel des anormaux. In: L’Année Psychologique. Vol. 11, 1904, S. 191–244 (URL: https://www.persee.fr/doc/psy_0003-5033_1904_num_11_1_3675 )
  • William Stern, Die psychologischen Methoden der Intelligenzprüfung und deren Anwendung an Schulkinder, 19121: Leipzig, J.A.Barth
  • Alan M. Turing, On computable numbers, with an application to the Entscheidungsproblem. Proceedings of the London Mathematical Society, 42(2):230–265, 1936-7
  • Gerald M.Edelman, Bright Air, Brilliant Fire. On the Matter of the Mind, New York: 1992, Basic Books

Einen Überblick über alle Blogeinträge von Autor cagent nach Titeln findet sich HIER.

Einen Überblick über alle Themenbereiche des Blogs findet sich HIER.

KÜNSTLICHE INTELLIGENZ (KI) – CHRISTLICHE THEOLOGIE – GOTTESGLAUBE. Ein paar Gedanken

Journal: Philosophie Jetzt – Menschenbild, ISSN 2365-5062
24.Juni 2018
URL: cognitiveagent.org
Email: info@cognitiveagent.org

Autor: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

VORBEMERKUNG

Der folgende Text wurde im September in einer christlichen Zeitschrift veröffentlicht [*]. Es war (und ist) ein ‚experimenteller Text‘, bei dem ich versucht habe, auszuloten, was gedanklich passiert, wenn man die beiden Themenkreise ‚Glaube an Gott im   Format christlicher Theologie‘ mit dem Themenkreis ‚Künstliche Intelligenz‘ zusammen führt. Das Ergebnis kann überraschen, muss aber nicht. Dieser ganze Blog ringt von Anbeginn um das Verhältnis von Philosophie, Wissenschaft (mit Technologie) und dem Phänomen der Spiritualität als Menschheitsphänomen, und die christliche Sicht der Dinge (die in sich ja keinesfalls einheitlich ist), ist nur eine Deutung von Welt unter vielen anderen. Wer die Einträge dieses Blogs durch mustert (siehe Überblick) wird feststellen, dass es sehr viele Beiträge gibt, die um die Frage nach Gott im Lichte der verfügbaren Welterfahrung kreisen. Die aktuelle Diskussion von W.T.Stace’s Buch ‚Religion and the Modern Mind‘ (Beginn mit Teil 1 HIER) setzt sich auch wieder   mit dieser Frage auseinander.

INHALT BEITRAG

Im Alltag begegnen wir schon heute vielfältigen Formen von Künstlicher Intelligenz. Bisweilen zeigt sie sehr menschenähnliche Züge. In Filmen werden uns Szenarien vorgeführt, in denen Superintelligenzen zukünftig die Herrschaft über uns Menschen übernehmen wollen. Wie verträgt sich dies mit unserem Menschen-und Gottesbild? Macht Glauben an Gott dann noch Sinn?

I. KI IST SCHON DA …

Vielen Menschen ist gar nicht bewusst, wo sie im Alltag schon mit Programmen der Künstlichen Intelligenz (KI) zu tun haben. Schaut man sich aber um, wird man entdecken, dass Sie scheinbar schon überall am Werk ist. Hier ein paar Stichworte: Kundenanfragen werden immer mehr durch KI-Programme bestritten. In der Logistik: In Lagerhallen und ganzen Häfen arbeiten intelligente Roboter, die wiederum von anderen KI-Programmen überwacht und optimiert werden. Ähnliches in Fabriken mit Produktionsstraßen. Für die Wartung von Maschinenbenutzen Menschen Datenhelme, die über ein KI-Programm gesteuert werden und die dem Menschensagen, was er sieht, und wo er was tun soll. In der Landwirtschaft sind die beteiligten Maschinen vernetzt, haben KI-Programme entweder an Bord oder werden über Netzwerke mit KI-Programmen verbunden: diese kontrollieren den Einsatz und steuern Maßnahmen. Auf den Feldern können diese Maschinen autonom fahren. Im Bereich Luftfahrt und Schifffahrt können sich Flugzeuge und Schiffe schon heute völlig autonom bewegen, ebenso beim LKW-Verkehr und auf der Schiene. Durch das Internet der Dinge (IoT) wird gerade der Rest der Welt miteinander vernetzt und damit einer zunehmenden Kontrolle von KI-Programmen zugänglich gemacht. In der Telemedizin ist dies schon Alltag: Ferndiagnose und Fernbehandlung sind auf dem Vormarsch. Schon heute wird für die Diagnose schwieriger und seltener Krankheiten KI eingesetzt, weil sie besser ist als ganze Gruppen menschlicher Experten. Viele komplizierte Operationen – speziell im Bereich Gehirn – wären ohne Roboter und KI schon heute unmöglich. KI-Programme entschlüsseln das Erbgut von Zellen, Suchen und Finden neue chemische Verbindungen und pharmakologische Wirkstoffe.

In der Finanzwirtschaft haben KI-Programme nicht nur den Handel mit Aktien und anderen Finanzprodukten übernommen (Stichwort: Hochfrequenzhandel), sondern sie verwalten auch zunehmend das Vermögen von Privatpersonen, übernehmen den Kontakt mit den Kunden, und wickeln Schadensfälle für Versicherungen ab. Bei anwaltlichen Tätigkeiten werden Routineaufgaben von KI-Programmen übernommen. Richter in den USA lassen sich in einzelnen Bundesländern mit KI-Programmen die Wahrscheinlichkeit ausrechnen, mit der ein Angeklagter wieder rückfällig werden wird; dies wird zum Schicksal für die Angeklagten, weil die Richter diese Einschätzungen in ihr Urteil übernehmen. Das Militär setzt schon seit vielen Jahren in vielen Bereichen auf KI-Programme. Zuletzt bekannt durchfliegende Kampfroboter (Drohnen). Dazu weltweite Ausspähprogramme von Geheimdiensten, die mit Hilfe von KI-Programmen gewaltige Datenströme analysieren und bewerten.Diese Aufzählung mag beeindruckend klingen, sie ist aber nicht vollständig. In vielen anderen Bereichen wie z.B. Spielzeug, Online-Spiele, Musikproduktion,Filmproduktion, Massenmedien, Nachrichtenproduktion,… sind KI-Programme auch schon eingedrungen. So werden z.B. mehr und mehr Nachrichtentexte und ganze Artikel für Online-Portale und Zeitungen durch KI-Programme erstellt; Journalisten waren gestern. Dazu hunderttausende von sogenannten ’Bots’ (Computerprogramme, die im Internet kommunizieren, als ob sie Menschen wären), die Meinungen absondern, um andere zu beeinflussen. Was bedeuten diese Erscheinungsformen Künstlicher Intelligenz für uns?

A. Freund oder Konkurrent?

Bei einem nächtlichen Biergespräch mit einem der berühmtesten japanischen Roboterforschern erzählte er aus seinem Leben, von seinen Träumen und Visionen. Ein Thema stach hervor: seine Sicht der Roboter. Für ihn waren Roboter schon seit seiner Kindheit Freunde der Menschen, keinesfalls nur irgendwelche Maschinen. Mit diesen Roboter-Freunden soll das Leben der Menschen schöner, besser werden können. In vielen Science-Fiction Filmen tauchen Roboter in beiden Rollen auf: die einen sind die Freunde der Menschen, die anderen ihre ärgsten Feinde; sie wollen die Menschen ausrotten, weil sie überflüssig geworden sind. Bedenkt man, dass die Filme auf Drehbüchern beruhen, die Menschen geschrieben haben, spiegelt sich in diesem widersprüchlichen Bild offensichtlich die innere Zerrissenheit wieder, die wir Menschen dem Thema Roboter, intelligenten Maschinen, gegenüber empfinden. Wir projizieren auf die intelligenten Maschinen sowohl unsere Hoffnungen wie auch unsere Ängste, beides übersteigert, schnell ins Irrationale abrutschend.

B. Neue Verwundbarkeiten

Ob intelligente Maschinen eher die Freunde der Menschen oder ihre Feinde sein werden, mag momentan noch unklar sein, klar ist jedoch, dass schon jetzt der Grad der Vernetzung von allem und jedem jeden Tag einen realen Raum mit realen Bedrohungen darstellt. Global operierenden Hacker-Aktivitäten mit Datendiebstählen und Erpressungen im großen Stil sind mittlerweile an der Tagesordnung. Während die einen noch versuchen, es klein zu reden, lecken andere schon längst ihre Wunden und es gibt immer mehr Anstrengungen, diesen Angriffen mehr ’Sicherheit’ entgegen zu setzen. Doch widerspricht das Prinzip der Zugänglichkeit letztlich dem Prinzip der vollständigen Abschottung. Wenn die Vernetzung irgendeinen Sinn haben soll, dann eben den, dass es keine vollständige Abschottung gibt. Dies läuft auf die große Kunst einer ’verabredeten Abschottung’ hinaus: es gibt eine ’bestimmte Datenkonstellation, die den Zugang öffnet’. Dies aber bedeutet, jeder kann herumprobieren, bis er diese Datenkonstellation gefunden hat. Während die einen KI-Programme einsetzen, um diese Datenschlüssel zu finden, versuchen die anderen mit KI-Programmen, mögliche Angreifer bei ihren Aktivitäten zu entdecken. Wie dieses Spiel auf lange Sicht ausgehen wird, ist offen. In der Natur wissen wir, dass nach 3.8 Milliarden Jahren biologischem Leben die komplexen Organismen bis heute beständig den Angriffen von Viren und Bakterien ausgeliefert sind, die sich um Dimensionen schneller verändern können, als das biologische Abwehrsystem(das Immunsystem) lernen kann. Die bisherige Moral aus dieser Geschichte ist die, dass diese Angriffe bei komplexen Systemen offensichtlich ko-existent sind, dazu gehören. Nur ein schwacher Trost ist es, dass der beständige Abwehrkampf dazu beiträgt, die Systeme graduell besser zu machen. Mit Blick auf diese fortschreitende Vernetzung ist es wenig beruhigend, sich vorzustellen, dass es in ca. 70- 90 Jahren (wie viele vermuten) (Anmerkung: Siehe dazu eine längere Argumentation im 1.Kap. von Bostrom (2014) [Bos14]) tatsächlich eine echte technische Superintelligenz geben wird, die allen Menschen gegenüber überlegen ist; eine solche technische Superintelligenz könnte im Handumdrehen alle Netze erobern und uns alle zu ihren Gefangenen machen. Nichts würde mehr in unserem Sinne funktionieren: die Super-KI würde alles kontrollieren und uns vorschreiben, was wir tun dürfen. Über das Internet der Dinge und unsere Smartphones wäre jeder 24h unter vollständiger Kontrolle. Jede kleinste Lebensregung wäre sichtbar und müsste genehmigt werden. Ob und was wir essen, ob wir noch als lebenswert angesehen werden …

C. Noch ist es nicht soweit …

Zum Glück ist dieses Szenario einer menschenfeindlichen Superintelligenz bislang nur Science-Fiction. Die bisherigen sogenannten KI-Programme sind nur in einem sehr eingeschränkten Sinne lernfähig. Bislang sind sie wie abgerichtete Hunde, die nur das suchen,was ihnen ihre Auftraggeber vorgeben, zu suchen. Sie haben noch keine wirkliche Autonomie im Lernen, sie können sich noch nicht selbständig weiter entwickeln(nur unter speziellen Laborbedingungen). Allerdings sammeln sie Tag und Nacht fleißig Daten von allem und jedem und erzeugen so ihre einfachen Bilder von der Welt: z.B. dass die Männer im Alter von 21 in der Region Rhein-Main mit Wahrscheinlichkeit X folgende Gewohnheiten haben …. Herr Müller aus der Irgendwo-Straße hat speziell jene Gewohnheiten …. seine Freunde sind … Es gibt eine hohe Wahrscheinlichkeit dass er Partei Y wählen wird … dass er in drei Monaten ein neues Auto vom Typ X kaufen wird ….am liebsten klickt er folgende Adressen im Internet an …

In den Händen von globalen Firmen, anonymen Nachrichtendiensten, autoritären Regierungen oder verbrecherischen Organisationen können allerdings schon diese Daten zu einer echten Bedrohung werden, und diese Szenarien sind real. Die Rolle der bösen Superintelligenz wird hier bis auf weiteres noch von Menschen gespielt; Menschen haben in der Vergangenheit leider zur Genüge bewiesen, dass sie das Handwerk des Bösen sehr gut beherrschen können…Es stellt sich die Frage, ob sich die bisherigen einfachen künstlichen Intelligenzen weiter entwickeln können? Lernen künstliche Intelligenzen anders als Menschen? Welche Rolle spielen hier Werte? Sind Werte nicht ein altmodischer Kram, den nur Menschen brauchen (oder selbst diese eigentlich nicht)? Schließlich, wo kommt hier Gott ins Spiel? Tangieren künstliche Intelligenzen den menschlichen Glauben an Gott überhaupt?

II. WAS IST ’KÜNSTLICHE INTELLIGENZ’

Für eine Erkundungsreise in das Land der Künstlichen Intelligenz ist die Lage nicht ganz einfach, da das Gebiet der KI sich mittlerweile sehr stürmisch entwickelt. Immer mehr Konzepte stehen nebeneinander im Raum ohne dass es bislang allgemein akzeptierte Theorie- und Ordnungskonzepte gibt. (Anmerkung: Für zwei sehr unterschiedliche historische Rückblicke in das Thema sei verwiesen auf Mainzer (1995) [Mai95] und Nilsson (2010) [Nil10]. Für eine sehr populäre, wenngleich methodisch problematische, Einführung in den Stand der Disziplin siehe Russel und Norvik (2010) [RN10]).

Wir besuchen hier für einen Einstieg einen der großen Gründungsväter ganz zu Beginn 1936 – 1950 Alan Matthew Turing, und dann für die Zeit 1956 – 1976 Alan Newell und Herbert A.Simon. (Anmerkung: Simon war auch ein Nobelpreisträger im Gebiet der Wirtschaftswissenschaften 1978.) Dann schauen wir noch kurz in allerneueste Forschungen zum Thema Computer und Werte.

A. Am Anfang war der Computer

Wenn wir von künstlicher Intelligenz sprechen setzen wir bislang immer voraus, dass es sich um Programme (Algorithmen) handelt, die auf solchen Maschinen laufen, die diese Programme verstehen. Solche Maschinen gibt es seit 1937 und ihre technische Entwicklung hing weitgehend davon ab, welche Bauteile ab wann zur Verfügung standen. Das Erstaunliche an der bisherigen Vielfalt solcher Maschinen, die wir Computer nennen, ist, dass sich alle diese bis heute bekannt gewordenen Computer als Beispiele (Instanzen) eines einzigen abstrakten Konzeptes auffassen lassen. Dieses Konzept ist der Begriff des universellen Computers, wie er von Alan Matthew Turing 1936/7 in einem Artikel beschrieben wurde (siehe: [Tur 7] 4 ). In diesem Artikel benutzt Turing das gedankliche Modell einer endlichen Maschine für jene endlichen Prozesse, die Logiker und Mathematiker intuitiv als ’berechenbar’ und ’entscheidbar’ ansehen. (Anmerkung: Zum Leben Turings und den vielfältigen wissenschaftlichen Interessen und Einflüssen gibt es die ausgezeichnete Biographie von Hodges (1983) [Hod83].) Das Vorbild für Turing, nach dem er sein Konzept des universellen Computers geformt hat, war das eines Büroangestellten, der auf einem Blatt Papier mit einem Bleistift Zahlen aufschreibt und mit diesen rechnet.

B. Computer und biologische Zelle

Was Turing zur Zeit seiner kreativen Entdeckung nicht wissen konnte, ist die Tatsache, dass sein Konzept des universellen Computers offensichtlich schon seit ca. 3.5 Milliarden Jahre als ein Mechanismus in jeder biologischen Zelle existierte. Wie uns die moderne Molekularbiologie über biologische Zellen zur Erfahrung bringt(siehe [AJL + 15]), funktioniert der Mechanismus der Übersetzung von Erbinformationen in der DNA in Proteine (den Bausteinen einer Zelle) mittels eines Ribosom-Molekülkomplexes strukturell analog einem universellen Computer. Man kann dies als einen Hinweis sehen auf die implizite Intelligenz einer biologischen Zelle. Ein moderner Computer arbeitet prinzipiell nicht anders.

C. Computer und Intelligenz

Die bei Turing von Anfang an gegebene Nähe des Computers zum Menschen war möglicherweise auch die Ursache dafür, dass sehr früh die Frage aufgeworfen wurde, ob, und wenn ja, wieweit, ein Computer, der nachdem Vorbild des Menschen konzipiert wurde, auch so intelligent werden könnte wie ein Mensch?

Der erste, der diese Frage in vollem Umfang aufwarf und im einzelnen diskutierte, war wieder Turing. Am bekanntesten ist sein Artikel über Computerintelligenz von 1950 [Tur50]. Er hatte aber schon 1948 in einem internen Forschungsbericht für das nationale physikalische Labor von Großbritannien einen Bericht geschrieben über die Möglichkeiten intelligenter Maschinen. (Anmerkung: Eine Deutsche Übersetzung findet sich hier: [M.87]. Das Englische Original ’Intelligent Machinery’ von 1948 findet sich online im Turing Archiv: http://www.alanturing.net/intelligent_machinery.) In diesem Bericht analysiert er Schritt für Schritt, wie eine Maschine dadurch zu Intelligenz gelangen kann, wenn man sie, analog wie bei einem Menschen, einem Erziehungsprozess unterwirft, der mit Belohnung und Strafe arbeitet. Auch fasste er schon hier in Betracht, dass sein Konzept einer universellen Maschine das menschliche Gehirn nachbaut. Turing selbst konnte diese Fragen nicht entscheiden, da er zu dieser Zeit noch keinen Computer zur Verfügung hatte, mit dem er seine Gedankenexperimente realistisch hätte durchführen können. Aber es war klar, dass mit der Existenz seines universellen Computerkonzeptes die Frage nach einer möglichen intelligenten Maschine unwiderruflich im Raum stand. Die Fragestellung von Turing nach der möglichen Intelligenz eines Computers fand im Laufe der Jahre immer stärkeren Widerhall. Zwei prominente Vertreter der KI-Forschung, Allen Newell und Herbert A.Simon, hielten anlässlich des Empfangs des ACM Turing-Preises1975 eine Rede, in der sie den Status der KI-Forschung sowie eigene Arbeiten zum Thema machten (siehe dazu den Artikel [NS76]).

D. Eine Wissenschaft von der KI

Für Newell und Simon ist die KI-Forschung eine empirische wissenschaftliche Disziplin, die den Menschen mit seinem Verhalten als natürlichen Maßstab für ein intelligentes Verhalten voraussetzt. Relativ zu den empirischen Beobachtungen werden dann schrittweise theoretische Modelle entwickelt, die beschreiben, mit welchem Algorithmus man eine Maschine (gemeint ist der Computer) programmieren müsse, damit diese ein dem Menschen vergleichbares – und darin als intelligent unterstelltes – Verhalten zeigen könne. Im Experiment ist dann zu überprüfen, ob und wieweit diese Annahmen zutreffen.

E. Intelligenz (ohne Lernen)

Aufgrund ihrer eigenen Forschungen hatten Newell und Simon den unterstellten vagen Begriff der ’Intelligenz’ schrittweise ’eingekreist’ und dann mit jenen Verhaltensweisen in Verbindung gebracht, durch die ein Mensch (bzw. ein Computer) bei der Abarbeitung einer Aufgabe schneller sein kann, als wenn er nur rein zufällig’ handeln würde. ’Intelligenz’ wurde also in Beziehung gesetzt zu einem unterstellten ’Wissen’ (und zu unterstellten ‚Fertigkeiten‘), über das ein Mensch (bzw. ein Computer) verfügen kann, um eine bestimmte Aufgabe ’gezielt’ zu lösen. Eine so verstandene ’Intelligenz’ kann sich aus sehr vielfältigen, möglicherweise sogar heterogenen, Elementen zusammen setzen.

Dies erklärt ihre mannigfaltigen Erscheinungsweisen bei unterschiedlichen Aufgaben. ’Intelligenz’ ist dabei klar zu unterscheiden, von einem ’Lernen’. Ist die Aufgabenstellung vor dem Einsatz einer Maschine hinreichend bekannt, dann kann ein Ingenieur all das spezifische Wissen, das eine Maschine für die Ausführung der Aufgabe benötigt, von vornherein in die Maschine ’einbauen’. In diesem Sinne ist jede Maschine durch das Knowhow von Ingenieuren in einem spezifischen Sinne ’intelligent’. Bis vor wenigen Jahrzehnten war dies die Standardmethode, wie Maschinen von Ingenieuren entworfen und gebaut wurden.

F. Lernen ermöglicht Intelligenz

Im Fall von biologischen Systemen ist ein solches Vorgehen kaum möglich. Biologische Systeme entstehen (durch Zellteilung), ohne dass bei der Entstehung bekannt ist, wie die Umwelt aussehen wird, ob sie sich verändert, welche Aufgaben das biologische Systemlösen muss. Zwar haben alle biologische Systeme auch genetisch vorbestimmte Verhaltensmuster, die gleich bei der Geburt zur Verfügung stehen, aber darüber hinaus haben alle biologische Systeme einen ariablen Anteil von Verhaltensweisen, die sie erst lernen müssen. Das Lernen ist hier jene Fähigkeit eines biologischen Systems, wodurch es seine internen Verhaltensstrukturen in Abhängigkeit von der ’Erfahrung’ und von ’spezifischen Bewertungen’ ’ändern’ kann. Dies bedeutet, dass biologische Systeme durch ihre Lernfähigkeit ihr Verhalten ’anpassen’ können. Sie können damit – indirekt – ein ’spezifisches Wissen’ erwerben, das ihnen dann eine spezifische ’Intelligenz’ verleiht, wodurch das biologischen System besser als durch Zufall reagieren kann. Diese Fähigkeit eines situationsgetriebenen Wissens besaßen Maschinen bis vor kurzem nicht. Erst durch die modernen Forschungen zu einer möglichen ’künstlichen Intelligenz (KI)’ machte man mehr und mehr Entdeckungen, wie man Maschinen dazu in die Lage versetzen könnte, auch nach Bedarf neues Verhalten erlernen zu können. Innerhalb dieses Denkrahmens wäre dann eine ’künstliche Intelligenz’ eine Maschine, hier ein Computer, der über Algorithmen verfügt, die ihn in die Lage versetzen, Aufgaben- und Situationsabhängig neues Verhalten zu erlernen, falls dies für eine bessere Aufgabenbearbeitung wünschenswert wäre.

Die noch sehr ursprüngliche Idee von Turing, dass ein Computer Lernprozesse analog dem der Menschen durchlaufen könnte, inklusive Belohnung und Bestrafung, wurde seitdem auf vielfältige Weise weiter entwickelt. Eine moderne Form dieser Idee hat unter dem Namen ’Reinforcement Learning’ sehr viele Bereiche der künstlichen Intelligenzforschung erobert (vgl. Sutton und Barto (1998) [SB98]).

G. KI und Werte

Für die Aufgabenstellung einer ’lernenden Intelligenz’ spielen ’Werte’ im Sinne von ’Verhaltenspräferenzen’ eine zentrale Rolle. Ein Gebiet in der KI-Forschung, in dem diese Thematik sehr intensiv behandelt wird, ist der Bereich der ’Entwicklungs-Robotik’ (Engl.:’developmental robotics’). In diesem Bereich wurde u.a. die Thematik untersucht (vgl. Kathryn Merrick(2017) [Mer17]), wie ein Roboter ’von sich aus’, ohne direkte Befehle, seine Umgebung und sich selbst ’erforschen’ und aufgrund dieses Lernens sein Verhalten ausrichten kann. Dabei zeigt sich, dass reine Aktivierungsmechanismen, die im Prinzip nur die Neugierde für ’Neues’ unterstützen, nicht ausreichend sind. Außerdem reicht es nicht aus, einen Roboter isoliert zu betrachten, sondern man muss Teams oder ganze Populationen von Robotern betrachten, da letztlich ein ’Wert’ im Sinne einer ’Präferenz’ (eine bevorzugte Verhaltenstendenz) nur etwas nützt, wenn sich alle Mitglieder einer Population daran orientieren wollen. Dies führt zur grundlegenden Frage, was denn eine Population von Robotern gemeinschaftlich als solch einen gemeinsamen ’Wert’ erkennen und akzeptieren soll. Wirklich befriedigende Antworten auf diese grundlegenden Fragen liegen noch nicht vor. Dies hat u.a. damit zu tun, dass die Robotersysteme, die hier untersucht werden, bislang noch zu unterschiedlich sind und dass es auch hier bislang – wie bei der KI-Forschung insgesamt – ein großes Theoriedefizit gibt in der Frage, innerhalb welches theoretischen Rahmens man diese unterschiedlichen Phänomene denn diskutieren soll.

Man kann aber den Ball dieser Forschung einmal aufgreifen und unabhängig von konkreten Realisierungsprozessen die Frage stellen, wie denn überhaupt ein ’Wert’ beschaffen sein müsste, damit eine ganze Population von Robotern sich ’von sich aus’ darauf einlassen würde. Letztlich müsste auch ein Roboter entweder eine ’eingebaute Tendenz’ haben, die ihn dazu drängt, ein bestimmtes Verhalten einem anderen vor zu ziehen, oder aber es müsste eine ’nicht eingebaute Tendenz’ geben, die im Rahmen seiner ’internen Verarbeitungsprozesse’ neue Verhalten identifizieren würde, die ihm im Sinne dieser ’Tendenz’ ’wichtiger’ erscheinen würde als alles andere. Es ist bislang nicht erkennbar, wo eine ’nicht eingebaute Tendenz’ für eine Verhaltensauswahl herkommen könnte. Ein industrieller Hersteller mag zwar solche Werte aufgrund seiner Interessenlage erkennen können, die er dann einem Roboter ’zu verstehen geben würde’, aber dann wäre die Quelle für solch eine ’Initiierung einer Verhaltenstendenz’ ein Mensch.

In der aktuellen Forschungssituation ist von daher als einzige Quelle für nicht angeborene Verhaltenstendenzen bislang nur der Mensch bekannt. Über welche Werte im Falle von sogenannten künstlichen Super-Intelligenzen diese verfügen würden ist noch unklar. Dass künstliche Super-Intelligenzen von sich aus Menschen grundsätzlich ’gut’ und ’erhaltenswert’ finden werden, ist in keiner Weise abzusehen. Die künstlichen Superintelligenzen müssten sich in Wertefragen – wenn überhaupt – eher am Menschen orientieren. Da die bisherige Geschichte der Menschheit zeigt, dass der Mensch selbst zu allen Zeiten eine starke Neigung hat, andere Menschen zu unterdrücken, zu quälen, und zu töten, würde dies für alle Menschen, die nicht über künstliche Superintelligenzen verfügen, tendenziell sehr gefährlich sein. Ihr ’Opferstatus’ wäre eine sehr große Versuchung für die jeweilige technologische Macht.

III. WER SIND WIR MENSCHEN?

Wenn Menschen sich in der KI wie in einem Spiegelbetrachten, dann kann dies für den betrachtenden Menschen viele Fragen aufwerfen. Zunächst erfinden die Menschen mit dem Computer einen Typ von intelligenter Maschine, die zunehmend den Eindruck erweckt, dass sich die Menschen in solchen Maschinen vervielfältigen (und möglicherweise noch übertreffen) können. Dann benutzen sie diese Computer dazu, die Strukturen des menschlichen Körpers immer tiefer zu erforschen, bis hin zu den Zellen und dort bis in die Tiefen der molekularen Strukturen, um z.B. unsere Gene zu erforschen, unser Erbmaterial, und zwar so weitgehend, dass wir dieses Erbmaterial gezielt verändern können. Die Menschen verstehen zwar noch nicht in vollem Umfang die möglichen Wirkungen der verschiedenen Änderungen, aber es ist möglich, real Änderungen vorzunehmen, um auszuprobieren, ’was dann passiert’? Mit Hilfe des Computers beginnt der Mensch, seinen eigenen Bauplan, sein eigenes genetisches Programm, umzubauen.

Dazu kommt, dass die Menschen seit dem19.Jahrhundert mit der modernen Biologiewissen können, dass die vielfältigen Formen des biologischen Lebens zu einem bestimmten Zeitpunkt immer das Ergebnis von langen vorausgehenden Entwicklungsprozessen sind. Das Wachsen und Sterben von Organismen gründet jeweils in einer befruchteten Zelle, für die durch das Erbmaterial festgelegt ist, wie sie sich weiter vermehrt und wie sich Millionen, Milliarden und gar Billionen von Zellen zu komplexen Formen zusammen finden. Und bei der Vervielfältigung von Zellen können Änderungen, Abweichungen vom ursprünglichen Plan auftreten, die über viele Tausende  und Millionen von Jahren zu deutlichen Änderungen im Bau und Verhalten eines Organismus führen können. Die Biologen sprechen von ’Evolution’. Eine Erkenntnis aus diesem Evolutionsprozess war (und ist), dass wir Menschen, so, wie wir heute da sind, auch solche evolutionär gewordene biologische Strukturen sind, die Vorläufer hatten, die mit uns heutigen Menschen immer weniger zu tun hatten, je weiter wir in der Zeit zurückgehen. Wer sind wir also?

Die Frage, ob Computer als intelligente Maschinen genau so gut wie Menschen werden können, oder gar noch besser, läuft auf die Frage hinaus, ob der Mensch Eigenschaften besitzt, die sich generell nicht durch einen Computer realisieren lassen.

Die moderne Psychologie und die modernen Neurowissenschaften haben bislang nichts zutage fördern können, was sich einem ingenieurmäßigen Nachbau entziehen könnte. Auch wenn es sich hierbei nicht um einen ’strengen Beweise’ handelt, so kann dieser Anschein einer generellen ’maschinelle Reproduzierbarkeit’ des Menschen in Gestalt von intelligenten Maschinen das bisherige Selbstverständnis von uns Menschen stark verunsichern.

IV. GLAUBEN AN GOTT

A. In allen Himmelsrichtungen

Aus der Geschichte der letzten Jahrtausende wissen wir, dass es zu allen Zeiten und in allen Kulturen Religionen gegeben hat. Die größten sind wohl (bis heute) der Hinduismus, der Buddhismus, das Judentum mit dem Christentum, und der Islam. So verschieden diese zu verschiedenen Zeiten und in verschiedenen Regionen äußerlich erscheinen mögen, sie verbindet alle das tiefe Fühlen und Glauben von Menschen an einen über-persönlichen Sinn, der Glaube an ein höheres Wesen, das zwar unterschiedliche Namen hat (’Gott’, ’Deus’, ’Theos’, ’Jahwe’, ’Allah’ …), aber – möglicherweise – vielleicht nur ein einziges ist.

B. Jüdisch-Christlich

So verschieden die christlichen Bekenntnisse der Gegenwart auch sein mögen, was die Anfänge angeht beziehen sich noch immer alle auf die Bibel, und hier, für die Anfänge der Geschichte auf das Alte Testament.(Anmerkung: Für eine deutsche Übersetzung siehe die Katholisch-Evangelische Einheitsübersetzung [BB81]).

Wie uns die modernen Bibelwissenschaften lehren, blickt der Text des Alten Testaments auf eine vielfältige Entstehungsgeschichte zurück. (Anmerkung: Für eine Einführung siehe Zenger et.al (1998) [ZO98]). Nicht nur, dass der Übergang von der mündlichen zur schriftlichen Überlieferung sich im Zeitraum von ca. -700 bis ca.+200 abgespielt hat, auch die redaktionelle Erzeugung verweist auf sehr viele unterschiedliche Traditionen, die nebeneinander existiert und die zu unterschiedlichen Varianten geführt haben. Auch die Kanonbildung dauerte dann nochmals viele hundert Jahre mit dem Ergebnis, dass es schwer ist, von dem einen Urtext zu sprechen. Für jene Menschen, die vorzugsweise Halt an etwas Konkretem, Festen suchen, mag dieses Bild der Überlieferung der Texte des alten Testaments beunruhigend wirken. Wird hier nicht vieles relativiert? Kann man denn da noch von einem ’Wort Gottes an die Menschen’ sprechen? Diese Furcht ist unbegründet, im Gegenteil.

C. Neues Weltbild

Wenn wir Menschen heute lernen (dürfen!), wie unsere individuelle, konkrete Existenz eingebettet ist in einen geradezu atemberaubenden Prozess der Entstehung der bekannten Lebensformen über viele Milliarden Jahre, wie unser eigener Körper ein unfassbares Gesamtkunstwerk von ca. 37 Billionen (10^12 !) Körperzellen in Kooperation mit ca. 100 Bio Bakterien im Körper und ca. 220 Mrd. Zellen auf der Haut  ist, die in jedem Moment auf vielfältige Weise miteinander reden, um uns die bekannten Funktionen des Körpers zur Verfügung zu stellen, dann deutet unsere reale Existenz aus sich heraus hin auf größere Zusammenhänge, in denen wir vorkommen, durch die wir sind, was wir sind. Und zugleich ist es die Erfahrung einer Dynamik, die das Ganze des biologischen Lebens auf der Erde in einem ebenfalls sich entwickelnden Universum umfasst und antreibt. Wenn wir verstehen wollen, wer wir sind, dann müssen wir diesen ganzen Prozess verstehen lernen.

Wenn wir uns dies alles vor Augen halten, dann können uns die Texte des alten Testaments sehr nahe kommen. Denn diese Texte manifestieren durch ihre Vielfalt und ihre Entstehungsgeschichte über viele Jahrhunderte genau auch diese Dynamik, die das Leben auszeichnet.

D. Schöpfungsberichte

Claus Westermann, ein evangelischer Theologe und Pfarrer, leider schon verstorben, hat uns einen Kommentar zum Buch Genesis hinterlassen und eine Interpretation der beiden biblischen Schöpfungsberichte, der jedem, der will, aufzeigen kann, wie nah diese alten Texte uns heute noch sein können, vielleicht viel näher als je zuvor. (Anmerkung: Neben seinen beiden wissenschaftlichen Kommentaren aus den Jahren 1972 und 1975 hat er schon 1971 ein kleines Büchlein geschrieben, in dem er seine Forschungsergebnisse in einer wunderbar lesbaren Form zusammengefasst hat (siehe: [Wes76]).

Der erste der beiden Schöpfungstexte in Gen 1,1-2,4a ist der jüngere der beiden; seine Entstehung wird auf die Zeit 6.-5.Jh vor Christus angesetzt, der zweite Schöpfungstext in Gen 2,4b – 24 wird mit seiner Entstehung im 10.-9.Jh vor Christus verortet. Der jüngere wird einer Überlieferungsschicht zugeordnet, die als ’Priesterschrift’ bezeichnet wird, die einen großen Bogen spannt von der Entstehung der Welt mit vielen Stationen bis hin zu einem neuen Bund zwischen Menschen und Gott. Dieser erste Schöpfungsbericht, bekannt durch sein 7-Tage-Schema, steht im Übergang von sehr, sehr vielen Traditionen mythischer Berichte über Schöpfung in den umliegenden Kulturen, Traditionen, die selbst viele Jahrhunderte an Entstehungszeit vorweisen können. Von daher wundert es nicht, wenn sich einzelne Worte, Motive, Bilder, die auch im 7-Tage-Schema auftauchen, Parallelen haben in anderen Schöpfungsgeschichten. Interessant ist das, was die biblische Schöpfungsgeschichte der Priesterschrift anders macht als die anderen bekannten Geschichten es tun.

E. Menschen als Ebenbild

Die zentrale Aussage im neueren Schöpfungsbericht ist nicht, wie im älteren Text, wie Gott den Menschen geschaffen hat, sondern die Aussage, dass er den Menschen nach seinem Bilde geschaffen hat, und dass er dem Menschen eine Verantwortung übertragen hat. In der schon zu dieser Zeit bekannten Vielgestaltigkeit der Welt, ihrer vielen Werdeprozesse, war die zentrale Einsicht und damit verbunden der Glaube, dass der Mensch als ganzer (nicht eine einzelne Gruppe, kein bestimmter Stamm, kein bestimmtes Volk!) über die konkrete, reale Existenz hinausweisend mit Gott verbunden ist als seinem Schöpfer, der auch ansonsten alles geschaffen hat: die Gestirne sind keine Götter, wie in vielen anderen älteren Mythen. Die Menschen sind nicht dazu da, niedere Arbeiten für Gott zu machen, wie in anderen Mythen. Die Menschen werden vielmehr gesehen als in einem besonderen Status im Gesamt der Existenz in der Geschichte, mit einer Verantwortung für das Ganze.

Und diese besondere Stellung des Menschen wird nicht festgemacht an besonderen körperlichen und geistigen Eigenschaften; schon zu dieser Zeit wussten die Autoren der Priesterschrift, wie vielfältig die Lebensformen, ja der konkrete Mensch, sein kann. Wenn wir heute durch die Wissenschaften lernen können, wie der Mensch sich im größeren Ganzen eines biologischen Werdens einsortieren lässt, wie der Mensch selbst durch seine Kultur, seine Technologie in der Lage und bereit ist, sich selbst in allen Bereichen– einschließlich seines biologischen Körpers – zu verändern, dann steht dies in keiner Weise im Gegensatz zu der globalen Sicht des biblischen Schöpfungsberichts. Im Gegenteil, man kann das Gefühl bekommen, das sich in unserer Gegenwart die Weite des biblischen Texte mit den neuen Weiten der Erkenntnisse über Mensch und Universum neu begegnen können. Was allerdings heute auffällig ist, wie viele Menschen sich schwer tun, in diesen neuen primär wissenschaftlichen Weltsichten den Glauben an einen Gott, einen Schöpfer, an eine Geschichtsübergreifende Beziehung zu einem Schöpfer aufrecht zu erhalten. Ist dies heute nicht mehr möglich?

F. Frömmigkeit – Spiritualität

An dieser Stelle sollte man sich vergegenwärtigen, dass zu allen Zeiten die Menschen in ihrer Religiosität nie nur ’gedacht’ haben, nie nur ’mit Bildern’ der Welt oder Gottes umgegangen sind. Zu allen Zeiten gab es – und gibt es noch heute – auch das, was man ’Frömmigkeit’ nennt, ’Spiritualität’, jenes sehr persönliche, individuelle sich einem Gott gegenüber ’innerlich Vorfinden‘, ’Ausrichten’, ’Fühlen’, ’Erleben’. Es ist nicht leicht, dafür die richtigen Worte zu finden, da es nun einmal ’innere’ Prozesse sind, die sich nicht wie Gegenstände vorweisen lassen können.   Sie betreffen das grundsätzliche Erleben eines Menschen, ein inneres Suchen, ein Erfahren, ein Erfülltsein (oder auch Leersein), das, was viele Menschen ermöglicht, ihr Leben in einer anderen, neuen Weise zu gestalten, sich zu ändern, anders mit Gefahren und Leiden umzugehen. In den Bildern des Alltags ’mehr’ sehen zu können als ohne dieses innere Erleben, Gestimmt sein.

In einer interessanten Untersuchung hat der britische Philosoph Walter Terence Stace die spirituellen Zeugnisse von vielen Jahrtausenden in unterschiedlichen Kulturen philosophisch untersucht (vgl. [Sta60]). Er kommt zu dem Ergebnis, dass sich trotz aller Verschiedenheiten im Äußeren, auch bei bestimmten Interpretationen, im Kern des Erlebens, des Wahrnehmens, sofern man dieses überhaupt von möglichen Interpretationen trennen lässt, erstaunliche Übereinstimmungen erkennen kann. Er folgert daraus, dass diese Fähigkeit von Menschen, einen übergreifenden Sinn direkt, existentiell erfahren zu können, möglicherweise auf eine sehr grundsätzliche Eigenschaft aller Menschen verweist, die wir einfach haben, weil wir Menschen sind. (Anmerkung: Er schließt auch nicht aus, dass alles Lebendige, von dem wir Menschen ja nur ein Teil sind, an dieser grundsätzlichen Fähigkeit einen Anteil haben könnte, wenn auch möglicherweise verschieden von der Art, wie wir Menschen erleben können.)

Die Tiefe und Weite der Sicht des jüngeren Schöpfungsberichts im Buch Genesis würde einem solchen grundlegenden Sachverhalt gut entsprechen: das Bild vom Menschen als Ebenbild Gottes schließt eine besondere Verbundenheit nicht aus; das ist das, was nach Westermann dem Menschen seine besondere Würde verleiht, diese Beziehung, nicht sein aktuelles konkretes So-sein, das sich ändern kann, ist die zentrale Botschaft.

G. Mensch, KI, Glaube an Gott

Damit beginnt sich der Kreis zu schließen. Wenn die Besonderheit des Menschen, seine zeitübergreifende Würde, in dieser grundlegenden Beziehung zu einem Schöpfergott gründet, die sich vielfältig im Gesamt des Universums und Lebens manifestiert, speziell auch in einer Form von individueller Spiritualität, dann gewinnt die Frage nach der Zukunft von Mensch und intelligenten Maschinen noch eine neue Nuance.

Bislang wird von den Vertretern einer Zukunft ohne Menschen nur noch mit intelligenten Maschinen einseitig abgehoben auf die größere Rechenkraft und die größeren Speicher, die alles erklären sollen. In diesem Beitrag wurde darauf hingewiesen, dass selbst die einfachsten Formen des Lernens ohne ’Werte’ im Sinne von ’Präferenzen’, von ’Bevorzugung von Handlungsalternativen’, ins Leere laufen. Sogenannte ’angeborene’ Präferenzen (oder eingebaute) können nur einen sehr begrenzten Nutzen vermitteln, da sich die Handlungsgegebenheiten und die gesamte Welt beständig weiter verändern. Auch die teilweise sehr komplexen Wertfindungen im sozialen-kulturellen Kontext ganzer Populationen, die von den künstlichen Intelligenzen dieser Welt noch nicht mal ansatzweise beherrscht werden, sind nur von begrenztem Wert, wie die bisherige Kulturgeschichte der Menschen eindrücklich belegt. [Mai95]

Vor diesem Hintergrund ist aktuell nicht zu sehen, wie intelligente Maschinen in der Zukunft alleine zu irgendwelchen brauchbaren Präferenzen kommen können. [SB98][Mer17][Nil10][NS76][RN10][Sta60][Tur37] Ungeklärt ist aktuell allerdings, ob und wieweit der Mensch – also jeder von uns – im Wechselspiel von philosophisch-empirischer Welterkenntnis und Spiritualität jene großen Richtungen ermitteln kann, die für die kommende komplexe Zukunft gefordert wird?

Sollte die Existenz eines Schöpfergottes über Welterkenntnis und Spiritualität wichtig sein für ein weiteres erfolgreiches Fortschreiten, dann hätten intelligente Maschinen möglicherweise ein grundsätzliches Problem. Es sei denn, auch sie könnten Gott erfahren? Einfacher wäre es, wenn Mensch und Maschine ihre aktuelle Koexistenz zu einer intensiveren Symbiose ausbauen würden. Dies würde viele sehr spannende Perspektiven bieten. Der Glaube an einen Schöpfergott ist auch heute, nach allem, was wir jetzt wissen können, keineswegs unsinnig;er erweist sich sogar – rein rational – als scheinbar dringend notwendig. Andererseits ist ein lebendiger Glaube kein Automatismus, sondern erfordert von jedem Menschen sein sehr persönliches Engagement in Verbundenheit mit dem ganzen Leben in einem dynamischen Universum. Gott erscheint hier nicht als das Hindernis, eher unsere Verweigerungen, das Ganze anzuschauen und zu akzeptieren.

QUELLEN

[*] G.Doeben-Henisch, Künstliche Intelligenz und der Glaube an Gott, In: Brennpunkt Gemeinde 70 (Aug./Sept. 2017), Studienbrief R21, 14 S., Hg. AMD Arbeitsgemeinschaft Missionarische Dienste im Verbund der Diakonie, Neukirchener Verlagsgesellschaft mbH, 47497 Neukirchen-Vluyn

[AJL + 15] B. Alberts, A. Johnson, J. Lewis, D. Morgan, M. Raff,
K. Roberts, and P. Walter. Molecular Biology of the Cell.
Garland Science, Taylor & Francis Group, LLC, Abington
(UK) – New York, 6 edition, 2015.
[BB81] Katholisches Bibelwerk and Deutsche Bibelgesellschaft. Die
Heilige Schrift. Einheitsübersetzung. Verlag Katholisches
Bibelwerk & Deutsche Bibelgesellschaft, Stuttgart, 1 edition, 1981.
[Bos14] Nick Bostrom. Superintelligence. Paths, Dangers, Strategies.
Oxford University Press, Oxford (UK), 1 edition, 2014.
[Hod83] Andrew Hodges. Alan Turing, Enigma. Springer Verlag, Wien
– New York, 1 edition, 1983.
[M.87] Turing Alan M. Intelligente maschinen. In Bernhard Dotzler
and Friedrich Kittler, editors, Alan M. Turing. Intelligence
Service, pages 81 – 113. Brinkmann & Bose, Berlin, 1987.

[Mai95] Klaus Mainzer. Computer – Neue Flügel des Geistes? Die
Evolution computergestützter Technik, Wissenschaft, Kultur
und Philosophie. Walter de Gruyter, Berlin – New York, 1th edition, 1995.
[Mer17] Kathrin Merrick. Value systems for developmental cognitive
robotics: A survey. Cognitive Systems Research, 41:38–55, 2017.
[Nil10] Nils J. Nilsson, editor. The Quest for Artificial Intelligence. A
History of Idesas and Achievements. Cambridge University
Press, New York, 2010.
[NS76] Allen Newell and Herbert A. Simon. Computer science as
empirical inquiry: Symbols and search. Communications of
the ACM, 19(3):113–126, 1976.
[RN10] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A
Modern Approach. Prentice Hall, Inc., Upper Saddle River, 2010.
[SB98] Richard S. Sutton and Andrew G. Barto. Reinforcement
Learning. An Introduction. The MIT Press, Ambridge (MA) –
London, 1 edition, 1998.
[Sta60]W.T. Stace. Mysticism and Philosophy. Jeremy P.Tarcher,
Inc., Los Angeles, 1 edition, 1960. (Eine Diskussion hier im Blog findet sich HIER).
[Tur37] Alan M. Turing. Corrections to: On computable numbers, with
an application to the entscheidungsproblem. Proceedings of
the London Mathematical Society, 43:544–546, 1937.
[Tur50] Alan Turing. Computing machinery and intelligence. Mind,
59:433–460, 1950.
[Tur 7] Alan M. Turing. On computable numbers, with an application
to the entscheidungsproblem. Proceedings of the London
Mathematical Society, 42(2):230–265, 1936-7.
[Wes76] Claus Westermann. Schöpfung. Kreuz-Verlag, Stuttgart –
Berlin, 2 edition, 1976.
[ZO98] Erich Zenger and Others. Einleitung in das Alte Testament.
W.Kohlhammer, Stuttgart, 3rd edition, 1998

Einen Überblick über alle Blogeinträge von Autor cagent nach Titeln findet sich HIER.

Einen Überblick über alle Themenbereiche des Blogs findet sich HIER.