Archiv der Kategorie: Komplexitätsniveau

KOSMOLOGIE UND DER GLAUBE AN GOTT. Anmerkungen zu einem Artikel von A.Fink

PDF

Zusammenfassung

Ausgehend von einem Artikel von A.Fink werden hier einige Gedanken geäußert, die sich auf die Art und Weise beziehen, wie der Begriff Gott in diesem Artikel benutzt wird. Dies reicht bis hin zu den Grundannahmen unseres menschlichen Erkennens.

I. Kontext

Durch einen Hinweis wurde ich aufmerksam auf den Artikel von Alexander Fink (2017) [Fink:2017] zur Themenstellung Kosmologie und der Glaube an Gott. Diese Themenstellung, geschrieben aus einer christlichen Perspektive, erscheint mir interessant, da im Kontext dieses Blogs das Verhältnis von Philosophie und Wissenschaft zur Debatte steht, hierin speziell fokussiert auf die Frage der möglichen Symbiose von Menschen und intelligenten Maschinen in der Zukunft. Während das Konzept intelligente Maschine vergleichsweise einfach erscheint, bietet das Konzept Mensch unfassbar viele komplexe Fragestellungen. Unter anderem auch deswegen, da wir heute immer mehr zu erkennen meinen, dass der heutige Mensch das Ergebnis einer komplexen Entstehungsgeschichte ist, sowohl des Universums als ganzem wie auch der komplexen Evolution des Lebens innerhalb der Entwicklung des Universums. Seit dem Auftreten des Menschen als homo sapiens hat der Mensch immer komplexere Umgebungen geschaffen, zu denen neben Weltbildern zur Weltdeutung neuerdings auch intelligente Maschinen gehören, die seine selbst geschaffene Umwelt weiter anreichern.

Im Bereich der Weltbilder wird heute im Bereich der Wissenschaften gewöhnlich unterschieden zwischen sogenannten wissenschaftlichen Bildern der Welt — wissenschaftliche Theorie genannt — und solchen Überzeugungen, die Menschen in ihrem Alltag zwar auch benutzen, die aber nach den methodischen Prinzipien der empirischen Wissenschaften nicht als überprüfbar gelten. Daraus muss allerdings nicht denknotwendig folgen, dass diese Überzeugungen im nicht-wissenschaftlichen Format von vornherein falsch sind.

Ein prominenter Bereich solcher im Alltag verhafteter Überzeugungen ohne eine direkte wissenschaftliche Unterstützung ist der Bereich der religiösen Überzeugungen und der religiösen Erfahrungen, hier speziell die Auffassung, dass die bekannte Wirklichkeit auf ein — letztlich nicht genau beschreibbares — höheres Wesen zurückgeht, das mit unterschiedlichsten Namen Gott genannt wird. [Anmerkung: An dieser Stelle die Wortmarke ‚Gott‘ zu benutzen ist ein eher hilfloses Unterfangen, da in den verschiedensten Religionen und Kulturen ganz verschiedene Wortmarken benutzt werden, von denen nicht ohne weiteres klar ist, was sie meinen und ob sie von daher miteinander überhaupt vergleichbar sind. Die großen religionswissenschaftlichen Untersuchungen legen allerdings die Hypothese nahe, dass zumindest die großen Religionen wie Hinduismus, Buddhismus, Judentum, Christentum und Islam (mit jeweils vielen Spielarten) letztlich einen gemeinsamen Gottesbegriff haben, sofern es darum geht, wie in diesen Religionen Gott von den einzelnen Menschen erfahren wird. Im Glauben versuchen jene Menschen, die sich ‚Gläubige‘ nennen, diesem höchsten Wesen ‚Gott‘ Rechnung zu tragen, im Alltag und speziell im Lichte wissenschaftlicher Überzeugungen ist dann oft wenig oder gar nicht klar, wie sich denn die bekannte Wirklichkeit (einschließlich des Menschen selbst) zu dem höchsten Wesen des Glaubens verhält.]

An dieser Stelle versucht der Artikel von Fink einen Antwort zu geben für den speziellen Bereich physikalische Sicht des Universums auf der einen Seite und christlicher Glaube an einen Schöpfergott andererseits.

II. Fink – Denkrahmen

Der Artikel ist gut lesbar geschrieben und stellt ziemlich umfassend die Fakten zusammen, die die heutige Physik zur Beschaffenheit, Entstehung und Dynamik des physikalischen Universum zusammengetragen hat, ohne dabei in technische Details abzugleiten. Von daher ist es sicher ein Gewinn, wenn jemand diesen Artikel liest.

Im Artikel zeigen sich dabei grob zwei Argumentationslinien: (i) Die physikalischen Fakten, die das heutige Bild des physikalischen Universums konstituieren, und (ii) die Ansatzpunkte für eine Deutung der physikalischen Fakten im Lichte eines vorausgesetzten christlichen Glaubens an ein bestimmtes Bild eines Schöpfergottes.

A. Physikalische Fakten

Als physikalische Fakten werden z.B. genannt die räumliche Ausdehnung des Universums; eine Größe, die die alltägliche Vorstellung von räumlichen Verhältnissen jenseits alles Vorstellbaren sprengen. Dazu die zeitliche Dauer der ganzen Prozesse, die auch sowohl im ganz Großen von Milliarden Jahren sich der Vorstellung entzieht wie auch im ganz Kleinen, zu Beginn der Entstehung des bekannten Universums; hier gerät man in Größenordnungen von 10^-44 Sekunden. Die Präzision der Feinabstimmung der bekannten physikalischen Parameter, damit das Universum genau die heute bekannte Struktur und Eigenschaften angenommen hat, und nicht nirgend eine der unendlich vielen anderen Möglichkeiten.[Anmerkung: So nennt Fink z.B. für die Abstimmung der dunklen Energiedichte zur gravitativen Energiedichte eine Größenordnung von 1:10^60, für das Verhältnis von Gravitation zur elektromagnetischen Kraft eine Genauigkeit von 1:10^40]. Dazu kommen Erkenntnisse zu den Besonderheiten der Erdchemie, wie z.B. die außergewöhnlichen Fähigkeiten von Kohlenstoff im Vergleich zu anderen chemischen Verbindungen (wie z.B. Silizium), sowie die vielseitigen Eigenschaften des Wassermoleküls. Er verweist ferner auf die das Leben begünstigende Konstellation des Erd-Sonnensystems, auf die geschützte Position des Erd-Sonnensystems innerhalb der Milchstraße, sowie auf die Funktion des Magnetfeldes, und einiges mehr.

Obgleich Fink das Phänomen des biologischen Lebens mit seiner komplexen Evolutionsgeschichte weitgehend ausblendet, bieten schon die genannten physikalischen Fakten im engeren Sinne viele Ansatzpunkte, um Deutungen vornehmen zu können.

B. Physik und Gott

Während Fink im Falle der Physik ansatzweise die historische Entstehung der physikalischen Bilder anspricht, vermisst man diese im Fall der Auffassung von Gott als Schöpfer. Ohne historische Herleitung aus der Geschichte des christlichen Glaubens stellt Fink einfach fest, dass das mit der Wortmarke ‚Gott‘ Gemeinte einen freien Willen habe, rational denke und sich zuverlässig verhalte. Dies sei die tiefere Ursache dafür, dass das Universum für die menschlichen Forscher gesetzmäßig erscheine, d.h. man kann es mit rationalen Mitteln erforschen. Die hier zur Verwendung kommenden Begriffe (freier Wille, rational, zuverlässig) sind Begriffe, die im Kontext der menschlichen Welterfahrung eine gewisse — wenngleich vage — Bedeutung haben. Wendet man sie aber ohne weitere Erläuterungen direkt auf ein unbekanntes Etwas an, das irgendwie hinter und in dem ganzen Universum stehen soll, ist es nicht direkt nachvollziehbar, was diese Begriffe in diesem umfassenden Kontext bedeuten können.

Zusätzlich zu der allgemeinen Verstehbarkeit des physikalischen Universums verweist Fink auch auf jene Momente hoher Unwahrscheinlichkeit, die bei der Wahl der Parameter am Werk zu sein scheinen und die er als Argument für eine mögliche Zielgerichtetheit der ganzen Entwicklung des Universums sieht, die er wiederum als Argument für den als rationalen zuverlässigen Schöpfer mit freiem Willen angenommen hatte. Dieser Schöpfergott hat also zusätzlich noch einen Plan.

III. Kritische Anmerkungen

A. Gottesbilder

In diesem Blog gibt es mehrere Beiträge, die sich mit dem Problem beschäftigt haben, die Bedeutung der Wortmarke ‚Gott‘ in ihrer historischen Vielfalt klären zu können.

Schränkt man die Frage ein auf die christliche Tradition, so hat man es immerhin mit mittlerweile fast 2000 Jahren Interpretationsgeschichte zu tun, dazu die jüdische Vorgeschichte und die vielfältigen Wechselwirkungen mit den umgebenden Gesellschaften und Kulturen im Laufe der Jahrhunderte. Dazu kommen die diversen Aufspaltungen der christlichen Tradition in Traditionen mit unterschiedlichen Schwerpunkten (West zu Ost, Katholisch und Protestantisch, dazu viele Unterarten). In dieser gewaltigen und vielschichtigen Tradition zu sagen, was die christliche Meinung zum Schema Schöpfergott sei, erscheint fast unmöglich. Natürlich kann man sich auf einzelne Autoren beschränken oder auf speziell ausgezeichnete Lehrmeinungen, aber inwieweit diese dann als die christliche Auffassung gelten können, erscheint doch eher fraglich.

Geht man auf die historisch frühen Quellen zurück, zu den sogenannten heiligen Schriften des Neuen Testamentes, das vielfältig Bezug nimmt auf das Alte Testament, so wird die Lage nicht unbedingt einfacher. Zeigen doch gerade die 2000 Jahre andauernden Interpretationsversuche, dass es offensichtlich keine zwingend eindeutige Interpretation zu geben scheint, wie sonst hätte es sonst zu den vielen unterschiedlichen Interpretationen kommen können.[Anmerkung: Untersucht man nur die vielfältigen Übersetzungen vom Hebräischen ins Griechische und Lateinische, vom Lateinischen in die vielen Alltagssprachen, vom Griechischen in die vielen Alltagssprachen, dann sieht man schon auf dieser ersten Kodierungsstufe von möglichen Bedeutungen, dass es schon an der Wurzel keine eindeutige Bedeutung gibt.]

Aufgrund der Erkenntnisse zu der Art und Weise wie Sprache funktioniert, wie Menschen Wahrnehmen, Erinnern, Denken und kommunizieren, kann man seit mehr als 100 Jahren immer besser verstehen, warum Texte als solche keine zwingenden Botschaften enthalten können! Es gibt zwar zu allen Zeiten viele Menschen, die das behaupten und glauben, aber die reale Funktion von Sprache und menschlichem Erkennen können solche — oft fundamentalistisch genannten — Auffassungen als grob falsch erweisen.

Für Menschen, die ernsthaft Sicherheit und Wahrheit suchen, sind diese neuen Erkenntnisse beunruhigend; nicht wenige lehnen sie daher ab. Dies hilft aber nicht weiter. Wir müssen uns den Tatsachen stellen, dass unsere Suche nach Wahrheit und Sicherheit nicht so einfach durch Bezug auf irgendeinen Text eingelöst werden kann, und mag er von manchen Menschen als noch so heilig bezeichnet werden.

Menschen, die sich gegen diese neuen Erkenntnisse zur Natur von sprachlichem Verstehen und Verstehen wehren, machen oft nach einen weiteren Fehler: aus der Tatsache der Unmöglichkeit einer direkten absoluten Erkenntnis aus einem Text heraus folgern sie oft, dass es dann ja überhaupt keine Wahrheit geben würde. Dieser weitreichende Schluss folgt aus der Relativierung von Texten und sprachlicher Bedeutung nicht zwingend.

Wenn jemand im Lichte des modernen Wissens die allzu einfache Deutungen sogenannter heiliger Texte in Frage stellt, sie kritisiert, dann bedeutet dies zunächst nur, dass man sich ein paar mehr Gedanken machen muss als bisher, wie man die Wirklichkeit insgesamt deuten kann. Die Kritik an einer nativen und unkritischen Verwendung eines Gottesbegriffes, eines bestimmten, sehr menschlichen Bildes von einem Schöpfergott, muss daher nicht notwendigerweise heißen, dass man damit das damit Gemeinte (eine irgendwie geartetes Etwas, was hinter und in allem steckt/ wirkt/ …) als solches in Frage stellt oder zerstört. Wenn es tatsächlich so etwas wie ‚Gott‘ geben sollte (mag man es nun glauben oder nicht), dann würde die Existenz und die Art und Weise dieses Gotes mit Sicherheit nicht davon abhängen, ob ein paar Exemplare des homo sapiens darüber sprechen, und wie sie darüber sprechen. Allerdings kann es für uns, die wir uns als Exemplare des homo sapiens ansehen, möglicherweise einen Unterschied machen, ob und wie wir über dieses Thema reden.

B. Bilder der Welt

Aktueller Denkrahmen unter Berücksichtigung von empirischen Wissenschaften und Philosophie
Aktueller Denkrahmen unter Berücksichtigung von empirischen Wissenschaften und Philosophie

Bei der kritischen Diskussion des Artikels von Fink spielen eine Reihe von Faktoren eine Rolle. Einige im Zusammenhang mit der Verwendung der Wortmarke ‚Gott‘ wurden im vorausgehenden Abschnitt angesprochen. Weitere sollen jetzt hier angesprochen werden. Das Schaubild oben kann dazu vielleicht hilfreich sein.

1) Evolution

Aus den letzten ca. 100 Jahren konnten wir lernen, dass wir Menschen Teil eines Entwicklungsprozesses sind, die die Biologen als Evolution des biologischen Lebens bezeichnen. Ferner konnte die Struktur und die Entwicklung des bekannten physikalischen Weltalls soweit aufgehellt werden, dass auch das Zusammenspiel von Sternentwicklung und Entstehung von biologischem Leben auf der Erde viele neue, tiefe Einsichten ermöglicht hat.

2) Empirisches Wissen

Dies alles wurde möglich, weil die Menschen gelernt haben, wie man Bilder von der Welt in einer methodisch kontrollierten Weise so konstruiert, dass sie auf transparenten, reproduzierbaren Messoperationen aufbauen. Für die Interpretation dieser Messwerte wird eine mathematische Sprache benutzt, die zusammen mit einer formalen Logik die Möglichkeit bietet, Regelmäßigkeiten und Strukturen zu formulieren, sofern sie in der Gesamtheit der Messwerte vorliegen. Die Geltung der formalen Strukturen ist hier entscheidbar zurückgebunden an die Messwerte.[Anmerkung: Diese Rückbindung ist zentral, da die mathematische Sprache es erlaubt, beliebig viele Regelmäßigkeiten und Strukturen zu formulieren. Ob eine von diesen möglichen Strukturen tatsächlich etwas beschreibt, was mit der umgebenden Wirklichkeit korrespondiert, können nur vorzeigbare Messwerte entscheiden. Diese Form von Wissens nennt man gewöhnlich empirisches Wissen oder eine empirische Theorie.]

3) Wirklichkeit und Mathematik

Die Entwicklung und Nutzung von empirischem Wissen stellt viele neue Fragen zur Natur des menschlichen Erkennens, die weitgehend noch ungeklärt sind. So ist es eine bemerkenswerte Tatsache, dass die umgebende Wirklichkeit sich mit den Mitteln einer extrem einfachen mathematischen Sprache und formalen Logik beschreiben lässt.[Anmerkung: Man kann zwar mit der mathematischen Sprache sehr komplexe Ausdrücke aufbauen, doch die Sprache selbst, mit der dies geschieht, ist in ihren Grundelementen extrem einfach. Es ist keine andere Sprache bekannt, die genauso einfach oder gar noch einfacher ist.] Bislang ist nicht zu sehen, dass es irgendein Phänomen in der erfahrbaren Welt geben könnte, was sich mit dieser mathematischen Sprache nicht beschreiben lässt, es sei denn, das Phänomen selbst, das beschrieben werden soll, ist ‚in sich‘ nicht klar.

4) Virtualität und Wahrheit

Ferner wissen wir heute, dass unser bewusstes Wissen, ein funktionierendes Gehirn voraussetzt, das selbst keinen Kontakt mit der realen Welt hat. Dennoch produziert es aufgrund von Sinnesdaten von außerhalb und von innerhalb des Körpers — und im Zusammenspiel mit einem Gedächtnis — beständig virtuelle Bilder einer Welt da draußen so, dass wir in unserem Bewusstsein die virtuellen Bilder als real erleben und als real deuten. Unsere menschliche Erkenntnis ist also ein als real erlebtes virtuelles Bild einer Welt ‚da draußen‘, die wir tatsächlich niemals direkt erleben werden. Wie können wir dann jemals erkennen was wahr ist, wenn Wahrheit verstanden würde als die Übereinstimmung von etwas Gedachtem mit etwas Realem?

Diese Frage springt sofort über zu dem zuvor eingeführten Konzept des empirischen Wissens. Ist es doch gerade ein Dogma des empirischen Wissens, dass dieses sich direkt mit der realen, objektiven Welt beschäftige im Gegensatz zu anderen Wissensformen. Wenn der Mensch nun grundsätzlich gar keinen direkten Kontakt zur sogenannten realen Wel haben kann, wie kann es dann empirische Wissenschaft geben?

Die Antwort ist relativ einfach. Unser bewusstes Wissen ist zwar quasi Wissen aus zweiter Hand, d.h. von einem Gehirn generiert, das im Körper fest sitzt, aber von all den Phänomenen des Bewusstseins (PH), die dieses Gehirn erzeugt, gibt es eine echte Teilmenge von solchen Phänomenen PH_EMP, die aus jenen sensorischen Erregungsmustern gewonnen werden, die von den externen Sensoren (Augen, Ohren, Tastorgane, …) gewonnen werden. Für uns sind sie zwar abgeleitete, virtuelle Ereignisse, aber sie korrespondieren mit Ereignissen in der unterstellten Außenwelt. Sofern Wissenschaftler empirische Messprozesse vereinbaren, gibt es Messprozesse, die unabhängig vom Denken eines einzelnen Menschen gestartet und gestoppt werden können. Diese Messprozesse liefern Ereignisse, die mit externen Sinnesorganen registriert werden können, und zwar von allen, die diese Messprozesse wiederholen. Im Bewusstsein der beteiligten empirischen Wissenschaftler haben dieses Messergebnisse zwar weiterhin nur den Status von virtuellen Ereignissen, generiert vom Gehirn, aber diese Ereignisse lassen sich mit Messprozessen wiederholen, die alle Beteiligten in hinreichend gleicher Weise erleben können. Durch diese spezielle Maßnahme können Menschen ihr virtuelles Gefängnis methodisch partiell öffnen; nicht wirklich, aber für eine  empirische Form des Erkennens praktikabel. Wir haben also die echte Teilmenge der empirischen Phänomene PH_EMP c PH, die sich partiell mit Ereignissen in der angenommenen Außenwelt (W) zusammen mit anderen parallelisieren lässt.[Anmerkung: Es ist erstaunlich, wie lange die Menschen als homo sapiens gebraucht haben, bis sie diesen ‚Trick‘ entdeckt haben. Allerdings, selbst heute (2017) scheint es noch genügend viele Menschen zu geben, die diesen Zusammenhang immer noch nicht verstehen (selbst solche, die sich empirische Wissenschaftler nennen).]

Das Potential des empirischen Wissens für das Erkennen und Verstehen der umgebenden Welt ist enorm, und seine Auswirkungen neben dem reinen Verstehen im Bereich der technologischen Anwendungen erscheint schon jetzt schier unendlich.

5) Schwache Akzeptanz von Empirischem Wissen

Nicht wirklich geklärt erscheint das Verhältnis des empirischen Wissens zu den anderen Wissensformen, speziell auch zu den alten religiösen Überzeugungen, die für die meisten auch ein Stück Welterklärung waren bzw. noch sind.

In dieser Differenz von realen Erklärungsleistungen auf der einen Seite (bei aller Begrenztheit) und den vielen unwissenschaftlichen Bildern der Welt, liegt eines der vielen Probleme der Gegenwart. Der Anteil der Menschen, die empirisches Wissen nicht verstehen oder gar offen ablehnen, liegt in Ländern mit hoher Technologie aufgrund von offiziellen Untersuchungen bei ca. 20 – 30\%; betrachtet man aber seine eigene Umgebung, einschließlich der Menschen mit mindestens einem akademischen Abschluss, dann kann man den Eindruck gewinnen, dass es vielleicht umgekehrt nur 10-20\% der Menschen sind, die überhaupt verstehen, was empirisches Wissen ist. Dies ist eine sehr beunruhigende Zahl. Damit ist nicht nur der bisherige Wissensstand langfristig bedroht, sondern die Ansatzpunkte für eine Versöhnung von empirischem und nicht-empirischen Wissen werden noch schwerer.

6) Philosophie des Empirischen Wissens fehlt

Um die Problemstellung noch zu verschärfen, muss man auch auf den Sachverhalt hinweisen, dass es selbst innerhalb des empirischen Wissens große, ungelöste Probleme gibt. Dies resultiert aus der historischen Entwicklung, dass zwar mit Begeisterung immer mehr Phänomene der umgebenden Welt untersucht worden sind, das daraus resultierende empirische Wissen wurde aber nicht in allen Fällen systematisch zu einer vollen empirischen Theorie ausgebaut. Vielleicht muss man sogar sagen, dass die Physik aktuell die einzige empirische Disziplin zu sein scheint, die nicht nur vollständige empirische Theorien entwickelt hat, sondern die ihre eigene Entwicklung der Tatsache verdankt, dass ganze Theorien kritisiert und dadurch weiter entwickelt werden konnten.

Betrachtet man Gebiete wie z.B. die Gehirnwissenschaft, die Psychologie, die Soziologie, die Wirtschaftswissenschaften, die Biologie, dann muss man allerdings berücksichtigen, dass der wissenschaftliche Gegenstand dieser Disziplinen (sofern sie sich als empirische Disziplinen verstehen wollen), ungleich komplexer ist als die Physik. Der wissenschaftliche Gegenstand der Physik erscheint komplex, da wir hier bislang die meisten vollen Theorien haben, aber tatsächlich ist das Gegenstandsgebiet der anderen genannten Disziplinen unendlich viel komplexer. Dies resultiert aus der unfassbaren Komplexität des Phänomens biologisches Leben, das sowohl in den Grundformen der einzelnen biologischen Zellen, wie dann erst recht in der Interaktion von Billionen (10^12) von Zellen in einem einzelnen Organismus wie einem homo sapiens vorliegt; dazu kommen die Wechselwirkungen zwischen allen biologischen Lebensformen, nicht nur beim homo sapiens, der die Erde zur Zeit auf vielfache Weise mit sekundären komplexen Artefakten überzieht, die dynamisch sind.

7) Empirisches Wissen und Gott

Wenn man all dies weiß, wenn man sowohl um die Begrenztheit des empirischen Wissens weiß und um die Problematik der rechten Verwendung der Wortmarke ‚Gott‘, dann stellt sich die Frage, wie kann ein Mensch in der heutigen Welt noch an ein — wie auch immer geartetes — ‚höheres Wesen in und hinter allem‘ glauben? Kann man es überhaupt noch? Und falls ja, wie?

Hält man sich die Vielfalt der religiösen Anschauungen und Praktiken vor Augen, die es im Laufe der letzten Jahrtausende gegeben hat und ganz offensichtlich immer noch gibt, dann könnte man im ersten Moment völlig entmutigt werden angesichts dieser Fülle: was davon soll jetzt sinnvoll und richtig sein?

Die modernen Religionswissenschaften und vergleichenden Kulturwissenschaften haben einiges getan, um Ähnlichkeiten und Unterschiede in diesem Meer der Phänomene heraus zu arbeiten. Sehr beeindruckend fand ich das Buch von Stace (1960), der auf der Basis von vielen vergleichenden Untersuchungen eine sehr detaillierte philosophische Analyse durchgeführt hat, die sich auf den Kern religiöser Überzeugungen fokussiert hat, auf die religiösen Erfahrungen.[Anmerkung: Siehe dazu die Diskussion dieses Buches, Teil 3]

Seine Untersuchungen legen den Schluss nahe, dass es bei aller Verschiedenheit der religiösen Ausdrucksformen und Formulierungen durch alle Zeiten hindurch und quer zu allen religiösen Formen so etwas wie einen gemeinsamen Erfahrungskern zu geben scheint, der für den Menschen als Menschen charakteristisch scheint, und der nicht an irgendwelche Texte oder lokale Traditionen gebunden ist. Dass es dennoch zu unterschiedlichen Formulierungen und unterschiedlichen Interpretationen kommen konnte liegt in der Analyse von Stace (und auch im Lichte dieses Textes; siehe die vorausgehenden Abschnitte), einzig daran, dass der Mensch nicht nur konkrete Sinneserfahrungen hat, sondern zugleich immer auch von seinem angelernten Wissen aus diese Sinneserfahrungen interpretiert. Unser Gehirn arbeitet so, dass es uns (was eigentlich sehr gut ist) alle unsere sinnlichen Erfahrungen sofort im Lichte der gespeicherten Erfahrungen interpretiert. Da die Menschen an verschiedenen Orten und zu verschiedenen Zeiten unterschiedliche Dinge gelernt haben, dazu verpackt in eine der vielen zehntausenden (oder mehr) Sprachen, erscheinen die gleichen Grunderfahrungen als tausende unterschiedliche Erfahrungen, obgleich sie — so scheint es — letztlich eine gleiche Grundstruktur haben.

Sollten diese Untersuchungen und Überlegungen stimmen, dann wären sogenannte religiöse Erfahrungen keine erfundene Spezialitäten von irgendwelchen abnormen Menschen, sondern gehören zur Grundstruktur, wie ein homo sapiens sich selbst und die ganze Welt erfährt. Einen grundsätzlichen Widerspruch zu empirischen Wissenschaften kann es dann nicht geben, da ja die empirischen Wissenschaften nicht grundsätzlich die Erfahrungen von Menschen verneinen, sondern sich nur für bestimmte — nämlich die empirischen — Untersuchungen auf einen Teilbereich der verfügbaren virtuellen Phänomene des Bewusstseins beschränken.

Interessant ist, dass die empirischen Wissenschaften, obwohl sie sich methodisch beschränken, indirekt einen fundamentalen Beitrag zur Möglichkeit von trans-empirischen Erfahrungen geleistet haben. Die fortschreitenden Erkenntnisse im Bereich der Struktur der Materie (Atomphysik, Kernphysik, Quantenphysik, …) führen uns vor Augen, dass der alltägliche Eindruck der Abgeschlossenheit und Endlichkeit der menschlichen Körper ein — womöglich schwerwiegender — Trugschluss ist. Die scheinbar so abgeschlossenen endlichen menschlichen Körper bestehen ja nicht nur aus Billionen von eigenständigen Zellen, die eigenständig miteinander kommunizieren, sondern diese Zellen bestehen ja aus chemischen Molekülen, diese aus Atomen, und diese — wie die Physik uns lehrt — aus komplexen subatomaren Teilchen und Interaktionsverhältnissen, die permanent in Wechselwirkung stehen zu allem, was sich in einem Umfeld befindet, das viele Lichtjahre betragen kann. Hier stellen sich viele — weitgehend ungeklärte — Fragen.

Eine dieser ungeklärten Fragen betrifft das Verhältnis von Bewusstsein und diesen subatomar vorhandenen Ereignissen. Wieweit können sich diese Ereignisse direkt im Bewusstsein niederschlagen?

Eine andere Frage betrifft die Erfahrbarkeit von etwas, das wir ‚Gott‘ nennen. Durch alle Zeiten und Kulturen berichten Menschen von spezifischen Erfahrungen, die für diese Menschen über die Erfahrungen des Alltags hinaus weisen, ohne dass sie dafür plausible Erklärungen liefern können. Fakt ist nur, dass im Prinzip jeder Mensch diese Erfahrungen anscheinend machen kann (auch Tiere?). Ein Widerspruch zu empirischen Wissen muss hier nicht bestehen, im Gegenteil, die empirischen Wissenschaften liefern bislang die stärksten Argumente, dass dies im Prinzip nicht auszuschließen ist. Es fehlen allerdings bislang jegliche neue Deutungsmodelle. Die alten Deutungsmodelle sollte man eventuell vorläufig mit einem Fragezeichen versehen; möglicherweise versperren sie den Weg zu dem mit der Wortmarke ‚Gott‘ Gemeintem.

ZITIERTE QUELLEN


[Fin17] Alexander Fink. Kosmologie und der Glaube an Gott. Brennpunkt Gemeinde, 19(1):1–15, 2017.
[Sta60] W.T. Stace. Mysticism and Philosophy. Jeremy P.Tarcher, Inc., Los Angeles, 1st. edition, 1960.

Einen Überblick über alle Blogeinträge von Autor cagent nach Titeln findet sich HIER.

Einen Überblick über alle Themenbereiche des Blogs findet sich HIER.

Das aktuelle Publikationsinteresse des Blogs findet sich HIER.

DIE ZUKUNFT WARTET NICHT – 2117 – PHILOSOPHISCHE WELTFORMEL – Teil 4 – MIND-GEIST …

KONTEXT

  1. Diesem Beitrag ging ein Blogeintrag voraus mit einer einleitenden methodischen Reflexion sowie die Identifizierung einer ersten Periode im Phänomen des biologischen Lebens auf der Erde.Periodisierung der biologischen Evolution nach speziellen Kriterien. Siehe Text.

UR-GEDÄCHTNIS, ABSTRAKTES WISSEN

  1. Ein wichtiger Punkt der ersten Periode des biologischen Lebens ist jene Struktur, welche erstmalig im Universum die Überwindung der Gegenwart durch eine gedächtnishafte Kumulierung von Eigenschaften und Beziehungen (Speichermolekül, Bauplan, Genom…) erlaubt, wodurch die Erfolge der Vergangenheit in die aktuelle Gegenwart hinein wirken können.
  2. Die Herrschaft des Augenblicks wird damit ansatzweise überwunden. Nicht mehr das aktuell Faktische (‚Seiende‘) ist die eigentliche Wahrheit,  sondern erinnerte Eigenschaften und Beziehungen werden zu einer höheren Wahrheit, einer Wahrheit zweiter Ordnung; das Abstrakte und darin Virtuelle erweist sich als die bessere Aussage über die Gegenwart. Das gegenwärtig Stattfindende, aktuell in die Sinne Springende, ist nur ein Aspekt an einem dynamischen Geschehen, das als Geschehen mehr von der Wirklichkeit, vom Leben enthüllt, als das jeweils aktuell Seiende.
  3. Rückblickend gewinnt damit der Prozess, der zur Entstehung der ersten Zelle führte, ein eminent philosophische Bedeutung: wie konnte die sogenannte tote und dumme, schlichtweg die geistlose Materie, in der Lage sein, im Meer der Atome und Moleküle auf der frühen Erde eine Prozessumgebung bereit zu halten, in der sich chemische Prozesse so abspielten, dass nicht nur neue Energieumwandlungs- und -nutzungskonzepte entstehen konnten, sondern zugleich der Prozess sich selbst in Form eines Moleküls so kodiert, dass er sich bei der Selbstreproduktion auch wieder dekodieren konnte. Für die molekularbiologischen Details dieses komplexen Prozesses sei auf entsprechende Literatur verwiesen (Neben z.B. Christian de Duve sei noch vierwiesen auf The Origin and Nature of Life on Earth: The Emergence of the Fourth Geosphere. Cambridge University Press, 2016, Smith, Eric and Morowitz, Harold J.). Philosophisch entscheidend ist  letztlich, was durch diese komplexen Prozesse an wirkender Struktur und Funktionalität oberhalb der molekularen Ebene entstanden ist, welche die sich selbst reproduzierende Zelle mit einer ersten Form von Wissen ausgestattet haben.

UR-AUTOMAT, UR-ALGORITHMUS

  1. Die Besonderheit dieses ersten Wissens (‚Proto-Wissen‘, ‚Ur-Wissen‘…) liegt in seinem algorithmischen Charakter: im Wechselspiel mit den dekodierenden Elementen einer Zelle zeigen diese Strukturen eine strukturelle Ähnlichkeit mit dem Konzept der Turingmaschine, das 1936 von Alan M.Turing entdeckt wurde, um das Phänomen der Berechenbarkeit zu beschreiben. Wie sich herausstellte, lassen sich alle Computer, die zeitlich nach Turing als reale Maschinen entwickelt wurden, bislang mit dem abstrakten Konzept der Turingmaschine beschreiben. [ANMERKUNG: Dass die neu entwickelten Quantencomputer von diesem Konzept abweichen, müsste erste noch bewiesen werden. Denn dass Prozesse ‚sehr schnell‘ sind, ‚parallel‘ stattfinden, und mehr als nur ‚zwei Zustände‘ kennen, sprengt das mathematische Konzept der Turingmaschine nicht notwendigerweise.]
  2. Diese Strukturähnlichkeit des Automatenkonzepts mit den elementaren Wissensnutzungskonzepten der ersten biologischen Zellen (und dann natürlich aller NachfolgerInnen) ist philosophisch von Interesse. Es legt die Vermutung nahe, dass das moderne algorithmische Informationsverarbeitungskonzept möglicherweise eine elementare Eigenschaft des biologischen Lebens selbst anzeigt, das ja nicht in einzelnen isolierten Komponenten besteht, sondern als ein dynamischer Zusammenhang auftritt, der auf der Basis der Eigenschaften der Materie in der Lage ist, solche Prozesse zum Laufen zu bringen, in denen sich dynamische Eigenschaften des Universums in geeignete abstrakte Kodierungen übersetzen lassen, die wiederum zu Befehlsketten für neue Prozesse werden können.

UR-ZEICHEN, UR-SEMIOTISCHER AKTEUR

  1. Mit Blick auf den weiteren Fortgang der biologischen Evolution ist auch noch folgender Perspektivwechsel von Interesse. Die Kodierung von Realität in eine repräsentierende Struktur mittels eines Materials für die Codeelemente (hier: Atomverbindungen im Kontext eines Moleküls) und die Dekodierung der im Material angeordneten Codeelemente mittels einer Dekodierungsvorschrift, kann man auch als semiotischen Prozess verstehen: die zu kodierende (auch prozesshafte) Realität bildet dann die Bedeutung (‚meaning‘), die in einem Zeichenmaterial (die Codeelemente) repräsentiert wird, und der Zusammenhang zwischen Zeichenmaterial und Bedeutung wird über eine Bedeutungsbeziehung hergestellt, welche immer eine prozesshafte Instanz sein muss, die sowohl die Kodierung wie auch die Dekodierung leisten kann. Innerhalb einer realisierten Bedeutungsbeziehung erscheint das Zeichenmaterial dann als Zeichen für die Bedeutung und umgekehrt wird die bezeichnete Realität zur Bedeutung des Zeichens.
  2. Außerhalb der Bedeutungsbeziehung gibt es weder Bedeutung noch Zeichen. Zeichen und Bedeutung sind an eine prozesshafte Instanz gebunden, durch die diese Beziehung generiert und realisiert wird. Nennt man jene prozesshafte Instanz, die Zeichenbeziehungen ermöglicht, einen semiotischen Akteur, dann ist die erste biologische Zelle der erste semiotische Akteur des Universums. Das Prozessmodell, das hier zum Tragen kommt ist – jenseits der molekularbiologischen Perspektive – das eines Automaten, das einer Turingmaschine, und damit repräsentiert die biologische Zelle – in philosophisch formaler Sicht – den ersten algorithmischen semiotischen Akteur des Universums.
  3. Zum Zeichenkonzept gehört auch, dass es konventionell ist: es ist beliebig, welches Ausdrucksmaterial die Prozessinstanz welchen möglichen Realitäten zuordnet. Das Beschränkende daran ist, dass die Zeichenbeziehung, die dann faktisch eingerichtet wurden, spezifisch sind: alle semiotischen Akteure, die die gleiche Zeichenbeziehung benutzen wollen, müssen sich bezüglich der Zeichenbeziehung koordinieren. Das Entgrenzende an einer Zeichenbeziehung ist, dass sie im Prinzip die gesamte Realität in sich aufnehmen kann. Durch einen semiotischen Prozess kann man die empirische Realität in eine abstrakt-virtuelle Realität transformieren und dabei zugleich verändern. Die veränderte virtuelle Realität kann dann dazu benutzt werden, um die empirische Realität im Hinblick auf mögliche zukünftige empirische Zustände zu befragen und neue Varianten voraus zu denken.
  4. Die Verfügbarkeit einer Zeichenbeziehung gibt damit einem individuellen System eine potentiell unbegrenzte Macht zum Verändern. Andererseits funktioniert dies nur, wenn der semiotische Akteur nicht alleine agiert, sondern als Teil einer Kollektion von semiotischen Akteuren. Jeder kann zwar die Zeichenbeziehung für sich ändern, sie gehört aber niemandem alleine. Es ist ein kollektives Wissen, das sich den einzelnen schafft und durch die Aktivität des einzelnen partiell, graduell modifizierbar ist.
  5. In der Phase der ersten semiotischen Revolution des Lebens wurde die Einheit der Zeichenbeziehung gewahrt durch die gemeinsame Nutzung der RNA- und DNA-Moleküle samt deren molekularen Kodierungs- und Dekodierungsstrukturen, die allen Zellen gleich sind. Und diese gesamte Zeichenstruktur war realisiert als eine universelle Turingmaschine.

 

REPRÄSENTATIONSPROBLEME

 

  1. Man kann sich fragen, in welcher Weise sich diese biologisch vorfindbaren Strukturen und Dynamiken im bisherigen Komplexitätskonzept identifizieren lassen? Wie lässt sich eine algorithmische semiotische Prozessstruktur mit Gedächtnis systemtheoretisch fassen? Was sagen schon Input-Output Mengen, interne Level, mit Blick auf solch komplexe Eigenschaften?
  2. Zeitlich punktuelle und beziehungsmäßig isolierte repräsentierende Strukturen können offensichtlich Phänomene, die sich in der Zeit erstrecken und in Wechselwirkungen stattfinden, nicht angemessen repräsentieren. Dazu kommen semiotische Eigenschaften und auch Erfolgskriterien der empirischen Systeme, die sich neben der Zeit auch in übergeordneten Strukturen repräsentieren (wenn überhaupt).
  3. Zusätzlich gibt es das Phänomen der Strukturveränderung STR im Laufe der Zeit, die zugleich einhergeht mit Verhaltensänderungen f. Und diese Veränderungen erfolgen nicht isoliert, sondern in einem Feld anderer Strukturen {<STR1,f1>, …, <STRn,fn>}(t1) ==> {<STR1,f1>, …, <STRn,fn>}(t1+1) und von Umgebungskontexten {C1, …, Cn}(t1)==> {C1, …, Cn}(t1+1) , die sich mit verändern.
  4. Jede einzelne biologische Struktur ist zudem Teil einer übergreifenden biologischen Population POP, die einen ähnlich kodierten Wissensspeicher G teilt, also POP = {Menge aller STRi für die gilt, dass ihr kodiertes Wissen Gi zur einer Ähnlichkeitsklasse Gi gehört}.
  5. Hier deuten sich komplexe Vernetzungsstrukturen in der Zeit an, die in dem bisherigen Komplexitätskonzept nicht befriedigend repräsentiert sind.
  6. Mit diesen ungelösten Fragen im Hinterkopf stellt sich die weitere Frage, welche der nachfolgenden Ereignisse in der biologischen Evolution eine weitere Steigerung der Komplexität manifestieren?

 

GEHIRN – BEWUSSTSEIN – GEIST

 

  1. Man kann beobachten, wie biologische Zellen sich in nahezu alle Lebensbereiche der Erde ausbreiten: im Meer, im Sediment, auf Land, in der Luft, in heißen und kalten Umgebungen, ohne und mit Sauerstoff, in immer komplexeren Verbänden von Zellen, mit immer komplexeren Strukturen innerhalb der Verbände, mit komplexer werdenden Kooperationen aufgrund von Kommunikation, als Pflanzen und Tiere, als Einzelgänger arbeitend, in Gruppen, Schwärmen, ganzen ‚Staaten‘, mit immer komplexeren Sprachen, mit Schriftsystemen, mit immer komplexeren Werkzeugen, …
  2. … die äußerlich beobachtbaren immer komplexer werdenden Verhaltensweisen korrelieren mit einer zunehmenden Verdichtung der internen Informationsverarbeitung mittels spezialisierter Zellverbände (Nervensystem, Gehirn). Die aktuelle Wahrnehmung der eigenen Körperzustände wie Eigenschaften der Umgebung wurde immer differenzierter. Die Informationsverarbeitung kann Wahrnehmungsereignisse abstrahieren, speichern und erinnern... Im Erinnerbaren lassen sich Unterschiede und Veränderungen erkennen, darin Beziehungen, zugleich kann Gegenwärtiges, Erinnertes neu kombiniert (Denken, Planen) werden. Dazu entwickelt sich die Fähigkeit, aktuell Wahrgenommenes symbolisch zu benennen, es mit anderen zu kommunizieren. Dies erschließt neue Dimensionen der Orientierung in der Gegenwart und über die Gegenwart hinaus.
  3. Wichtig ist, dass man diese neuen Fähigkeiten und Leistungen nicht direkt am Nervensystem ablesen kann (obgleich dies immer größer und dichter wird), sondern nur über das beobachtbare Verhalten, über die Wechselwirkungen mit anderen Systemen und der Umgebung. So ist das Gehirn von Säugetieren strukturell systemisch nicht wirklich verschieden, aber die Verhaltensweisen der jeweiligen Systeme im Verbund sind markant anders.
  4. Dies deutet auf eine neue Form von Dualität (oder wie andere vielleicht sagen würden), von Dialektik hin: die zunehmende Komplexität des Verhaltens korrespondiert mit einer entsprechend anwachsenden komplexen Umgebung, die ihre empirische Fundierung im Körper, im Gehirn zu haben scheint, aber andererseits kann sich diese Komplexität nur entfalten, nur zeigen, nur manifestieren, in dem Maße, wie diese äußere Komplexität empirisch verfügbar ist. Von daher ist es möglicherweise fruchtlos, zu fragen, was hier Ursache für was ist: das Gehirn für die Umgebung oder die Umgebung für das Gehirn. Manche sprechen hier ja auch von Ko-Evolution. Entscheidend ist offensichtlich der Prozess, durch den sich diese Wechselbeziehungen entfalten und wirken können. Dies impliziert, dass die beteiligten Strukturen plastisch, veränderlich sind.
  5. In der klassischen Philosophie nannte man ein komplexes Verhalten dieser Art ‚geistig‘, da man es im Organismus auf das Prinzip des Pneumas, der Psyche, des Geistes zurückführte (ohne letztlich zu wissen, was das jeweils ‚an sich‘ sein sollte). In diesem Verständnis könnte man formulieren, dass Lebensformen entstanden, deren Verhalten eine Komplexität zeigén, die man als geistig bezeichnen könnte.
  6. Dieses Aufkommen des Geistes (‚Emerging Mind‘) definiert sich damit nicht über die direkt messbaren Strukturen (Nervensystem, Struktur, Umfang,..), sondern über den Umfang der möglichen Zustände des Verhaltens, das direkt abhängig ist sowohl von den möglichen Zuständen des Gehirns, des zugehörigen Körpers, aber auch über die Gegebenheiten der Umwelt. Anders ausgedrückt, das neue Potential dieser Lebensform erkennt man nicht direkt und alleine an ihren materiellen Strukturen, sondern an der Dynamik ihrer potentiellen inneren Zustände in Wechselwirkung mit verfügbaren Umwelten. Es ist nicht nur entscheidend, dass diese Systeme symbolisch kommunizieren konnten, sondern auch WAS; nicht entscheidend alleine, dass sie Werkzeuge bilden konnten, sondern auch WIE und WOZU, usw.
  7. Es ist nicht einfach, dieses neue Potential angemessen theoretisch zu beschreiben, da eben die rein strukturellen Elemente nicht genügend aussagestark sind. Rein funktionelle Aspekte auch nicht. Es kommen hier völlig neue Aspekte ins Spiel.
  8. Für die Frage, wann ungefähr zeitlich solche Lebensformen auf der Erde auftreten, gibt es möglicherweise nicht den einen Zeitpunkt, sondern eher ein Zeitkorridor, innerhalb dessen sich unterschiedliche Phänomene angesammelt haben, die zusammen dann solch einen neuen Komplexitätshöhepunkt anzeigen. (Beginn Hominisation ca. -7 bis -5 Mio ; Migrationswellen ausgehend von Afrika (-130.000 bis -115.000 und -100.000 bis -50.000) ; Entstehung der Schrift  ca. -4000 im Gebiet des fruchtbaren Halbmonds)

 

KOEXISTENZ VON GEIST UND GESELLSCHAFT

  1. Da alle Handlungen des Menschen, die über den Augenblick hinausgehen, an seine Erinnerungs- und Denkfähigkeit gebunden sind, durch die der Augenblick in real erfahrene oder virtuell vorstellbare Zusammenhänge nach hinten und vorne eingebettet werden kann, wird man die gesamte Entwicklung komplexer Gesellschaften immer nur unter Voraussetzung einer entsprechenden Kommunikation und entsprechender Wissensmodelle verstehen können. Das verfügbare Wissen kann stabilisieren, konservieren und – im negativen Fall – blockieren, und im positiven Fall Alternativen aufzeigen, neue Möglichkeiten, Ursache-Wirkung Zusammenhänge deutlich machen.
  2. Daraus legt sich nahe, dass eine Theorie der Gesellschaft die handelnden semiotischen Akteure als Grundelemente umfassen sollte.
  3. Während eine biologische Population von Systemen durch den gemeinsamen biologischen Bauplan (realisiert im DNA-Molekül samt zugehöriger Dekodierungsstruktur) charakterisiert ist, definiert sich eine Gesellschaft von Systemen über gemeinsamen Wissensmodelle mit den zugehörigen semiotischen Prozessen (die Redeweise von den Memen, die Dawkins 1976 eingeführt hat, ist hier möglicherweise zu schwach) sowie den zugehörigen empirischen Umweltkontexten. Zu sagen, dass es eine Ko-Evolution zwischen Umgebung und Gesellschaft gibt ist zu schwach: entscheidend ist die Mikrostruktur des Prozesses und der hier wirkenden Faktoren in einem Multi-Agenten-Prozess mit Wissensanteilen und Bedeutung.

Einen Überblick über alle Blogeinträge von Autor cagent nach Titeln findet sich HIER.

Einen Überblick über alle Themenbereiche des Blogs findet sich HIER.

DIE ZUKUNFT WARTET NICHT – 2117 – PHILOSOPHISCHE WELTFORMEL – FAKE-NEWS ALS TODESENGEL

NACHTRAG: Mo, 13.März 2017

Wichtiger Nachtrag zum Komplexitätsbegriff, seinen Grenzen, und erweiterte  Diskussion zur ersten Periodisierung genannt ‚Emergent Life‘ (hauptsächlich ab Nr.25)

KONTEXT

  1. Der aktuelle Blogeintrag ist keine direkte Fortsetzung des letzten Eintrags, sondern schließt gedanklich eher an den vorletzten Beitrag an und ist von daher eher als eine Einleitung zu dem Blogeintrag über das Bewusstsein zu verstehen.
  2. Welche Themen jeweils in die Feder fließen hängt von vielerlei Faktoren ab. Generell natürlich schon von den übergreifenden Perspektiven des Blogs, dann aber auch von alltäglichen Ereignissen und Diskussionen. Dass es heute nun zu diesem sehr grundsätzlichen Beitrag gekommen ist, ist u.a. den intensiven Diskussionen mit Manfred Fassler geschuldet, der aufgrund seines Hintergrundes in Soziologie und Anthropologie die gesellschaftliche Dimension stark in die Überlegungen einbringt, während ich mich meist auf systemische Perspektiven fokussieren. Als ich versucht habe (während ich durch meine Grippe weitgehend ausgeschaltet war (und immer noch bin)), seine Aspekte mit meinen Überlegungen zusammen zu bringen, entstand schrittweise eine Struktur, ein Modell, das sich darstellt wie der Beginn einer philosophischen Weltformel, mit deren Hilfe man mit einem Male viele komplexe Einzelphänomene in die Logik eines übergeordneten Zusammenhangs einordnen kann (siehe Schaubild).

    Periodisierung der Evolution des Lebens mit dem Versuch eines systematischen Kriteriums
    Periodisierung der Evolution des Lebens mit dem Versuch eines systematischen Kriteriums

WELTFORMEL

  1. Den Begriff Weltformel kennen wir ja meist nur im Kontext der modernen Physik, die mit ihren Erklärungsmodellen zu immer umfassenderen Aussagen über das Universum kommen konnte, so umfassend, dass man tatsächlich geneigt ist, von einer Weltformel zu sprechen. Nun wissen wir aber, dass diese sogenannten Weltformeln der Physik bislang noch nicht wirklich alles erklären, geschweige denn nicht all jene Phänomene, die wir dem Bereich des biologischen Lebens zuordnen und den damit verbundenen immer komplexeren Phänomenen von Verhalten und menschlichen Gesellschaften. Es besteht auch wenig Aussicht, dass die physikalischen Weltformeln jemals zu einer völlig erschöpfenden Weltformeln werden könnte, weil schon rein mathematisch eine Theorie der Welt ohne jene, die die Theorie hervorbringen, seit Gödel 1931 entweder als grundsätzlich unvollständig oder unentscheidbar gilt.
  2. Ein anderes Hindernis besteht darin, dass die Physik als empirische Wissenschaft – wie alle anderen empirischen Disziplinen auch – schon vom Start weg nur einen kleinen Teil der möglichen Phänomene dieser Welt als Ausgangspunkt zulässt. Diese vorwissenschaftlich getroffene methodische Beschränkung auf die sogenannten intersubjektiven Phänomene, die sich mittels vereinbarter Messverfahren messen lassen, und zwar invariant mit Bezug auf den, der misst, hat sich zwar im großen und ganzen als sehr leistungsfähig erwiesen, aber anzunehmen, dass sich mit dieser methodisch eingeschränkten Phänomenmenge auf lange Sicht alles erklären lassen wird, auch das, was sich hinter den ausgeschlossenen Phänomenen verbirgt, dies ist eine vor-wissenschaftliche Annahme, für die es keinerlei Belege gibt. Die Zukunft wird zeigen, wie es sich mit diesem Ausschluss verhält.
  3. Ob es also die Physik sein wird, die uns die endgültige Weltformel liefern wird, oder doch eher die Philosophie, wird uns die Zukunft zeigen. Die Philosophie hat gegenüber der Physik (und auch gegenüber allen anderen empirischen Disziplinen), den methodisch großen Vorteil, dass die Philosophie alle anderen Disziplinen voraussetzen und einbeziehen kann. So kann ein Philosoph alle Fragmente und Entwürfe von Weltformeln der Physik nehmen und dann dazu ergänzend, erweiternd, begründend seine Weltformel formulieren. Alles, was in der Physik gilt, wird dann hier auch gelten, aber eventuell noch mehr.
  4. Die Überlegungen des Autors zu den Umrissen einer philosophischen Weltformel begannen nun aber gerade nicht so, dass er sich vor den Computer gesetzt hat und sich sagte, so, jetzt wird eine philosophische Weltformel geschrieben. Nein, so würde es auch nie funktionieren. Formeln, selbst die einfachsten, sind immer Ergebnisse von Denkprozessen, mehr oder weniger bewusst, mehr oder weniger schnell. Und eine Weltformel ist, wie man vermuten kann, wenn überhaupt, das Ergebnis von vielen Jahren Arbeit mit ganz vielen Inhalten. Und wie wir wissen, Zeit und Aufwand alleine garantieren auch keine Ergebnisse; sie können die Wahrscheinlichkeit erhöhen, etwas Interessantes zu finden, aber garantieren kann man es nicht.
  5. Das Ganze fing eher unscheinbar an. Unter dem Eindruck eines Telefonats mit Manfred Fassler begann der Autor zunächst für sich, eine Skizze jener Themen zu malen, die in diesem Blog seit 2007 aufgeschlagen sind (380 Beiträge von cagent und 52 Beiträge von cagent im Kontext der Werkstattgespräche). Er überlegte sich, ob man die Themen nach bestimmten inhaltlichen Kriterien und zeitlich ‚clustern‘ könnte. Was dabei herauskam das waren diese merkwürdigen Zylinderfiguren auf der linken Seite des Bildes.

ZEITLICHE EINTEILUNGEN

 

  1. Von oben – beginnend mit dem Big Bang – bis nach unten, zur Gegenwart, haben wir eine zeitliche Erstreckung von ca. 13.8 Mrd Jahren. Eine Einteilung hängt von vorausgehenden Kriterien ab, von einem Muster, Modell, von dem man annimmt, dass es die Menge der Ereignisse sinnvoll strukturiert.
  2. Wie man aus der Skizze ersehen kann, wurde solch eine Unterteilung vorgenommen.
  3. Im ersten Anlauf wurde versucht, mit einem Begriff der Komplexität zu arbeiten. Dahinter steht die Intuition, dass es sich bei den zu beschreibenden Ereignissen um Strukturen handelt, sich sich im Laufe der Zeit bildeten und die immer dichter wurden. Die aktuelle Unterteilung markiert solche Phasen, in denen hervorstechende Komplexitätssprünge zu verzeichnen sind.
  4. Bevor auf die Details dieser Betrachtung eingegangen wird, soll aber zunächst der benutzte Komplexitätsbegriff näher erläutert werden. Dabei sei schon hier angemerkt, dass sich im weiteren Verlauf herausgestellt hat, dass der gewählte Komplexitätsbegriff viel zu schwach ist, um jene Eigenschaften zu repräsentieren, von denen die heutige Biologie, Ethologie und Anthropologie (und möglicherweise viele weitere Disziplinen) sagen würden, dass sie als ‚wichtig‘ für das Phänomen angesehen werden.

KOMPLEXITÄT

 

  1. Vorab, es gibt in der Literatur keinen einheitlichen Komplexitätsbegriff. Im Laufe der Jahre habe ich einen eigenen Begriff von Komplexität entwickelt, den ich hier kurz vorstelle. Man kann ihn dann kritisieren oder übernehmen. Im Falle von Kritik wäre ich an Argumenten interessiert, um weiter lernen zu können, ihn vielleicht weiter zu entwickeln oder letztlich doch wieder zu verwerfen.
  2. Die Frage ist immer, mit welcher mentalen Brille man die Wirklichkeit sieht. Der berühmte Pessimist sieht überall die halbleeren Gläser, der Optimist die halbvollen. Der Tierschützer sieht überall, wie die Tiere leiden, der Chemiker sieht überall chemische Verbindungen am Werke, der Immobilienmakler potentielle Kaufobjekte, und so fort.
  3. Für die Frage der Komplexität besteht eine Möglichkeit darin, sich die mentale Brille der Systeme aufzusetzen. Mit der System-Brille besteht die Welt nur noch aus Systemen. Ein System ist Etwas, das sich von seiner Umgebung unterscheiden lässt. Diese Annahme impliziert, dass es rein abstrakt zwischen diesem unterscheidbaren Etwas und seiner Umgebung Wechselwirkungen geben kann. Sofern es um Einwirkungen auf das System geht sprechen wir einfach vom Input (I) des Systems und im umgekehrten Fall, wenn das System auf die Umgebung einwirkt, vom Output (O) des Systems. Rein abstrakt, auf der begrifflichen Ebene, hat ein System demgemäß immer einen Input und Output in Wechselwirkung mit seiner Umgebung; im konkreten, empirischen Fall, kann diese Wechselwirkung so schwach sein, dass sie sich nicht messen lässt. Dann ist die Wechselwirkung leer, oder 0 = I = O.
  4. Nimmt man ein bestimmtes System S als Bezugspunkt, dann kann man sagen, dass sich das System S auf Ebene/ Level 0 befindet. Alle Systeme, die sich mit Bezug auf das System S in seiner Umgebung befinden, wären dann auf der Ebene/ dem Level +1. Alle Systeme, die sich im System S befinden, finden sich auf Ebene/ Level -1. Sollte ein System S‘ sich auf Level -1 von System S befinden, also LEVEL(S‘,S,-1), und sollte das System S‘ selbst weiter Systeme S“ enthalten, dann lägen diese auf Level -2 von System S (und auf Level -1 zu System S‘).
  5. Beispiel: Vom menschlichen Körper wissen wir, dass er sich so betrachten lässt, dass er aus einer endlichen Anzahl von Körperorganen besteht (Level -1), die wiederum aus vielen Zellen bestehen (Level -2). Hier kann man entweder weitere Subeinheiten annehmen oder betrachtet diese Zellen als nächsten Bezugspunkt, von denen wir wissen, dass jeder Körperzelle wiederum aus einer Vielzahl von Systemen besteht (Level -3). Diese Betrachtung könnte man weiter fortsetzen bis zu den Molekülen, dann Atomen, dann subatomaren Teilchen, usw. Nimmt man die Umgebung menschlicher Körper, dann haben wir auf Level +1 andere menschliche Körper, Tiere, Pflanzen, Gebäude, Autos, Computer usw. Jedes dieser Systeme in der Umgebung ist selbst ein System mit inneren Systemen.
  6. Was bislang noch nicht gesagt wurde, ist, dass man anhand der Inputs und Outputs eines Systems sein Verhalten definiert. Die Abfolge von Inputs und Outputs konstituiert eine Folge von (I,O)-Paaren, die in ihrer Gesamtheit eine empirische Verhaltensfunktion f_io definieren, also f_io ={(i,o), …, (i,o)}, wobei man mit Hilfe einer Uhr (eine Maschine zur Erzeugung von gleichmäßigen Intervallen mit einem Zähler) jedem Input- und Outputereignis eine Zeitmarke zuordnen könnte.
  7. Während empirisch immer nur endlich viele konkrete Ereignisse beobachtet werden können, kann man abstrakt unendlich viele Ereignisse denken. Man kann also abstrakt eine theoretische Verhaltensfunktion f_th über alle möglichen denkbaren Input- und Outputereignisse definieren als f_th = I —> O. Eine empirische Verhaltensfunktion wäre dann nur eine Teilmenge der theoretischen Verhaltensfunktion: f_io c f_th. Dies hat Vorteile und Nachteile. Die Nachteile sind ganz klar: theoretisch spricht die Verhaltensfunktion über mehr Ereignisse, als man jemals beobachten kann, also auch über solche, die vielleicht nie stattfinden werden. Dies kann zu einer falschen Beschreibung der empirischen Welt führen. Demgegenüber hat man aber den Vorteil, dass man theoretisch über Ereignisse sprechen kann, die bislang noch nicht beobachtet wurden und die daher für Prognosezwecke genutzt werden können. Wenn die Theorie also sagen würde, dass es ein bestimmtes subatomares Teilchen mit der Beschaffenheit X geben müsste, was aber bislang noch nicht beobachtet werden konnte, dann könnte man aufgrund dieser Prognose gezielt suchen (was in der Vergangenheit auch schon zu vielen Entdeckungen geführt hat).
  8. Rein abstrakt kann man ein System SYS damit als eine mathematische Struktur betrachten, die über mindestens zwei Mengen Input (I) und Output (O) definiert ist zusammen mit einer Verhaltensfunktion f, geschrieben: SYS(x) genau dann wenn x = <I,O,f> mit f: I → O.
  9. Rein abstrakt gilt also, dass jedes System SYS auch weitere Systeme als interne Elemente besitzen kann, d.h. Jedes System kann Umgebung für weitere Systeme sein. Nennen wir die Gesamtheit solcher möglicher interner Systeme IS, dann müsste man die Strukturformel eines Systems erweitern zu SYS(x) gdw x = <I,O,IS,f> mit f: I x IS —> IS x O. Dies besagt, dass ein System mit weiteren internen Systemen IS in seinem Verhalten nicht nur abhängig ist vom jeweiligen Input I, sondern auch vom Output der jeweiligen internen Systeme. Aus beiden Inputs wir dann nicht nur der Systemoutput O ermittelt, sondern zugleich bekommen auch die internen Systeme einen Input (der diese internen Systeme u.U. So verändern kann, dass sie beim nächsten Mal ganz anders reagieren als vorher).
  10. In welchem Sinn könnte man nun sagen, dass ein System S komplexer ist als ein System S‘ (geschrieben S >~> S‘)?
  11. Es gibt jetzt verschiedene Möglichkeiten. Einmal (i) könnte die Anzahl der inneren Ebenen (-N) ein Ansatzpunkt sein. Ferner (ii) bietet sich die Anzahl der Systeme pro Ebene (|-n| mit n in N), ihre ‚Dichte‘, an. Schließlich (iii) macht es auch einen Unterschied, wie groß die Anzahl der möglichen verschiedenen Inputs-Outputs ist, die in ihrer Gesamtheit einen Raum möglicher Verhaltenszustände bilden (|I| x |O| = |f_io|). Rein mathematisch könnte man auch noch (iv) den Aspekt der Mächtigkeit der Menge aller Systeme einer Art SYS, also |SYS|, definieren und diese Menge – die in der Biologie Population genannt wird – als eine Art ‚Hüllensystem‘ S_pop definieren. Ein Hüllensystem wäre dann ein System, das ausschließlich Elemente einer bestimmten Art enthält. Ein Hüllensystem S_pop_a könnte zahlreicher sein als ein Hüllensystem S_pop_b, |S_pop_a| > |S_pop_b|, es könnte aber auch sein, dass sich die Mächtigkeit einer Population im Laufe der Zeit ändert. Eine Population mit einer Mächtigkeit |S_pop_x| = 0 wäre ausgestorben. Die Veränderungen selbst können Wachstumsraten und Sterberaten anzeigen.
  12. Im Folgenden nehmen wir hier an, dass ein System S komplexer ist als ein System S‘ (S >~> S‘), wenn S ein System im Sinne der Definition ist und entweder (i) mehr innere Ebenen enthält oder (ii) pro innere Ebene eine höhere Dichte aufweist oder aber (iii) der Raum möglicher Verhaltenszustände der beteiligten Systeme größer ist. Bei Gleichheit der Größen (i) – (iii) könnte man zusätzlich die Größe (iv) berücksichtigen.
  13. Beispiel: Die Milchstraße, unsere Heimatgalaxie, umfasst zwischen 150 und 400 Mrd. Sterne (Sonnen) und hat einen Durchmesser von ca. 100.000 bis 180.000 Lichtjahre. In einem einführenden Buch über die Mikrobiologie präsentiert Kegel als neueste Schätzungen, dass der menschliche Körper etwa 37 Billionen (10^12) Körperzellen umfasst, dazu 100 Billionen (10^12) Bakterien im Körper und 224 Mrd. (10^9) Bakterien auf der Haut. Dies bedeutet, dass ein einziger menschlicher Körper mit seinen Körperzellen rein quantitativ etwa 150 Galaxien im Format der Milchstraße entspricht (1 Zelle = 1 Stern) und die Bakterien darin nochmals etwa 400 Galaxien. Dies alles zudem nicht verteilt in einem Raum von ca. 550 x 100.000 – 180.000 Lichtjahren, sondern eben in diesem unserem unfassbar winzigen Körper. Dazu kommt, dass die Körperzellen (und auch die Bakterien) in intensiven Austauschprozessen stehen, so dass eine einzelne Zelle mit vielen Tausend, wenn nicht gar zigtausenden anderen Körperzellen kommuniziert (Hormone im Blut können können viele Milliarden Zellen adressieren). Diese wenigen Zahlen können ahnen lassen, mit welchen Komplexitäten wir im Bereich des Biologischen zu tun haben. Dabei ist noch nicht berücksichtigt, dass ja die Zellen im Körper meist noch in funktionellen Einheiten organisiert sind mit weiteren Untereinheiten, so dass sich hier viele Ebenen finden lassen.

KOMPLEXITÄTSEREIGNISSE

 

  1. Unter Voraussetzung des bisherigen Komplexitätsbegriffs kann man nun die Ereignisse der biologischen Evolution mit diesem Begriff beschreiben und schauen, ob es irgendwann einen hervorstechenden Komplexitätssprung gibt, der möglicherweise den Beginn einer neuen Phase markiert.
  2. An dieser Stelle wird schon deutlich, dass die Wahl eines Komplexitätsbegriffs basierend auf Systemen möglicherweise noch zu schwach ist, um den zu beschreibenden Phänomenen gerecht zu werden. Den Begriff ‚Komplexitätssprung‘ kann man zwar formal definieren (es gibt immer viele Möglichkeiten), ob nun solch ein Konzept dann in der empirischen Realität aber genau das beschreibt, was wirklich dem Phänomen optimal entspricht, das kann sich letztlich nur am empirischen Ereignis selbst anschaulich entscheiden (im positiven Fall). Ein einfacher Ansatz wäre, einen Komplexitätssprung über den Begriff des minimalen Abstands zwischen zwei Komplexitäten S und S‘ zu definieren, und unter Einbeziehung ‚einer empirisch sinnvollen Konstante‘. Dann würde immer dann, wenn ein solcher Abstand gemessen werden kann, ein Komplexitätssprung vorliegt. Was wäre aber ein ‚empirisch sinnvoller Abstand‘ in biologischer Sicht?

PERIODISIERUNG

  1. Betrachtet man nach diesen Vorbemerkungen das Schaubild, dann kann man als ersten Abschnitt ‚Emergent Life‘ erkennen. Dies identifiziert die Zeit ab dem ersten nachgewiesenen Auftreten von biologischen Zellen, vor ca. 3.5 Mrd Jahren (nach neuesten Funden evtl. sogar schon ab 3.77 Mrd Jahren). Der Übergang von Molekülen zu sich selbst reproduzierenden Zellen markiert einen gewaltigen Komplexitätssprung.
  2. Man kann versuchen, den formalen Komplexitätsbegriff darauf anzuwenden. Nimmt man beispielsweise eine eukaryotische Zelle als System S, dann kann man typische Umgebungen ermitteln, interne Organisationslevel, die Dichte auf den Leveln sowie den Raum möglicher Verhaltenszustände von jedem beteiligten System. Nimmt man als Vergleich die strukturell einfacheren prokaryotischen Zellen (die als evolutionär älter gelten), dann kann man zu unterschiedlichen Werten kommen, die im Falle der prokaryotischen Zellen kleiner ausfallen. Im Unterschied zu einer Ansammlung von irgendwelchen Molekülen wird man noch größere Unterschiede feststellen. Will man diese strukturellen Unterschiede für eine Klassifikation nutzen, dann muss man sie gewichten. Ohne hier auf die Details einer solchen Gewichtung eingehen zu können (das wäre ein eigener riesiger Artikel) stellen wir hier einfach mal fest, dass gilt: S_eukaryot >~> S_prokaryot >~> S_molecule, wobei der ‚Abstand‘ zwischen den beiden Zelltypen deutlich kleiner ist als zwischen dem einfachen Zelltyp und einem einfachen Molekül, also Distance(S_eukaryot, S_prokaryot) < Distance(S_prokaryot, S_molecule).
  3. Unterstellen wir mal, alle Details vorausgehender Klassifikationen wären erfüllt. Was wäre damit erreicht? Wir wüssten schematisch, dass wir es mit drei verschiedenen Typen von Systemen zu tun hätte mit unterschiedlichen Levels, Input-Output-Räumen, unterschiedlichen Dichten … hätten wir damit aber irgendetwas von dem erfasst, was die evolutionäre Biologie, Molekularbiologie, Zellbiologie usw. bislang als charakteristisch für die biologische Zelle erkannt zu haben meint?
  4. Einige der wichtigen Eigenschaften werden informell so beschrieben: (i) Zellen haben eine erkennbare Struktur mit Wechselwirkungen zur Umgebung (insofern sind sie Systeme); (ii) sie sind in der Lage, Energie aus der Umgebung aufzunehmen und damit unterschiedliche chemische Prozesse zu moderieren; (iii) sie sind in der Lage, die Strukturen und Funktionen dieser Struktur in Form eines speziellen Moleküls zu kodieren (Bauplan, ‚Gedächtnis‘); (iv) sie können sich mit Hilfe des Bauplans reproduzieren, wobei die Reproduktion Abweichungen zulässt.
  5. Mindestens in diesen vier genannten Eigenschaften unterscheiden sich biologische Zellen von Molekülen. Der zuvor eingeführte Komplexitätsbegriff kann hier zwar eine höhere Komplexität herausrechnen, aber tut sich schwer, die vier Leiteigenschaften angemessen zu repräsentieren. Woran liegt das?
  6. Das ist einmal der Begriff der Energie. Dieser wurde von der Physik in vielen Jahrhunderten schrittweise erarbeitet und ist eine Eigenschaft, die generisch die gesamte empirische Welt durchzieht. Letztlich liegt er allem zugrunde als Äquivalent zur bewegten Massen. Wenn man nur Strukturen von Systemen betrachtet, kommt Energie nicht wirklich vor. Wenn es nun aber eine zentrale neue Eigenschaft eines Systems ist, freie Energie für eigene Zwecke ‚verarbeiten‘ zu können, dann müsste dies in die Systemstruktur aufgenommen werden (spezielle Funktionen…). Allerdings verarbeiten sogar Moleküle in gewisser Weise Energie, allerdings nicht so komplex und produktiv wie Zellen.
  7. Dann sind dort die metabolischen Prozesse (Stoffwechselprozesse) der Zellen. Diese sind extrem vielfältig und komplex miteinander verwoben. Der abstrakte Komplexitätsbegriff kann dies zwar anzeigen, aber nur ‚äußerlich‘; die Besonderheiten dieser Prozesse werden damit nicht sichtbar.
  8. Schließlich das Phänomen des Zellkerns mit Molekülen, die einen Bauplan kodieren; man könnte dies auch als eine Form von Gedächtnis beschreiben. Zum kodierten Bauplan gibt es auch eine komplexe Dekodierungsmaschinerie. Eine rein formale Repräsentation im Komplexitätsbegriff macht die Besonderheit nicht sichtbar. Wenn man weiß, worauf es ankommt, könnte man eine entsprechende Systemstruktur zusammen mit den notwendigen Operationen definieren.
  9. Was sich hier andeutet, ist, dass die abstrakte Seite der formalen Repräsentation als solche zwar nahezu alles zulässt an Formalisierung, aber welche Struktur letztlich etwas Sinnvolles in der empirischen Welt kodiert, folgt aus der abstrakten Struktur alleine nicht. Dies muss man (mühsam) aus den empirischen Phänomenen selbst herauslesen durch eine Art induktive Modellbildung/ Theoriebildung, also das, was die empirischen Wissenschaften seit Jahrhunderten versuchen.
  10. Der Versuch, ‚auf die Schnelle‘ die sich hier andeutenden Komplexitäten zu systematisieren, wird also nur gelingen, wenn die Verallgemeinerungen die entscheidenden empirischen Inhalte dabei ’nicht verlieren‘.
  11. Ohne diese Problematik an dieser Stelle jetzt weiter zu vertiefen (darauf ist später nochmals zurück zu kommen), soll hier nur ein Gedanke festgehalten werden, der sich mit Blick auf die nachfolgende Phase anbietet: mit Blick aufs Ganze und den weiteren Fortgang könnte man in der ersten Phase von Emerging Life als grundlegendes Ereignis die Ausbildung der Fähigkeit sehen, eine Art strukturelles Gedächtnis bilden zu können, das sich bei der Weitergabe strukturell variieren lässt. Damit ist grundlegend der Ausgangspunkt für die Kumulation von Wissen unter Überwindung der reinen Gegenwart möglich geworden, die Kumulierung von ersten Wirkzusammenhängen. Diese Urform eines Gedächtnisses bildet einen ersten grundlegenden Meta-Level für ein erstes Ur-Wissen von der Welt jenseits des Systems. Der Emerging Mind aus der nächsten Phase wäre dann der Schritt über das strukturelle Gedächtnis hin zu einem lokal-dynamischen Gedächtnis.
  12. Dann stellt sich die Frage, welche der nachfolgenden Ereignisse in der Evolution eine weitere Steigerung der Komplexität manifestieren? Kandidaten kann man viele finden. Zellen haben gelernt, sich in immer komplexeren Verbänden zu organisieren, sie haben immer komplexere Strukturen innerhalb der Verbände ausgebildet, sie konnten in immer unterschiedlicheren Umgebungen leben, sie konnten innerhalb von Populationen immer besser kooperieren, konnten sich auch immer besser auf die Besonderheiten anderer Populationen einstellen (als potentielle Beute oder als potentielle Feinde), und konnten immer mehr Eigenschaften der Umgebungen nutzen, um nur einige der vielfältigen Aspekte zu nennen. Manche bildeten komplexe Sozialstrukturen aus, um in zahlenmäßig großen Populationen gemeinsam handeln zu können (Schwärme, ‚Staaten‘, Verbünde, ….). Nach vielen Milliarden Jahren, von heute aus erst kürzlich, vor einigen Millionen Jahren, gab es aber Populationen, deren zentrale Informationsverarbeitungssysteme (Nervensysteme, Gehirne), das individuelle System in die Lage versetzen können, Vergangenes nicht nur zu konservieren (Gedächtnis), sondern in dem Erinnerbaren Abstraktionen, Beziehungen, Unterschiede und Veränderungen erkennen zu können. Zugleich waren diese Systeme in der Lage Gegenwärtiges, Gedachtes und neue Kombinationen von all dem (Gedachtes, Geplantes) symbolisch zu benennen, auszusprechen, es untereinander auszutauschen, und sich auf diese Weise ganz neu zu orientieren und zu koordinieren. Dies führte zu einer revolutionären Befreiung aus der Gegenwart, aus dem Jetzt und aus dem ‚für sich sein‘. Damit war mit einem Mal alles möglich: das schrittweise Verstehen der gesamten Welt, die schrittweise Koordinierung allen Tuns, das Speichern von Wissen über den Moment hinaus, das Durchspielen von Zusammenhängen über das individuelle Denken hinaus.
  13. Als nächster Komplexitätssprung wird daher das Auftreten von Lebewesen mit komplexen Nervensystemen gesehen, die ein Bewusstsein ausbilden konnten, das sie in die Lage versetzt, miteinander ihre internen Zustände symbolisch austauschen zu können, so dass sie einen Siegeszug der Erkenntnis und des Aufbaus komplexer Gesellschaften beginnen konnten. Dieses Aufkommen des Geistes (‚Emerging Mind‘) definiert sich damit nicht nur über die direkt messbaren Strukturen (Nervensystem, Struktur, Umfang,..), sondern auch über den Umfang der möglichen Zustände des Verhaltens, das direkt abhängig ist sowohl von den möglichen Zuständen des Gehirns, des zugehörigen Körpers, aber auch über die Gegebenheiten der Umwelt. Anders ausgedrückt, das neue Potential dieser Lebensform erkennt man nicht direkt und alleine an ihren materiellen Strukturen, sondern an der Dynamik ihrer potentiellen inneren Zustände in Wechselwirkung mit verfügbaren Umwelten. Es ist nicht nur entscheidend, dass diese Systeme symbolisch kommunizieren konnten, sondern auch WAS, nicht entscheidend alleine dass sie Werkzeuge bilden konnten, sondern auch WIE und WOZU, usw.
  14. Es ist nicht einfach, dieses neue Potential angemessen theoretisch zu beschreiben, da eben die rein strukturellen Elemente nicht genügend aussagestark sind. Rein funktionelle Aspekte auch nicht. Es kommen hier völlig neue Aspekte ins Spiel.

Die Fortsezung gibt es HIER.

Einen Überblick über alle Blogeinträge von Autor cagent nach Titeln findet sich HIER.

Einen Überblick über alle Themenbereiche des Blogs findet sich HIER.

K.G.DENBIGH: AN INVENTIVE UNIVERSE — Relektüre — Teil 3

K.G.Denbigh (1975), „An Inventive Universe“, London: Hutchinson & Co.

BISHER

Im Teil 1 der Relektüre von Kenneth George Denbighs Buch „An Inventive Universe“ hatte ich, sehr stark angeregt durch die Lektüre, zunächst eher mein eigenes Verständnis von dem Konzept ‚Zeit‘ zu Papier gebracht und eigentlich kaum die Position Denbighs referiert. Darin habe ich sehr stark darauf abgehoben, dass die Struktur der menschlichen Wahrnehmung und des Gedächtnisses es uns erlaubt, subjektiv Gegenwart als Jetzt zu erleben im Vergleich zum Erinnerbaren als Vergangen. Allerdings kann unsere Erinnerung stark von der auslösenden Realität abweichen. Im Lichte der Relativitätstheorie ist es zudem unmöglich, den Augenblick/ das Jetzt/ die Gegenwart objektiv zu definieren. Das individuelle Jetzt ist unentrinnbar subjektiv. Die Einbeziehung von ‚Uhren-Zeit’/ technischer Zeit kann zwar helfen, verschiedene Menschen relativ zu den Uhren zu koordinieren, das grundsätzliche Problem des nicht-objektiven Jetzt wird damit nicht aufgelöst.

In der Fortsetzung 1b von Teil 1 habe ich dann versucht, die Darlegung der Position von Kenneth George Denbighs Buch „An Inventive Universe“ nachzuholen. Der interessante Punkt hier ist der Widerspruch innerhalb der Physik selbst: einerseits gibt es physikalische Theorien, die zeitinvariant sind, andere wiederum nicht. Denbigh erklärt diese Situation so, dass er die zeitinvarianten Theorien als idealisierende Theorien darstellt, die von realen Randbedingungen – wie sie tatsächlich überall im Universum herrschen – absehen. Dies kann man daran erkennen, dass es für die Anwendung der einschlägigen Differentialgleichungen notwendig sei, hinreichende Randbedingungen zu definieren, damit die Gleichungen gerechnet werden können. Mit diesen Randbedingungen werden Start- und Zielzustand aber asymmetrisch.

Auch würde ich hier einen Nachtrag zu Teil 1 der Relektüre einfügen: in diesem Beitrag wurde schon auf die zentrale Rolle des Gedächtnisses für die Zeitwahrnehmung hingewiesen. Allerdings könnte man noch präzisieren, dass das Gedächtnis die einzelnen Gedächtnisinhalte nicht als streng aufeinanderfolgend speichert, sondern eben als schon geschehen. Es ist dann eine eigene gedankliche Leistungen, anhand von Eigenschaften der Gedächtnisinhalte eine Ordnung zu konstruieren. Uhren, Kalender, Aufzeichnungen können dabei helfen. Hier sind Irrtümer möglich. Für die generelle Frage, ob die Vorgänge in der Natur gerichtet sind oder nicht hilft das Gedächtnis von daher nur sehr bedingt. Ob A das B verursacht hat oder nicht, bleibt eine Interpretationsfrage, die von zusätzlichem Wissen abhängt.

Im Teil 2 ging es um den Anfang von Kap.2 (Dissipative Prozesse) und den Rest von Kap.3 (Formative Prozesse). Im Kontext der dissipativen (irreversiblen) Prozesse macht Denbigh darauf aufmerksam, dass sich von der Antike her in der modernen Physik eine Denkhaltung gehalten hat, die versucht, die reale Welt zu verdinglichen, sie statisch zu sehen (Zeit ist reversibel). Viele empirische Fakten sprechen aber gegen die Konservierung und Verdinglichung (Zeit ist irreversibel). Um den biologischen Phänomenen gerecht zu werden, führt Denbigh dann das Konzept der ‚Organisation‘ und dem ‚Grad der Organisiertheit‘ ein. Mit Hilfe dieses Konzeptes kann man Komplexitätsstufen unterscheiden, denen man unterschiedliche Makroeigenschaften zuschreiben kann. Tut man dies, dann nimmt mit wachsender Komplexität die ‚Individualität‘ zu, d.h. die allgemeinen physikalischen Gesetze gelten immer weniger. Auch gewinnt der Begriff der Entropie im Kontext von Denbighs Überlegungen eine neue Bedeutung. Im Diskussionsteil halte ich fest: Im Kern gilt, dass maximale Entropie vorliegt, wenn keine Energie-Materie-Mengen verfügbar sind, und minimale Entropie entsprechend, wenn maximal viele Energie-Materie-Mengen verfügbar sind. Vor diesem Hintergrund ergibt sich das Bild, dass Veränderungsprozesse im Universum abseits biologischer Systeme von minimaler zu maximaler Entropie zu führen scheinen (dissipative Prozesse, irreversible Prozesse, …), während die biologischen Systeme als Entropie-Konverter wirken! Sie kehren die Prozessrichtung einfach um. Hier stellen sich eine Fülle von Fragen. Berücksichtigt man die Idee des Organiationskonzepts von Denbigh, dann kann man faktisch beobachten, dass entlang einer Zeitachse eine letztlich kontinuierliche Zunahme der Komplexität biologischer Systeme stattfindet, sowohl als individuelle Systeme wie aber auch und gerade im Zusammenspiel einer Population mit einer organisatorisch aufbereiteten Umgebung (Landwirtschaft, Städtebau, Technik allgemein, Kultur, …). Für alle diese – mittlerweile mehr als 3.8 Milliarden andauernde – Prozesse haben wir bislang keine befriedigenden theoretischen Modelle

KAPITEL 4: DETERMINISMUS UND EMERGENZ (117 – 148)

Begriffsnetz zu Denbigh Kap.4: Determinismus und Emergenz
Begriffsnetz zu Denbigh Kap.4: Determinismus und Emergenz
  1. Dieses Kapitel widmet sich dem Thema Determinismus und Emergenz. Ideengeschichtlich gibt es den Hang wieder, sich wiederholende und darin voraussagbare Ereignisse mit einem Deutungsschema zu versehen, das diesen Wiederholungen feste Ursachen zuordnet und darin eine Notwendigkeit, dass dies alles passiert. Newtons Mechanik wird in diesem Kontext als neuzeitliche Inkarnation dieser Überzeugungen verstanden: mit klaren Gesetzen sind alle Bewegungen berechenbar.
  2. Dieses klare Bild korrespondiert gut mit der christlichen theologischen Tradition, nach der ein Schöpfer alles in Bewegung gesetzt hat und nun die Welt nach einem vorgegebenen Muster abläuft, was letztlich nur der Schöpfer selbst (Stichwort Wunder) abändern kann.
  3. Die neuzeitliche Wissenschaft hat aber neben dem Konzept des Gesetzes (‚law‘) auch das Konzept Theorie entwickelt. Gesetze führen innerhalb einer Theorie kein Eigenleben mehr sondern sind Elemente im Rahmen der Theorie. Theorien sind subjektive Konstruktionen von mentalen Modellen, die versuchen, die empirischen Phänomene zu beschreiben. Dies ist ein Näherungsprozess, der – zumindest historisch – keinen eindeutigen Endpunkt kennt, sondern empirisch bislang als eher unendlich erscheint.
  4. Eine moderne Formulierung des deterministischen Standpunktes wird von Denbigh wie folgt vorgeschlagen: Wenn ein Zustand A eines hinreichend isolierten Systems gefolgt wird von einem Zustand B, dann wird der gleiche Zustand A immer von dem Zustand B gefolgt werden, und zwar bis in die letzten Details.(S.122)
  5. Diese Formulierung wird begleitend von den Annahmen, dass dies universell gilt, immer, für alles, mit perfekter Präzision.
  6. Dabei muss man unterscheiden, ob die Erklärung nur auf vergangene Ereignisse angewendet wird (‚ex post facto‘) oder zur Voraussage benutzt wird. Letzteres gilt als die eigentliche Herausforderung.
  7. Wählt man die deterministische Position als Bezugspunkt, dann lassen sich zahlreiche Punkte aufführen, nach denen klar ist, dass das Determinismus-Prinzip unhaltbar ist. Im Folgenden eine kurze Aufzählung.
  8. Die Interaktion aller Teile im Universum ist nirgendwo (nach bisherigem Wissen) einfach Null. Zudem ist die Komplexität der Wechselwirkung grundsätzlich so groß, dass eine absolute Isolierung eines Teilsystems samt exakter Reproduktion als nicht möglich erscheint.
  9. Generell gibt es das Problem der Messfehler, der Messungenauigkeiten und der begrenzten Präzision. Mit der Quantenmechanik wurde klar, dass wir nicht beliebig genau messen können, dass Messen den Gegenstand verändert. Ferner wurde klar, dass Messen einen Energieaufwand bedeutet, der umso größer wird, je genauer man messen will. Ein erschöpfendes – alles umfassende – Messen ist daher niemals möglich.
  10. Im Bereich der Quanten gelten maximal Wahrscheinlichkeiten, keine Notwendigkeiten. Dies schließt nicht notwendigerweise ‚Ursachen/ Kausalitäten‘ aus.
  11. Die logischen Konzepte der mentalen Modelle als solche sind nicht die Wirklichkeit selbst. Die ‚innere Natur der Dinge‘ als solche ist nicht bekannt; wir kennen nur unsere Annäherungen über Messereignisse. Das, was ‚logisch notwendig‘ ist, muss aus sich heraus nicht ontologisch gültig sein.
  12. Neben den Teilchen sind aber auch biologische Systeme nicht voraussagbar. Ihre inneren Freiheitsgrade im Verbund mit ihren Dynamiken lassen keine Voraussage zu.
  13. Aus der Literatur übernimmt Denbigh die Komplexitätshierarchie (i) Fundamentale Teilchen, (ii) Atome, (iii) Moleküle, (iv) Zellen, (v) Multizelluläre Systeme, (vi) Soziale Gruppen.(vgl. S.143)
  14. Traditioneller Weise haben sich relativ zu jeder Komplexitätsstufe spezifische wissenschaftliche Disziplinen herausgebildet, die die Frage nach der Einheit der Wissenschaften aufwerfen: die einen sehen in den Eigenschaften höherer Komplexitätsstufen emergente Eigenschaften, die sich nicht auf die einfacheren Subsysteme zurückführen lassen; die Reduktionisten sehen die Wissenschaft vollendet, wenn sich alle komplexeren Eigenschaften auf Eigenschaften der Ebenen mit weniger Komplexität zurückführen lassen. Während diese beiden Positionen widersprüchlich erscheinen, nimmt das Evolutionskonzept eine mittlere Stellung ein: anhand des Modells eines generierenden Mechanismus wird erläutert, wie sich komplexere Eigenschaften aus einfacheren entwickeln können.

DISKUSSION

  1. Fasst man alle Argument zusammen, ergibt sich das Bild von uns Menschen als kognitive Theorientwickler, die mit ihren kognitiven Bildern versuchen, die Strukturen und Dynamiken einer externen Welt (einschließlich sich selbst) nach zu zeichnen, die per se unzugänglich und unerkennbar ist. Eingeschränkte Wahrnehmungen und eingeschränkte Messungen mit prinzipiellen Messgrenzen bilden die eine Begrenzung, die daraus resultierende prinzipielle Unvollständigkeit aller Informationen eine andere, und schließlich die innere Logik der realen Welt verhindert ein einfaches, umfassendes, eindeutiges Zugreifen.
  2. Die mangelnde Selbstreflexion der beteiligten Wissenschaftler erlaubt streckenweise die Ausbildung von Thesen und Hypothesen, die aufgrund der möglichen Methoden eigentlich ausgeschlossen sind.
  3. Die noch immer geltende weitverbreitete Anschauung, dass in der Wissenschaft der Anteil des Subjektes auszuklammern sei, wird durch die vertiefenden Einsichten in die kognitiven Voraussetzungen aller Theorien heute neu in Frage gestellt. Es geht nicht um eine Infragestellung des Empirischen in der Wissenschaft, sondern um ein verstärktes Bewusstheit von den biologischen (beinhaltet auch das Kognitive) Voraussetzungen von empirischen Theorien.
  4. In dem Maße, wie die biologische Bedingtheit von Theoriebildungen in den Blick tritt kann auch die Besonderheit der biologischen Komplexität wieder neu reflektiert werden. Das Biologische als Entropie-Konverter (siehe vorausgehenden Beitrag) und Individualität-Ermöglicher jenseits der bekannten Naturgesetze lässt Eigenschaften der Natur aufblitzen, die das bekannte stark vereinfachte Bild kritisieren, sprengen, revolutionieren.
  5. Die Idee eines evolutionären Mechanismus zwischen plattem Reduktionismus und metaphysischem Emergenz-Denken müsste allerdings erheblich weiter entwickelt werden. Bislang bewegt es sich im Bereich der Komplexitätsebenen (iii) Moleküle und (iv) Zellen.

Fortsetzung mit TEIL 4

QUELLEN

  1. Kenneth George Denbigh (1965 – 2004), Mitglied der Royal Society London seit 1965 (siehe: https://en.wikipedia.org/wiki/List_of_Fellows_of_the_Royal_Society_D,E,F). Er war Professor an verschiedenen Universitäten (Cambridge, Edinbugh, London); sein Hauptgebet war die Thermodynamik. Neben vielen Fachartikeln u.a. Bücher mit den Themen ‚Principles of Chemical Equilibrium, ‚Thermodynamics of th Steady State‘ sowie ‚An Inventive Universe‘.

Einen Überblick über alle Blogeinträge von Autor cagent nach Titeln findet sich HIER.

K.G.DENBIGH: AN INVENTIVE UNIVERSE — Relektüre — Teil 2

K.G.Denbigh (1975), „An Inventive Universe“, London: Hutchinson & Co.

NACHTRAG: Am 30.9.2015 habe ich noch einen Diskussionsteil angefügt

BISHER

Im Teil 1 der Relektüre von Kenneth George Denbighs Buch „An Inventive Universe“ hatte ich, sehr stark angeregt durch die Lektüre, zunächst eher mein eigenes Verständnis von dem Konzept ‚Zeit‘ zu Papier gebracht und eigentlich kaum die Position Denbighs referiert. Ich hatte sehr stark darauf abgehoben, dass die Struktur der menschlichen Wahrnehmung und des Gedächtnisses es uns erlaubt, subjektiv Gegenwart als Jetzt zu erleben im Vergleich zum Erinnerbaren als Vergangenes. Allerdings kann unsere Erinnerung stark von der auslösenden Realität abweichen. Im Lichte der Relativitätstheorie ist es zudem unmöglich, den Augenblick/ das Jetzt/ die Gegenwart objektiv zu definieren. Das individuelle Jetzt ist unentrinnbar subjektiv. Die Einbeziehung von ‚Uhren-Zeit’/ technischer Zeit kann zwar helfen, verschiedene Menschen relativ zu den Uhren zu koordinieren, das grundsätzliche Problem des nicht-objektiven Jetzt wird damit nicht aufgelöst.

In der Fortsetzung 1b von Teil 1 habe ich dann versucht, die Darlegung der Position von Kenneth George Denbighs Buch „An Inventive Universe“ nachzuholen. Der interessante Punkt hier ist der Widerspruch innerhalb der Physik selbst: einerseits gibt es physikalische Theorien, die zeitinvariant sind, andere wiederum nicht. Denbigh erklärt diese Situation so, dass er die zeitinvarianten Theorien als idealisierende Theorien darstellt, die von realen Randbedingungen – wie sie tatsächlich überall im Universum herrschen – absehen. Dies kann man daran erkennen, dass es für die Anwendung der einschlägigen Differentialgleichungen notwendig sei, hinreichende Randbedingungen zu definieren, damit die Gleichungen gerechnet werden können. Mit diesen Randbedingungen werden Start- und Zielzustand aber asymmetrisch.

Auch würde ich hier einen Nachtrag zu Teil 1 der Relektüre einfügen: in diesem Beitrag wurde schon auf die zentrale Rolle des Gedächtnisses für die Zeitwahrnehmung hingewiesen. Allerdings könnte man noch präzisieren, dass das Gedächtnis die einzelnen Gedächtnisinhalte nicht als streng aufeinanderfolgend speichert, sondern eben als schon geschehen. Es ist dann eine eigene gedankliche Leistungen, anhand von Eigenschaften der Gedächtnisinhalte eine Ordnung zu konstruieren. Uhren, Kalender, Aufzeichnungen können dabei helfen. Hier sind Irrtümer möglich. Für die generelle Frage, ob die Vorgänge in der Natur gerichtet sind oder nicht hilft das Gedächtnis von daher nur sehr bedingt. Ob A das B verursacht hat oder nicht, bleibt eine Interpretationsfrage, die von zusätzlichem Wissen abhängt.

KAPITEL 2: DISSIPATIVE PROZESSE (54-64 …)

1. Anmerkung: bei der Lektüre des Buches merke ich, dass im Buch die Seiten 65 – 96 fehlen! Das ist sehr ungewöhnlich. Die Besprechung erfolgt also zunächst mal mit dem unvollständigen Text. Ich werde versuchen, doch noch einen vollständigen Text zu bekommen.

2. Eine Argumentationslinie in diesem Kapitel greift jene physikalischen Theorien auf, die bezüglich der Zeit invariant sind. Reversibilität von Prozessen, Konservierung (z.B. von Energie) und Determiniertheit sind Begriffe, die untereinander zusammen hängen. (vgl.S.58) Eine solche ’statische‘ Theorie ist die klassische (newtonsche) Mechanik.

3. Denbigh sieht einen Zusammenhang zwischen diesem stark idealisierenden Denken, das sich an etwas ‚Festem‘ orientiert, an etwas, das bleibt, etwas, das sich konserviert, und der griechischen Denktradition, die die Grundlagen allen Wandels in den unveränderlichen Atomen entdeckten. Ein typisches Beispiel ist die chemische Reaktionsgleichung für die Umwandlung von Wasserstoff 2H_2 und Sauerstoff O_2 in Wasser 2H_2O. Die Bestandteile werden hier als unveränderlich angenommen, nur ihre Anordnung/ ihr Muster ändert sich.

4. Diesem Hang zur Verdinglichung des Denkens über die Realität steht aber die ganze Entwicklung der physikalischen Erkenntnis entgegen: die scheinbar unteilbaren Atome setzen sich aus Partikeln zusammen, und die Partikel wiederum sind umwandelbar in Energie. Materie und Energie wurden als äquivalent erkannt. Die Gesamtheit von Energie-Materie mag konstant sein, aber die jeweiligen Zustandsformen können sich ändern.

5. Der Ausgangspunkt für die Entdeckung des Begriffs Entropie war die Ungleichheit in der Umwandlung von mechanischer Energie in Wärme und umgekehrt. (vgl. S.60f) Viele solcher Asymmetrien wurden gefunden. Während eine Richtung funktioniert, funktioniert die andere Richtung höchstens partiell. (vgl. S.62) Solche höchstens partiell reversible Prozesse sind dissipativ Prozesse. Und diese Eigenschaft, die den Unterschied in der Umwandelbarkeit charakterisiert, wurde Entropie [S] genannt. Sie kommt generell Systemen zu. Liegen zwei Systeme A und B vor, so drückt die Gleichung S_B >= S_A für t_B > t_A aus, dass für alle Zeitpunkt von B (T_B) nach dem aktuellen Zeitpunkt die Entropie von B (S_B) entweder gleich oder größer ist als die von A. Die Entropie kann also nicht abnehmen, sondern nur gleich bleiben oder zunehmen.

6. Das Besondere an der Entropie ist, dass die Entropie zunehmen kann, obwohl die Energie insgesamt konstant bleibt. (vgl. S.63f) [Anmerkung: Dies deutet implizit darauf hin, dass es unterschiedliche ‚Zustandsformen‘ von Energie gibt: solche in denen Energie lokal verfügbar ist, um Umwandlungsprozesse zu ermöglichen, und solche, in denen Energie lokal nicht mehr verfügbar ist. Die Nichtverfügbarkeit von Energie wäre dann gleichbedeutend mit maximaler Entropie. Die Nichtverfügbarkeit von Energie käme einer Unveränderlichkeit von Energie gleich. Ein schwieriger Begriff, da Energie als solche ‚Zustandslos‘ ist.]

7. Ferner deuten alle bekannten physikalischen Prozesse immer nur in eine Richtung: Zunahme von Entropie. (vgl. S.64)

8. … ab hier fehlt der Text im Buch ….

KAPITEL 3: FORMATIVE PROZESSE (…97 – 116)

9. Laut Inhaltsverzeichnis fehlen bei mir die ersten 7 Seiten vom dritten Kapitel.

10. Der Text startet mit dem Begriff der Organisation, den Denbigh als ein Konzept einstuft, das oberhalb der Elemente eines Systems liegt. Seine Einführung setzt voraus, dass man am Verhalten des Systems eine Funktion erkennt, die ein spezifisches Zusammenwirken der einzelnen Elemente voraussetzt. (vgl. S.98)

11. Zur Charakterisierung einer Organisation stellt Denbigh zwei zusätzliche Postulate auf. Einmal (i) sollen die einzelnen Elemente – bezogen auf die Gesamtleistung des Systems – nur eine begrenzte Fähigkeit besitzen, die erst im Zusammenspiel mit den anderen die Systemleistung ergibt, zum anderen (ii) müssen die Elemente untereinander verbunden sein.

12. Er führt dann die Begriffe Anzahl der Verbindungen [c] ein, Anzahl der Elemente ohne Kopien [n], sowie Anzahl der Elemente mit Kopien [N] ein. Die minimale Anzahl der Verbindungen wird mit N-1 gleichgesetzt, die maximale Zahl aller paarweisen Verbindungen (inklusive der Verbindungen der Elemente mit sich selbst) wird mit N * (N-1) angegeben. Die Anzahl c aller Verbindungen liegt also irgendwo zwischen N und N^2. Nimmt man das Produkt c x n, dann berücksichtigt man nur die unterscheidbaren Elemente ohne die Kopien.(vgl. S.100)

13. Damit konstruiert er dann den theoretischen Begriff der Zusammengesetztheit (‚integrality‘) [Anmerkung: man könnte hier auch von einer bestimmten Form der Komplexität sprechen] einer Organisation basierend auf ihren Elementen und ihren Verbindungen.

14. Denbigh referiert dann, dass im Bereich des Biologischen der Grad der Zusammengesetztheit der Nachkommen von biologischen Systemen zunimmt. (vgl. S.100) In diesem Zusammenhang sind Untersuchungen von von Neumann interessant. Im Versuch zu zeigen, ob und wie man Phänomene des Biologischen mit Automaten nachbauen könnte, kam von Neumann zu dem Resultat, dass die Ausgangssysteme eine kritische Größe haben müssen, damit ihre Nachkommen einen höheren Grad der Zusammengesetztheit haben können als die Elternsysteme. In seiner Untersuchung waren dies viele Millionen ‚Elemente‘. (vgl. S.100f)

15. Ein erster interessanter Befund ist, dass der Grad der Zusammengesetztheit unabhängig ist von den Konservierungsgesetzen der Physik. (vgl. S.102f) In einem isolierten Ei kann — nach Denbigh — der Grad der Zusammengesetztheit zunehmen ohne dass die Gesamtenergie sich ändert.

16. Allerdings ändert sich normalerweise die Entropie. Innerhalb des Eis mag die Entropie abnehmen, insgesamt aber erhalten biologische Systeme den Grad ihrer Zusammengesetztheit abseits eines Gleichgewichtszustands, was nur durch ständige Zufuhr von Energie möglich ist. Lokal nimmt die Entropie am/ im System ab, im Kontext mit der Umwelt, aus der die Energie entzogen wird, nimmt aber die Entropie zu. (vgl. S.103f)

17. [Anmerkung: Es fragt sich hier, ob es Sinn macht, von der ‚globalen‘ Entropie zu sprechen, da ja die Entropie der Teilbereiche ‚Umwelt‘ und ‚System‘ für sich unterschiedlich ist. Ein System mit ‚geringerer‘ Entropie ist eigentlich nicht vergleichbar mit einem System ‚höherer‘ Entropie.]

18. Denbigh schlussfolgert hier, dass die Änderungen der Entropie und der Grad der Zusammengesetztheit unabhängig voneinander sind. (vgl. S.104)

19. [Anmerkung: Dies erscheint zweifelhaft. Denn im Falle von biologischen Systemen bedeutet die Zunahme des Grads der Zusammengesetztheit notwendigerweise Verbrauch von Energie, die der Umgebung entzogen wird (Zunahme von Entropie) und dem System zugeführt wird (Abnahme der Entropie). Die Organisiertheit biologischer Systeme erscheint daher eher wie ein Entropie-Umwandler/ -Wandler/ -Transformator. Dies hat zu tun mit Zustandsformen von Energie: es gibt jene, die von biologischen Systemen umgewandelt werden kann und solche, die nicht umgewandelt werden kann.]

20. Denbigh führt dann das Symbol phi für den Grad der Zusammengesetztheit eines einzelnen Systems s_i ein und das Symbol PHI für die Summe aller einzelnen Systeme. (vgl. S.105f) Während der Grad der Zusammengesetztheit phi_i eines einzelnen Systems von der Geburt bis zum Tode zu- bzw. abnehmen kann, bildet die Summe PHI einen Querschnitt. Mit solch einem Maß kann man sowohl beobachten, dass PHI im Laufe der Zeit – abzgl. gewisser lokaler Schwankungen – generell zunimmt, zugleich auch die Zahl der Mitglieder der Population. (vgl. 106f) Zusätzlich zum Grad der Zusammengesetztheit des individuellen Systems mss man auch den Organisationsgrad der Systemumgebung berücksichtigen: Werkzeuge, Landwirtschaft, Verkehr, Rechtssysteme, Schrift, usw. (vgl. 107f) Nimmt insgesamt der Grad der Zusammengesetztheit zu, will Denbigh von einem Prozess der Formation sprechen.

21. Denbigh spekuliert auch darüber, ob man den Grad der Zusammengesetztheit dazu benutzen kann, um den Begriff der Kreativität ins Spiel zu bringen.

22. Ferner geht es um die Entstehung biologischer Systeme. Während für die Änderungen von organisatorisch einfachen Systemen die allgemeinen physikalischen Gesetze zur Beschreibung ausreichen, haben Organisationen mit einem höheren Grad von Zusammengesetztheit die Besonderheit, dass sehr spezifische Konstellationen vorliegen müssen, die für sich genommen extrem unwahrscheinlich sind. Im Fall biologischer Systeme ist die Entstehung bislang nicht klar und erscheint extrem unwahrscheinlich.

23. Ein Denkansatz wäre – nach Denbigh –, dass sich die Komplexität in kleinere Subprobleme delegieren lässt. (Vgl.S.110f) Dazu kommt die weitere Beobachtung/ Überlegung, dass sich im Falle von biologischen Systemen feststellen lässt, biologische Systeme dazu tendieren, die Ausgangslage für die Aggregation neuer Systeme immer weiter zu optimieren. (vgl.S.112f)

24. Stellt man eine Folge wachsender Organisiertheit auf (Denbigh nennt: Partikel – Atome – Moleküle – Zellen – Organismen), dann kann man nach Denbigh einen Zuwachs an Individualität und an Kontrolle beobachten bei gleichzeitiger Abnahme der Gesetzeskonformität; letzteres besagt, dass biologische Systeme je komplexer sie werden umso weniger direkt unter irgend ein physikalisches Gesetzt fallen. (vgl. S,114f)

25. Die Funktionen, die auf den jeweils höheren Ebenen der Organisation sichtbar werden, lassen sich nicht direkt aus den Komponenten der darunter liegenden Ebenen ableiten. Sie zeigen – hier zitiert Denbigh (Polanyi 1967) – etwas Neues. Dieses Auftreten von etwas Neuem verglichen mit den bisherigen Systemeigenschaften markiert nach (Polanyi 1967) einen Prozess, den er Emergenz nennt. Das neue Ganze ‚erklärt‘ die Teile, nicht umgekehrt. (vgl. S.116)

DISKUSSION

  1. Trotz der Behinderung durch die fehlenden Seiten (ein angeblich vollständiges Exemplar ist nachbestellt) bietet der Text von Denbigh doch spannende Stichworte, die unbedingt weiter verfolgt und geklärt werden müssen. Hier nur mal erste Notizen, damit diese Aspekte nicht untergehen.
  2. Das Zusammenspiel von Energie-Materie einerseits und Entropie andererseits wirft noch viele Fragen auf. Wenn man davon ausgeht, dass die Gesamtmenge der Energie-Materie konstant ist (was letztlich nicht wirklich klar ist; es ist eine Annahme!), man aber zugleich beobachten kann, dass die Energie-Materie unterschiedliche Zustände annehmen kann, was die Wahrscheinlichkeit von Veränderungen auf allen (?) Ebenen betrifft, so bedeutet dies, dass das Reden über Energie-Materie für uns Menschen letztlich nur interessant ist, sofern Energie-Materie sich messen lässt und im Messen mögliche Veränderungen zeigt. Eine unveränderliche und unmessbare Energie-Materie existiert für uns nicht.
  3. Was wir aber messen, das sind punktuelle Ereignisse in einem unbekannten riesigen Raum von Zuständen/ Ereignissen, der sich uns weitestgehend entzieht.
  4. Wenn wir nun feststellen, dass es Veränderungsphänomene gibt (Zerfallsprozesse, Partikelabstrahlungen, Wärmeaustausch, …), dann deutet dies darauf hin, dass Energie-Materie eine große Zahl von unterschiedlichen Zuständen einnehmen kann, von denen einige so sind, dass im Zustandswechsel endliche Energie-Materie-Mengen auf andere Zustände einwirken können und dabei – falls es sich um sogenannte biologische Systeme handelt – diese andere Zustände diese verfügbare Energie-Materie-Mengen für systeminterne Prozesse nutzen können.
  5. Obwohl der Begriff der Entropie in der Literatur viele unterschiedliche Bedeutungen besitzt (dem wird noch weiter nachzugehen sein), ist ein Bedeutungskern jener, dass die Verfügbarkeit von solchen endlichen Energie-Materie-Mengen damit beschrieben wird: maximale Entropie liegt vor, wenn keine Energie-Materie-Mengen verfügbar sind, und minimale Entropie entsprechend, wenn maximal viele Energie-Materie-Mengen verfügbar sind.
  6. Während sich im Universum Veränderungsprozesse auch unabhängig von biologischen Systemen beobachten lassen, so sind die biologischen Systeme im Kontext von Entropie dennoch auffällig: während Veränderungsprozesse im Universum abseits biologischer Systeme von minimaler zu maximaler Entropie zu führen scheinen (dissipative Prozesse, irreversible Prozesse, …), zeigen sich die biologischen Systeme als Entropie-Konverter! Sie kehren die Prozessrichtung einfach um: sie nutzen die Veränderungsprozesse von minimaler zu maximaler Entropie dahingehend aus, dass sie diese lokal für endliche Zeitspannen von einem Entropielevel X zu einem Entropielevel X-n konvertieren (mit ‚X-n‘ als weniger Entropie als ‚X‘).
  7. Für diese Prozessumkehr gibt es keine physikalischen Gesetze außer der zwielichtigen Gravitation. Im Gefüge der aktuellen physikalischen Theorien passt die Gravitation bislang nicht so recht hinein, macht sie doch genau das, was die biologischen Systeme im kleinen Maßstab vorexerzieren: die Gravitation zieht Energie-Materie-Mengen so zusammen, dass die Entropie abnimmt. Die dadurch entstehenden Energie-Materie-Konstellationen sind die Voraussetzungen dafür, dass Veränderungsprozesse – und damit biologische Systeme – stattfinden können (ist Gravitation jene innere ‚Feder‘, die ein Universum auf lange Sicht immer wieder soweit zusammen zieht, bis es zum nächsten BigBang kommt?).
  8. Folgt man der Idee von den biologischen Systemen als Entropie-Konvertern, dann wird interessant, wie man das Besondere an jenen Systemen charakterisiert, die wir biologisch nennen. Denbigh offeriert hier – offensichtlich stark beeinflusst von anderen Autoren, u.a. Michael Polanyi – das Konzept eines Systems, dessen Organisation durch Elemente (n,N), Beziehungen (c) und Systemfunktionen (f,…) beschreibbar ist. Je nach Anzahl und Dichte der Verschränkungen kann man dann Organisationsgrade (Komplexitätsstufen) unterscheiden. Diese Begrifflichkeit ist noch sehr grob (verglichen z.B. mit den Details in einem Handbuch über die biologischen Zellen), aber sie bietet erste Angriffsflächen für weitergehende Überlegungen.
  9. So stellt sich die Frage nach der Entstehung solch komplexer Systeme, die bis heute nicht klar beantwortet ist.
  10. So stellt sich die Frage nach der Entwicklung solcher Strukturen von einem einfacheren Zustand zu einem komplexeren: woher kommen die viel komplexeren Strukturen und speziell dann Systemfunktionen, die sich nicht aus den Bestandteilen als solchen herleiten? Das Wort Emergenz an dieser Stelle klingt gut, erklärt aber natürlich nichts.
  11. Faktisch beobachten wir entlang einer Zeitachse eine letztlich kontinuierliche Zunahme der Komplexität biologischer Systeme sowohl als individuelle Systeme wie aber auch und gerade im Zusammenspiel einer Population mit einer organisatorisch aufbereiteten Umgebung (Landwirtschaft, Städtebau, Technik allgemein, Kultur, …).
  12. Für alle diese – mittlerweile mehr als 3.8 Milliarden andauernde – Prozesse haben wir bislang keine befriedigenden theoretischen Modelle, die das Phänomen biologischer Systeme im Kontext der gesamten Naturprozesse plausibel machen. Die bisherigen naturwissenschaftlichen Theorien erscheinen für dieses komplex-dynamische Phänomen der biologischen Systeme zu einfach, zu primitiv. Das liegt zu großen Teilen möglicherweise auch daran, dass sich die meisten Naturwissenschaftler bislang schwer tun, die Phänomene des biologischen Lebens in ihren vollen Komplexität ernst zu nehmen. Möglicherweise wird dies dadurch erschwert, dass die traditionellen Geisteswissenschaften ebenfalls die Brücke zum naturwissenschaftlichen Zusammenhang noch nicht gefunden haben. Statt sich gegenseitig zu befruchten, grenzt man sich voneinander ab.
  13. Letzte Anmerkung: in zwei vorausgehenden Beiträgen direkt (und in weiteren indirekt) hatte ich auch schon mal Bezug genommen auf das Phänomen der Komplexitätsentwicklung biologischer Systeme (siehe: Randbemerkung: Komplexitätsentwicklung (Singularität(en)) und Randbemerkung: Komplexitätsentwicklung (Singularität(en)) – Teil 2. Die Formulierungen in meinen Beiträgen war etwas schwerfällig und noch wenig überzeugend. Mit dem Ansatz von Denbigh, Polanyi und anderen lässt sich dies sicher deutlich verbessern.

 

Fortsetzung folgt

QUELLEN

1. Kenneth George Denbigh (1965 – 2004), Mitglied der Royal Society London seit 1965 (siehe: https://en.wikipedia.org/wiki/List_of_Fellows_of_the_Royal_Society_D,E,F). Er war Professor an verschiedenen Universitäten (Cambridge, Edinbugh, London); sein Hauptgebet war die Thermodynamik. Neben vielen Fachartikeln u.a. Bücher mit den Themen ‚Principles of Chemical Equilibrium, ‚Thermodynamics of th Steady State‘ sowie ‚An Inventive Universe‘.
2. John von Neumann (1966), Theory of Self-Reproducing Automata, edited and completed by Arthur W.Burks, Urbana – London: University of Illinois Press
3. Michael Polanyi (1967), The Tacit Dimension, Routledge & Keagan Paul.
4. Michael Polanyi (1968) Life’s Irreducible Structure. Live mechanisms and information in DNA are boundary conditions with a sequence of boundaries above them, Science 21 June 1968: Vol. 160 no. 3834 pp. 1308-1312
DOI: 10.1126/science.160.3834.1308 (Abstract: Mechanisms, whether man-made or morphological, are boundary conditions harnessing the laws of inanimate nature, being themselves irreducible to those laws. The pattern of organic bases in DNA which functions as a genetic code is a boundary condition irreducible to physics and chemistry. Further controlling principles of life may be represented as a hierarchy of boundary conditions extending, in the case of man, to consciousness and responsibility.)
5. Michael Polanyi (1970), Transcendence and Self-Transcendence, Soundings 53: 1 (Spring 1970): 88-94. Online: https://www.missouriwestern.edu/orgs/polanyi/mp-transcendence.htm

Einen Überblick über alle Blogbeiträge des Autors cagent nach Titeln findet sich HIER.

FREIHEIT DIE ICH MEINE – ÜBERLEGUNGEN ZU EINER PARTEIINTERNEN DISKUSSION DER GRÜNEN

1. Bevor ich gleich ein wenig auf die wichtigsten Beiträge der Mitgliederzeitschrift ‚Schrägstrich‘ (Ausgabe Juli 2014) der Grünen eingehe, hier einige Vorüberlegungen zu den gedanklichen Koordinaten, innerhalb deren ich diese Beiträge rezipiere. Im wesentlichen handelt es sich bei diesen gedanklichen Koordinaten um jene, die ich hier im Blog bislang ansatzweise skizziert habe. Hier in einer komprimierten Form wichtige Elemente, die dann im weiteren Verlauf nach Bedarf präzisiert werden:

Aus Sicht des einzelnen: Woher? Was tun? Wohin?
Aus Sicht des einzelnen: Woher? Was tun? Wohin?

2. Ausgangspunkt des Koordinatensystem ist jeder einzelne von uns, der sich täglich konkret die Frage stellen muss, was an diesem Tag zu tun ist. Die Frage, woher man selbst kommt spielt bei den meisten in der Regel keine Rolle, höchstens soweit, dass aus der unmittelbaren Vergangenheit irgendwelche ‚Verpflichtungen‘ erwachsen sind, die in die Gegenwart hineinwirken (negatives oder positives Vermögen, erlernte Fähigkeiten, erworbenes Wissen, gewachsene Beziehungen, …). Wohin wir gehen wollen ist bei den meisten auch nur schwach ausgeprägt (Die Alltagsnotwendigkeiten stehen im Vordergrund: seine Verpflichtungen erfüllen, die Arbeitsanforderungen, den Unterhalt für das tägliche Leben, persönliche und soziale Erwartungen durch Beziehungen und Zugehörigkeiten, ein Ausbildungsziel erreichen, eine höhere Position in der Karriereleiter, …..). Übergreifende Ziele wie Erhaltung bestimmter Systeme (Ausbildung, Gesundheit, Infrastrukturen, …) sind meistens ‚delegiert‘ an Institutionen, die dafür ‚zuständig‘ sind, auf die man nur sehr begrenzt Einfluss nehmen kann. Dennoch gibt es nicht wenige, die sich in Vereinigungen engagieren, die spezifische soziale Räume aufspannen (Sport, Kleingärtner, Chöre, Parteien, Gewerkschaften, …), in denen sie ihr individuelles Handeln mit anderen verbünden.

Jeder nur als Teil einer Population in einem physikalischen Rahmen mit chemischer, biologischer und kultureller Evolution. Erfolg ist kurzfristig oder nachhaltig
Jeder nur als Teil einer Population in einem physikalischen Rahmen mit chemischer, biologischer und kultureller Evolution. Erfolg ist kurzfristig oder nachhaltig

3. Beginnt man seine eigene Situation zu analysieren, dann wird man nicht umhin kommen, festzustellen, dass man als einzelner als Mitglied einer größeren Population von Menschen vorkommt, die über unterschiedlichste Kommunikationsereignisse miteinander koordiniert sind. Das tägliche Leben erweist sich als eingebettet in einen gigantischen realen Raum, von dem man unter normalen Umständen nur einen winzigen Ausschnitt wahrnimmt. Schaut man genauer hin, dann sind wir das Produkt einer komplexen Geschichte von Werden im Laufe von vielen Milliarden Jahren. Eingeleitet durch die chemische Evolution kam es vor ca. 3.8 Milliarden Jahren zur biologischen Evolution, die dann vor – schwierig zu definieren, wann Kultur und Technik genau anfing – sagen wir ca. 160.000 Jahren mit einer kulturellen Evolution erweitert wurde. Technik sehe ich hier als Teil der kulturellen Leistungen. Eine Erfolgskategorie ist die des schieren Überlebens. Innerhalb dieser Kategorie macht es einen Unterschied wie ‚lange‘ eine Population überhaupt lebt (‚kurz‘ oder ‚lang‘). Die Frage ist nur, welche ‚Zeiteiheiten‘ man hier anlegen will, um ‚kurz‘ oder ‚lang‘ zu definieren. Aus der Perspektive eines einzelnen Menschen können ‚Jahre‘ schon sehr lang sein und ‚Jahrzehnte‘ können wie eine Ewigkeit wirken. Aus Sicht einer ‚Generation‘ sind 30 Jahre ’normal‘, 10 Generationen (also ca. 300 Jahre) sind eine Zeiteinheit, die für einzelne schon unvorstellbar sein mögen, die aber gemessen an dem Alter so mancher Arten von Lebewesen mit vielen Millionen oder gar hunderten von Millionen Jahren (die Dinosaurier beherrschten das Ökosystem von -235 bis -65 Mio, also 170 Mio Jahre lang!) nahezu nichts sind.

4. Das komplexeste bis heute bekannte Lebewesen, der homo sapiens, jene Art, zu der wir gehören, ist bislang ca. 160.000 Jahre alt (natürlich mit langer Vorgeschichte). Biologisch betrachtet ist diese Zeitspanne nahezu ein ‚Nichts‘. Insofern sollte man nicht zu früh sagen ‚Wer‘ bzw. ‚Was‘ der ‚Mensch‘ als ‚homo sapiens‘ ist. Wir leben in einem Wimpernschlag der Geschichte und wenn wir sehen, welche Veränderungen die Art homo sapiens in kürzester Zeit über die Erde gebracht hat, dann sollten wir genügend biologische Fantasie entwickeln, um uns klar zu machen, dass wir eher ganz am Anfang einer Entwicklung stehen und nicht an deren Ende.

Mensch als Teil des Biologischen hat Technik als Teil von Kultur hervorgebracht: Generisch oder arbiträr. Technik ist effizient oder nicht
Mensch als Teil des Biologischen hat Technik als Teil von Kultur hervorgebracht: Generisch oder arbiträr. Technik ist effizient oder nicht

5. Der homo sapiens ist ganz wesentlich Teil eines größeren komplexen biologischen Systems von unfassbarer ‚Tiefe‘, wo alles ineinander greift, und wo der homo sapiens aufgrund seiner Leistungsfähigkeit aktuell dabei zu sein scheint, trotz seiner kognitiven Möglichkeiten seine eigenen biologischen Voraussetzungen zu zerstören, ohne die er eigentlich nicht leben kann (Umweltverschmutzung, Ausrottung vieler wichtiger Arten, Vernichtung der genetischen Vielfalt, …).

6. Die erst langsame, dann immer schneller werdende Entwicklung von leistungsfähigen und immer ‚effizienteren‘ Technologien eingebettet in einen ‚kulturellen Raum‘ von Zeichen, Formen, Interpretationen, Normen, Regelsystemen und vielerlei Artefakten zeigt eine immense Vielfalt z.T. ‚arbiträrer‘ Setzungen, aber auch einen harten Kern von ‚generischen‘ Strukturen. ‚Generisch‘ wäre hier die Ausbildung von gesprochenen und geschriebenen Sprachen; ‚arbiträr‘ wäre die konkrete Ausgestaltung solcher Sprachen: welche Zeichensysteme, welche Laute, welche Anordnung von Lauten oder Zeichen, usw. So sind ‚Deutsch‘, ‚Arabisch‘, ‚Russisch‘ und ‚Chinesisch‘ alles Sprachen, mithilfe deren sich Menschen über die Welt verständigen können, ihre gesprochene und geschriebene Formen weichen aber extrem voneinander ab, ihre Akzent- und Intonationsstrukturen, die Art und Weise, wie die Zeichen zu Worten, Sätzen und größeren sprachlichen Strukturen verbunden werden, sind so verschieden, dass der Sprecher der einen Sprache in keiner Weise in der Lage ist, ohne größere Lernprozesse die andere Sprache zu verstehen.

7. Bei der Entwicklung der Technologie kann man die Frage stellen, ob eine Technologie ‚effizienter‘ ist als eine andere. Nimmt man den ‚Output‘ einer Technologie als Bezugspunkt, dann kann man verschiedene Entwürfe dahingehend vergleichen, dass man z.B. fragt, wie viele Materialien (erneuerbar, nicht erneuerbar) sie benötigt haben, wie viel Energie und Arbeitsaufwand in welcher Zeit notwendig war, und ob und in welchem Umfang die Umwelt belastet worden ist. Im Bereich der Transporttechnologie wäre der Output z.B. die Menge an Personen oder Gütern, die in einer bestimmten Zeit von A nach B gebracht würden. Bei der Technologie Dampfeisenbahn mussten Locks und Wagen hergestellt werden, Gleise mussten hergestellt und verlegt werden; dazu mussten zuvor geeignete Trassen angelegt werden; ein System von Signalen und Überfahrtregelungen muss für den reibungslosen Ablauf sorgen; dazu benötigt man geeignet ausgebildetes Personal; zum Betrieb der Locks benötigte man geeignete Brennstoffe und Wasser; die Züge selbst erzeugten deutliche Emissionen in die Luft (auch Lärm); durch den Betrieb wurden die Locks, die Wagen und die Schienen abgenutzt. usw.

8. Ein anderes Beispiel wäre die ‚Technologie des Zusammenwohnens auf engem Raum‘, immer mehr Menschen können heute auf immer kleineren Räumen nicht nur ‚überleben‘, sondern sogar mit einem gewissen ‚Lebensstandard‘ ‚leben‘. Das ist auch eine Effizienzsteigerung, die voraussetzt, dass die Menschen immer komplexere Systeme der Koordinierung und Interaktion beherrschen können.

Das Herz jeder Demokratie ist eine funktionierende Öfentlichkeit. Darüber leitet sich die Legislative ab, von da aus die Exekutive und die Judikative. Alles muss sich hier einfügen.
Das Herz jeder Demokratie ist eine funktionierende Öfentlichkeit. Darüber leitet sich die Legislative ab, von da aus die Exekutive und die Judikative. Alles muss sich hier einfügen.

9. Im Rahmen der kulturellen Entwicklung kam es seit ca. 250 Jahren vermehrt zur Entstehung von sogenannten ‚demokratischen‘ Staatsformen (siehe auch die z.T. abweichenden Formulierungen der englischen Wikipedia zu Democracy). Wenngleich es nicht ‚die‘ Norm für Demokratie gibt, so gehört es doch zum Grundbestand, dass es als primäre Voraussetzung eine garantierte ‚Öffentlichkeit‘ gibt, in der Meinungen frei ausgetauscht und gebildet werden können. Dazu regelmäßige freie und allgemeine Wahlen für eine ‚Legislative‘ [L], die über alle geltenden Rechte abstimmt. Die Ausführung wird normalerweise an eine ‚Exekutive‘ [E] übertragen, und die Überwachung der Einhaltung der Regeln obliegt der ‚Judikative‘ [J]. Die Exekutive gewinnt in den letzten Jahrzehnten immer mehr Gewicht im Umfang der Einrichtungen/ Behörden/ Institutionen und Firmen, die im Auftrag der Exekutive Aufgaben ausführen. Besonderes kritisch waren und sind immer Sicherheitsbehörden [SICH] und das Militär [MIL]. Es bleibt eine beständige Herausforderung, das Handeln der jeweiligen Exekutive parlamentarisch hinreichend zu kontrollieren.

Oberstes Ziel ist es, eine Demokratie zu schüzen; was aber, wenn die Sicherheit zum Selbstzweck wird und die Demokratie im Innern zerstört?
Oberstes Ziel ist es, eine Demokratie zu schüzen; was aber, wenn die Sicherheit zum Selbstzweck wird und die Demokratie im Innern zerstört?

10. Wie es in vielen vorausgehenden Blogeinträgen angesprochen worden ist, erweckt das Beispiel USA den Eindruck, dass dort die parlamentarische Kontrolle der Exekutive weitgehend außer Kraft gesetzt erscheint. Spätestens seit 9/11 2001 hat sich die Exekutive durch Gesetzesänderungen und Verordnungen weitgehend von jeglicher Kontrolle unabhängig gemacht und benutzt das Schlagwort von der ’nationalen Sicherheit‘ überall, um sowohl ihr Verhalten zu rechtfertigen wie auch die Abschottung des Regierungshandelns durch das Mittel der auswuchernden ‚Geheimhaltung‘. Es entsteht dadurch der Eindruck, dass die Erhaltung der nationalen Sicherheit, die als solche ja etwas Positives ist, mittlerweile dazu missbraucht wird, das eigene Volk mehr und mehr vollständig zu überwachen, zu kontrollieren und die Vorgänge in der Gesellschaft nach eigenen machtinternen Interessen (auf undemokratische Weise) zu manipulieren. Geheimdienstaktionen gegen normale Bürger, sogar gegen Mitglieder der Legislative, sind mittlerweile möglich und kommen vor. Der oberste Wert in einer Demokratie kann niemals die ‚Sicherheit‘ als solche sein, sondern immer nur die parlamentarische Selbstkontrolle, die in einer funktionierenden Öffentlichkeit verankert ist.

GRÜNES GRUNDSATZPROGRAM VON 2002

11. Bei der Frage nach der genaueren Bestimmung des Freiheitsbegriffs verweist Bütikofer auf SS.7ff auf das Grüne Grundsatzprogramm von 2002, das in 3-jähriger Arbeit alle wichtigen Gremien durchlaufen hatte, über 1000 Änderungsanträge verarbeitet hat und einer ganzen Vielzahl von Strömungen Gehör geschenkt hat. Schon die Präambel verrät dem Leser, welch großes Spektrum an Gesichtspunkten und Werteinstellungen Berücksichtigung gefunden haben.

12. Im Mittelpunkt steht die Würde des Menschen, der sehr wohl auch als Teil einer umfassenderen Natur mit der daraus resultierenden Verantwortung gesehen wird; der Aspekt der Nachhaltigkeit allen Handelns wird gesehen. Grundwerte und Menschenrechte sollen Orientierungspunkte für eine demokratische Gesellschaft bilden, in der das Soziale neben dem Ökonomischen gleichberechtigt sein soll. Diese ungeheure Spannweite des Lebens impliziert ein Minimum an Liberalität, um der hier waltenden Vielfalt gerecht zu werden.

13. Die Freiheit des einzelnen soll einerseits so umfassend wie möglich unterstützt werden, indem die gesellschaftlichen Verhältnisse immer ein Maximum an Wahlmöglichkeiten bereit halten sollten, zugleich muss die Freiheit aber auch mit hinreichend viel Verantwortung gepaart sein, um die jeweiligen aktuellen Situationen so zu gestalten, dass Lebensqualität und Nachhaltigkeit sich steigern.

ENGAGIERTE POLITIK vs. LIBERALISMUS UND FREIHEIT?

14. Reinhard Loske wirft auf SS.10ff die Frage auf, ob und wie sich eine ökologisch verpflichtete Politik mit ‚Liberalismus‘ vereinbaren könnte. Natürlich wäre ein unbeschränkter ‚wertfreier‘ Liberalismus ungeeignet, da sich dann keinerlei Art von Verantwortung und einer daraus resultierenden nachhaltigen Gestaltung ableiten ließe. Doch muss man dem Begriff des Liberalismus historisch gerecht werden – was Loske im Beitrag nicht unbedingt tut – , denn in historischer Perspektive war ein liberales Denken gerade nicht wertfrei, sondern explizit orientiert am Wert des Individuums, der persönlichen Würde und Freiheit, das es gegenüber überbordenden staatlichen Ansprüchen zu schützen galt, wie auch übertragen auf das wirtschaftliche Handeln, das hinreichend stark zu schützen sei gegenüber ebenfalls überbordenden staatlichem Eingriffshandeln das tendenziell immer dazu neigt, unnötig viel zu reglementieren, zu kontrollieren, ineffizient zu sein, Verantwortung zu nivellieren, usw.

15. Zugleich ist bekannt, dass wirtschaftliches Verhalten ohne jegliche gesellschaftliche Bindung dazu tendiert, die Kapitaleigner zu bevorteilen und die abhängig Beschäftigten wie auch die umgebende Gesellschaft auszubeuten (man denke nur an das Steuerverhalten von Konzernen wie z.B. google, amazon und Ikea).

16. Es muss also in der Praxis ein ‚Gleichgewicht‘ gefunden werden zwischen maximaler (wertgebundener) Liberalität einerseits und gesellschaftlicher Bindung andererseits. Doch, wie gerade die hitzigen Debatten um die richtige Energiepolitik in Deutschland und Europa zeigen, sind die Argumente für oder gegen bestimmte Maßnahmen nicht völlig voraussetzungslos; je nach verfügbarem Fachwissen, je nach verfügbaren Erfahrungen, ja nach aktueller Interessenslage kommen die Beteiligten zu unterschiedlichen Schlüssen und Bewertungen.

17. Loske selbst erweckt in seinem Beitrag den Eindruck, als ob man so etwas wie einen ‚ökologisch wahren Preis‘ feststellen kann und demzufolge damit konkret Politik betreiben kann. Angesichts der komplexen Gemengelage erscheint mir dies aber als sehr optimistisch und nicht wirklich real zu sein. Wenn man in einer solch unübersichtlichen Situation unfertige Wahrheiten zu Slogans oder gar Handlungsmaximen erhebt und gar noch versucht, sie politische durchzudrücken, dann läuft man Gefahr, wie es im letzten Bundeswahlkampf geschehen ist, dass man vor dem Hintergrund einer an sich guten Idee konkrete Maßnahmen fordert, die nicht mehr gut sind, weil sie fachlich, sachlich noch nicht so abgeklärt und begründet sind, wie es der Fall sein müsste, um zu überzeugen. Dann besteht schnell die Gefahr, mit dem Klischee der ‚Ideologen‘, ‚Fundamentalisten‘, ‚Oberlehrer‘ assoziiert zu werden, obgleich man doch so hehre Ziele zu vertreten meint.

OBERLEHRER DER NATION – NEIN DANKE

18. Im Eingangsartikel SS.4ff stellt Katharina Wagner genau diese Frage, ob verschiedene während des Wahlkampfs angekündigten konkrete Maßnahmen nicht genau solch einen Eindruck des Oberlehrerhaften erweckt haben, als ob die Grüne Partei trotz ihrer großen Werte und Ziele letztlich grundsätzlich ‚anti-liberal‘ sei. Doch bleibt ihre Position unklar. Einerseits sagt sie sinngemäß, dass sich das grüne Programm auf Freiheit verpflichtet weiß, andererseits verbindet sie die ökologische Verantwortung mit der Notwendigkeit, auch entsprechend konkrete und verpflichtende Maßnahmen zu ergreifen. So hält sie z.B. Verbote im Kontext der Gentechnik für unumgänglich. Müssen die Verbote nur besser kommuniziert werden? Gibt es verschiedene ‚Formen‘ von Regeln in einer Skala von ‚gusseisern‘ bis ‚freundliche Einladung‘?

19. Ich finde diese Argumentation unvollständig. Ihr mangelt der Aspekt – genauso wie im Beitrag von Loske –, dass das Wissen um das ‚ökologisch Angemessene‘ in der Regel höchst komplex ist; unser Wissen um die Natur, die komplexen Technologien ist in der Regel unfertig, kaum von einzelnen alleine zu überschauen und in ständiger Weiterentwicklung. Absolut klare und endgültige Aussagen hier zu treffen ist in der Regel nicht möglich. Zwar ist es verständlich, dass das politische Tagesgeschäft griffige Formeln benötigt, um Abstimmungsmehrheiten zu erzeugen, aber dieser Artefakt unseres aktuellen politischen Systems steht im direkten Widerspruch zur Erkenntnissituation und zu den Erfordernissen einer seriösen Forschung ( Mittlerweile gibt es viele Fälle, wo die Politik erheblichen Druck auf die Wissenschaft ausgeübt hat und ausübt, damit auch genau die Ergebnisse geliefert werden, die politisch gewünscht sind; das ist dann nicht nur kontraproduktiv sondern sogar wissenschaftsfeindlich, anti-liberal und auf Dauer eine massive Gefährdung unser Wissensbasis von der Welt, in der wir leben).

20. Eine politische Partei wie die der Grünen, die sich der ökologischen Dimension unserer Existenz verpflichtet wissen will, muss meines Erachtens, um ihre Glaubwürdigkeit zu wahren, weniger darauf bedacht sein, umfassende Vereinfachung durchzudrücken, sondern gerade angesichts der Verpflichtung für das Ganze massiv die wissenschaftlichen Erforschung der Phänomene unterstützen und den sich daraus ergebenden Ansätzen in ihrer ganzen Breite und Vielfalt Raum geben. Dazu müssten viel mehr Anstrengungen unternommen werden, das relevante Wissen öffentlich transparent zu sammeln und so aufzubereiten, dass es öffentlich diskutiert werden könnte. Alle mir bekannten Texte greifen immer nur Teilaspekte auf, betrachten kurze Zeiträume, vernachlässigen Wechselwirkungen, geben sich zu wenig Rechenschaften über Unwägbarkeiten und Risiken. So vieles z.B. an den Argumenten gegen Kernenergie und Gentechnik richtig ist, so fatal ist es aber, dass damit oft ganze Gebiete tabuisiert werden, die als solche noch viele andere Bereiche enthalten, die für eine ökologische Zukunft der Menschheit möglicherweise überlebenswichtig sind.

21. Kurzum, das ‚Oberlehrerhafte‘ und ‚Anti-Liberale‘ erwächst nicht automatisch aus einer Maßnahme als solcher, sondern daraus, wie sie zustande kommt und wie sie sachlich, wissensmäßig begründet ist. In einer komplexen Welt wie der unsrigen, wo die Wissenschaften selbst momentan eine akute Krise der Konsistenz und Qualität durchlaufen, erscheint es nicht gut, mangelndes Wissen durch übertriebenen Dogmatismus ersetzen zu wollen.

FREIHEIT UND GERECHTIGKEIT

22. Die zuvor schon angesprochene Komplexität findet sich ungebremst auch in dem Gespräch zwischen Dieter Schnaas, Kerstin Andreae und Rasmus Andresen (vgl. SS.8f). Hier geht es um maximal komplexe Sachverhalte zwischen verschiedenen sozialen Gruppen, Beschäftigungsverhältnissen, Einkommensstrukturen, Besteuerungssystemen, Versorgungssystemen, Umverteilung, Bildungsprozessen, Wirtschaft im allgemeinen wie auch unterschiedlichen Unternehmensformen und Wirtschaftsbereichen. Diese komplexen Begriffe auf nur zwei Seiten zu diskutieren erscheint mir unangemessen. Schon eine einigermaßen Definition jedes einzelnen dieser Begriffe würde Seiten benötigen.

23. In diesem Bereich griffige Parolen zu formulieren ist zwar eine anhaltende Versuchung und Herausforderung für jeden Politiker, aber dies ist in meinen Augen zum Scheitern verurteilt. Was immer man parolenhaft vereinfachend propagieren möchte, man wird mehr Kollateralschäden anrichten als wenn man das System zunächst einmal sich selbst überlassen würde. Beteiligte Bürger sind in der Regel in der Lage, Schwachstellen des gesellschaftlichen Systems zu erkennen, vorausgesetzt, man lässt diese zu Wort kommen. Und in der Regel wissen auch alle Beteiligte recht gut, in welche Richtung Lösungsansätze gesucht werden müssten, vorausgesetzt, man führt einen realen Dialog, transparent, undogmatisch, mit den notwendigen unterstützenden wissenschaftlichen Exkursen. Die ‚herrschenden‘ Parteien zeichnen sich hingegen bislang überwiegend dadurch aus, dass sie im Kern Lobbypolitik machen, die sie nur notdürftig mit allgemeinen Floskeln kaschieren. Im Prinzip hat die Partei der Grünen sehr gute strukturelle – und motivationale – Voraussetzungen, eine solche transparente, basisdemokratische, wissenschaftlich unterstütze Lösungsfindung zu propagieren und zu praktizieren, wenn sie etwas weniger ‚Oberlehrer‘ sein würde und etwas mehr ‚passionierter Forscher‘ und ‚kreativer Lösungsfinder‘.

WIDER DIE KONTROLLGESELLSCAFT

24. Das Thema ‚Abhören‘ ist zwar seit dem Sommer 2013 mehr und mehr im Munde aller, aber selten übersteigt die Diskussion den rein technischen Charakter des Abhörens oder führt über das bloße Lamentieren hinaus. Selbst die Bundesregierung zusammen mit den einschlägigen Behörden hat bis zu den neuesten Äußerungen der Bundeskanzlerin zum Thema wenig Substanzielles gesagt; im Gegenteil, die politische Relevanz wurde extrem herunter gespielt, die Brisanz für eine zukünftige demokratische Gesellschaft in keiner Weise erkannt.

25. Vor diesem Hintergrund hebt sich der Beitrag von Jan Philipp Albrecht (vgl. SS.6f) wohltuend ab. Er legt den Finger sehr klar auf die Versäumnisse der Bundesregierung, macht den großen Schaden für die deutsche und europäische Industrie deutlich, und er macht u.a. auch auf das bundesweite Sicherheitsleck deutlich, dass durch die Verwendung von US-amerikanischer Software in allen wichtigen Behörden und Kommunen besteht, von der man mittlerweile weiß, dass diese Software schon beim Hersteller für die US-amerikanische Geheimdienste geschützte Zugänge bereit halten. Albrecht macht die Konsequenzen für die Idee einer demokratisch selbstbestimmten Gesellschaft deutlich.

26. Was auch Albrecht nicht tut, ist, einen Schritt weiter zu gehen, und den demokratischen Zustand jenes Landes zu befragen – die USA –, aus dem heraus weltweit solche massenhaft undemokratischen Handlungen bewusst und kontinuierlich geplant und ausgeführt werden. Sind die USA noch minimal demokratisch? Müssen wir uns in Deutschland (und Europa) als Demokraten nicht auch die Frage stellen, inwieweit wir eine Verantwortung für die US-Bevölkerung haben, wenn ihre Regierung sich anscheinend schrittweise von allem verabschiedet, was man eine demokratische Regierung nennen kann? Wie können wir über Demokratie in Deutschland nachdenken, wenn unsere Partner Demokratie mindestens anders auslegen, wie wir? Diese – und weitergehende – transnationale politische Überlegungen fehlen mir in der Debatte der Grünen völlig. Wir leben nicht auf einer Insel der Seeligen. Was heißt ökologische Verantwortung auf einem Planeten, der zu mehr als 50% aus Staaten besteht, die nicht als demokratisch gelten, wobei ja selbst die sogenannten demokratischen Staaten vielfache Mängel aufweisen. Wie sollen wir z.B. die Umwelt schützen, wenn die meisten anderen Staaten keinerlei Interesse haben? usw.

FAZIT

27. Klar, die vorausgehenden Überlegungen sind sehr kursorisch, fragmentarisch. Dennoch, so unvollkommen sie sind, will man sich heute in der kaum überschaubaren Welt als einzelner eine Meinung bilden, hat man keine andere Möglichkeit, als die verschiedenen Gesprächsangebote aufzugreifen und sie mit den eigenen unvollkommenen Mitteln für sich versuchen, durchzubuchstabieren. Am Ende steht gewöhnlich keine neue Supertheorie, sondern – vielleicht – ein paar zusätzliche Querbeziehungen, ein paar neue Eindrücke, der eine der andere neue Aspekt, an dem es sich vielleicht lohnt, weiter zu denken.

28. Jeder, der heute nicht alleine vor sich hin werkeln will, braucht Netzwerke, in denen er ‚Gleichgesinnte‘ findet. Ich selbst bin zwar seit vielen Jahren offizielles Mitglied der Grünen, habe aber bislang – aus Zeitgründen – nahezu nichts gemacht (außer dass ich viele meiner FreundeInnen bewundert habe, die auf kommunaler Ebene konkrete Arbeit leisten). In den nächsten Jahren kann ich mich möglicherweise politisch mehr bewegen. Dies sind erste Annäherungsversuche, um zu überprüfen, ob und wieweit die Partei der Grünen ein geeignetes Netzwerk sein könnte, um politisch ein klein wenig mehr ‚zu tun‘. Allerdings verstehe ich mich primär als Philosoph und Wissenschaftler und ich würde den Primat des Wissens niemals aufgeben, nur um ‚irgendetwas zu tun‘ ….

Einen Überblick über alle bisherigen Blogeinträge nch Titeln findet sich HIER.

HABEN WIR EIN PROBLEM? – Zur Problematik des kognitiven WIR-Modells

ALLTÄGLICHE PROBLEME

1. Wenn man sich die täglichen Nachrichtenmeldungen anschaut, die über die diversen Medien zugänglich sind — trotz ihrer großen Zahl sicher nur eine kleine Auswahl dessen, was tatsächlich alles passiert –, dann könnte man dazu neigen, zu sagen, dass die Frage aus der Überschrift dumm und lächerlich ist: natürlich haben wir Probleme, viel zu viele.
2. Doch sind diese ‚täglichen Probleme‘ nicht das, was ich meine. Dass einzelne Personen gestresst sind, krank werden, leiden, sterben, überall auf der Welt, in jedem Land (wenn auch mit unterschiedlichen Randbedingungen), das gehört quasi zum konkreten Leben dazu. Dafür kann man ‚Randbedingungen‘ verantwortlich machen: Gesetze, wirtschaftliche Bedingungen, korrupte Verhaltensweisen von Institutionen, schlechte Organisationen von Institutionen, spezielle agrarische oder klimatische Konstellationen, usw. Mit diesen kann (und muss!) man sich auseinandersetzen.
3. Man kann das Ganze auch noch eine Nummer größer betrachten: den Einfluss ganzer Nationen oder gar der ganzen Menschheit auf die Natur: Auslutschen vorhandener nicht erneuerbarer Ressourcen, Umweltzerstörungen als Einengung der verfügbaren Lebensbasis, Zerstörung der Ökologie der Meere bis hin zur Ausrottung von immer mehr Lebensformen im Meer, Vernichtung von Lebensformen auf dem Land, Verlust der Kontrolle wichtiger Wachstumsprozesse, usw. Auch mit diesen müssen wir uns auseinandersetzen, wollen wir überleben. Wobei man sich hier fragen ob wir überhaupt ‚überleben wollen‘? Und wer sind ‚wir‘? Gibt es dieses ‚wir‘ überhaupt, das sich über alle Kulturen und Nationen hinweg als ‚innere Einheit‘ in der Vielfalt zeigt, die aus Vielfalt kein ‚Chaos‘ macht, sondern ’nachhaltige Ordnung‘?

TREND DER EVOLUTION

4. Hier nähern wir uns dem, was ich mit ‚Problem‘ meine. Wenn alle bisherigen Überlegungen im Blog zutreffen, dann manifestiert sich die Besonderheit des Phänomens Lebens in dem unübersehbaren ‚Trend‘ zu immer mehr Komplexität in mindestens den folgenden Richtungen: (i) individuelle biologische Systeme werden immer komplexer; (ii) dadurch werden immer komplexere Interaktionen und damit Koordinierungen möglich; (iii) es entstehen biologisch inspirierte nicht-biologische Systeme als artifizielle (= technologische) Systeme, die in das biologische Gesamtphänomen integriert werden; (iv) sowohl das Individuum als auch die Gesamtheit der Individuen unterstützt von der Technologie wirken immer intensiver und nachhaltiger auf ’sich selbst‘ und auf das Gesamtsystem zurück; (v) aufgrund der entstandenen kulturellen Vernetzungsmuster (schließt politische Subsysteme mit ein) können einzelne Individuen eine ‚Verfügungsgewalt‘ bekommen, die es ihnen erlaubt, als individuelle Systeme (trotz extrem limitierten Verstehen) große Teile des Gesamtsystems konkret zu verändern (positiv wie negativ); (vi) die schiere Zahl der Beteiligten und die anschwellende Produktion von Daten (auch als Publikationen) hat schon lange die Verarbeitungskapazität einzelner Individuen überschritten. Damit verlieren kognitive Repräsentationen im einzelnen mehr und mehr ihren Zusammenhang. Die Vielfalt mutiert zu einem ‚kognitiven Rauschen‘, durch das eine ‚geordnete‘ kognitive Verarbeitung praktisch unmöglich wird.

VERANTWORTUNG, KOORDINIERUNG, WIR

5. Die Frage nach der ‚Verantwortung‘ ist alt und wurde zu allen Zeiten unterschiedlich beantwortet. Sie hat eine ‚pragmatische‘ Komponente (Notwendigkeiten des konkreten Überlebens) und eine ‚ideologische‘ (wenige versuchen viele für ihre persönlichen Machtinteressen zu instrumentalisieren). Der ‚Raum‘ der ‚Vermittlung von Verantwortung‘ war und ist immer der Raum der ‚Interaktion und Koordination‘: dort, wo wir versuchen, uns zu verständigen und uns zu koordinieren, dort stehen wir vor der Notwendigkeit, uns wechselseitig Dinge zu ‚repräsentieren‘, damit evtl. zu ‚erklären‘, und dadurch vielleicht zu ‚motivieren‘. Ein mögliches ‚WIR‘ kann nur in diesem Wechselspiel entstehen. Das ‚WIR‘ setzt die Dinge zueinander in Relation, gibt dem einzelnen seine ‚individuelle Rolle‘. Nennen wir das ‚Repräsentieren von Gemeinsamkeiten‘ und die damit evtl. mögliche ‚Erklärung von Gegebenheiten‘ mal das ‚kognitive WIR-Modell‘.

6. Es kann sehr viele kognitive WIR-Modelle geben: zwischen zwei Personen, zwischen Freunden, in einer Institution, in einer Firma, in einem Eisenbahnabteil, …. sie alle bilden ein ‚Netzwerk‘ von kognitiven WIR-Modellen; manche kurzfristig, flüchtig, andere länger andauernd, nachhaltiger, sehr verpflichtend. Kognitive WIR-Modelle sind die ‚unsichtbaren Bindeglieder‘ zwischen allen einzelnen.

KOGNITIVE WIR-MODELLE IM STRESS

7. Jeder weiß aus seiner eigenen Erfahrung, wie schwer es sein kann, schon alleine zwischen zwei Personen ein kognitives WIR-Modell aufzubauen, das die wichtigsten individuellen ‚Interessen‘ ‚befriedigend‘ ‚integriert/erklärt‘. Um so schwieriger wird es, wenn die Zahl der Beteiligten zunimmt bzw. die Komplexität der Aufgabe (= wir sprechen heute oft und gerne von ‚Projekten‘) ansteigt. Der Bedarf an Repräsentationen und vermittelnder Erklärung steigt rapide. Die verfügbare Zeit nimmt in der Regel aber nicht entsprechend zu. Damit steigt der Druck auf alle Beteiligten und die Gefahr von Fehlern nimmt überproportional zu.
8. Man kann von daher den Eindruck gewinnen, dass das Problem der biologischen Evolution in der aktuellen Phase immer mehr zu einem Problem der ‚angemessenen kognitiven Repräsentation‘ wird, gekoppelt an entsprechende ‚koordinierende Prozesse‘. Moderne Technologien (speziell hier Computer und Computernetzwerke) haben zwar einerseits das Repräsentieren und die ‚Gemeinsamkeit‘ des Repräsentierten dramatisch erhöht, aber die kognitiven Prozesse in den individuellen biologischen Systemen hat nicht in gleicher Weise zugenommen. Sogenannte soziale Netze haben zwar gewisse ‚Synchronisationseffekte‘ (d.h. immer mehr Gehirne werden auf diese Weise ‚kognitive gleichgeschaltet), was den Aufbau eines ‚kognitiven WIRs‘ begünstigt, aber durch den limitierenden Faktor der beteiligten individuellen Gehirne kann die Komplexität der Verarbeitung in solchen sozialen Netzen nie sehr hoch werden. Es bilden sich ‚kognitive WIR-Modell Attraktoren‘ auf niedrigem Niveau heraus, die die beteiligten als ‚kognitiv angenehm‘ empfinden können, die aber die tatsächlichen Herausforderungen ausklammern.

OPTIMIERUNG VON KOGNITIVEN WIR-MODELLEN

9. An dieser Stelle wäre auch die Rolle der offiziellen Bildungsinstitutionen (Kindergarten, Schule, Betrieb, Hochschule…), zu reflektieren. In welchem Sinne sind sie bereit und fähig, zu einer Verbesserung der kognitiven WIR-Modelle beizutragen?
10. Das Problem der ‚Optimierung‘ der kognitiven Selbstmodelle verschärft sich dadurch, dass man allgemein einen Sachverhalt X nur dann optimieren kann, wenn man einen Rahmen Y kennt, in den man X so einordnen kann, dass man weiß, wie man unter Voraussetzung des Rahmens Y einen Sachverhalt X zu einem Sachverhalt X+ optimieren kann. Der ‚Rahmen‘ ist quasi ein ‚kognitives Meta-Modell‘, das einen erst in die Lage versetzt, ein konkretes Objekt-Modell zu erarbeiten. Im Alltag sind diese ‚Rahmen‘ bzw. ‚Meta-Modelle‘ die ‚Spielregeln‘, nach denen wir vorgehen. In jeder Gesellschaft ist grundlegend (oft implizit, ’stillschweigend‘) geregelt, wann und wie eine Person A mit einer Person B reden kann. Nicht jeder darf mit jedem zu jedem Zeitpunkt über alles reden. Es gibt feste Rituale; verletzt man diese, kann dies weitreichende Folgen haben, bis hin zum Ausschluss aus allen sozialen Netzen.
11. Sollen also die kognitiven WIR-Modelle im großen Stil optimiert werden, brauchen wir geeignete Meta-Modelle (Spielregeln), wie wir dies gemeinsam tun können. Einfache Lösungen dürfte in diesem komplexen Umfeld kaum geben; zu viele Beteiligten und zu viele unterschiedliche Interessen sind hier zu koordinieren, dazu ist die Sache selbst maximal komplex: es gibt — nach heutigem Wissensstand — kein komplexeres Objekt im ganzen Universum wie das menschliche Gehirn. Das Gehirn ist so komplex, dass es sich prinzipiell nicht selbst verstehen kann (mathematischer Sachverhalt), selbst wenn es alle seine eigenen Zustände kennen würde (was aber nicht der Fall ist und auch niemals der Fall sein kann). Die Koordinierung von Gehirnen durch Gehirne ist von daher eigentlich eine mathematisch unlösbare Aufgabe. Dass es dennoch bis jetzt überhaupt soweit funktioniert hat, erscheint nur möglich, weil es möglicherweise ‚hinter‘ den beobachtbaren Phänomenen Gesetzmäßigkeiten gibt, die ‚begünstigen‘, diese unfassbare Komplexität partiell, lokal ‚einzuschränken‘.

Ein Überblück über alle Blogeinträge nach Themen findet sich HIER

SUCHE NACH DEM URSPRUNG UND DER BEDEUTUNG DES LEBENS. Teil 3 (Superbugs, Steinefresser)

Paul Davies, The FIFTH MIRACLE: The Search for the Origin and Meaning of Life, New York:1999, Simon & Schuster

Start: 3.Sept.2012

Letzte Fortsetzung: 4.Sept.2012

Fortsetzung von Teil 2

 

  1. Die Entdeckung, dass RNA-Moleküle ähnliche Eigenschaften haben wie DNA-Moleküle und sie bis zu einem gewissen Grade auch als Enzyme fungieren können, die chemische Prozesse unterstützen (was sonst Proteine tun), führte zur Hypothese von der RNA-Welt, die der DNA-Welt vorausgeht. Experimente von Spiegelmann zeigten z.B., dass RNA-Genome in einer entsprechenden Lösung mit Enzymen sich reproduzieren können, allerdings mit der Tendenz, sich immer mehr zu vereinfachen (74.ter Durchlauf, 84% abgestoßen [Spiegelmann S.217]). Die Entkopplung von realen Lebensprozessen führt offensichtlich zu einer ‚Sinnentleerung‘ dergestalt, dass die Basen ihre ‚Bedeutung‘ verlieren und damit ihre ‚Notwendigkeit‘! Das vereinfachte Endprodukt bekam den Namen ‚Spiegelmanns Monster‘. (123-127) Genau gegenläufig war ein Experiment von Manfred Eigen und Peter Schuster (1967), die mit RNA-Bausteinen begannen und herausfanden, dass diese sich ‚aus sich heraus‘ zu immer komplexeren Einheiten zusammenfügten, sich reproduzierten, und den ‚Monstern von Spiegelmann‘ ähnelten. (127f) Allerdings benutze Eigen und Schuster für ihre Experimente spezialisierte Enzyme, die aus einer Zelle gewonnen waren. Die Existenz solcher Enzyme in der frühen Zeit der Entstehung gilt aber nicht als gesichert. (128f) Überlegungen zu möglichen Szenarien der frühen Koevolution von RNA-Molekülen und Proteinen gibt es, aber keine wirklichen ‚Beweise‘. (129f) Alle bisherigen Experimente haben nur gezeigt, dass die Synthese längerer RNA-Moleküle ohne spezielle Unterstützung zu fragil ist; sie funktioniert nicht. Dazu gehört auch das Detail der Chiralität: bei ‚freier‘ Erzeugung zeigen die Moleküle sowohl Links- als auch Rechtshändigkeit; die biologischen Moleküle sind aber alle linkshändig. (130f) Stammbaumanalysen zeigen ferner, dass RNA-Replikation eine spätere Entwicklung ist; die frühesten Vorläufer hatten sie so nicht. (131f) Ferner ist völlig unklar, wie sich frühere Replikatoren entwickeln konnten. (132)

  2. Aufgrund dieser Schwierigkeiten gibt es alternative Versuche, anzunehmen, dass vielleicht die Proteine zuerst da waren. Rheza Ghadiri entdeckte, dass sich Peptidketten selbst vermehren können, was auch am Beispiel der Rinderseuche BSE bestätigt wurde (133). Freeman Dyson nahm an, dass die Proteine und die replikationsfähigen Moleküle sich parallel entwickelt haben und dann erst fusionierten.(133f) Die zentrale Annahme bei Dyson ist, dass Moleküle die Produktion und Veränderung anderer Moleküle bewirken können. Damit können dann ‚Ordnungen‘ dergestalt entstehen, dass sich präferierte chemische Zyklen bilden, die verklumpen, anschwellen und sich spalten. Schon auf dieser Ebene sollte begrenzter ‚Wettbewerb‘ möglich sein, der zu einer begrenzten ‚Evolution‘ führt. (134) Solche Prozesse könnten dann von von Nukleinsäuren durchdrungen werden, die sich diese Prozesse zunutze machen. (134f) Als möglicher Ort für solche Prozesse könnte der Boden der Ozeane fungieren. Russell entwickelte ein Modell von semipermeablen- Membranen, die sich dort bilden können. (135f) Cairns-Smith generalisierte die Idee der Informationsspeicherung und entwickelte die Hypothese, dass zu Beginn Tonkristalle die Funktion von RNA und DNA gespielt haben könnten. Allerdings gibt es bislang keine experimentelle Bestätigung hierfür. (136f)

  3. Alle diese Überlegungen liefern bislang keine vollständig überzeugenden Lösungen. Klar ist nur, dass die biologische Evolution Vorläuferprozesse haben musste, denen ein Minimum an Komplexität zukommt und zwar eine ‚organisierte Komplexität‘. (137f) Unter dem Titel ‚Selbstorganisation‘ fand Prigogine Beispiele, wie sich durch Zufluss freier Energie geordnete Strukturen aus einer ‚chaotischen‘ Situation heraus bilden konnten.(138f) Kaufmann entwickelte die Idee ‚autokatalytischer‘ Prozesse, in denen ein Molekül M auf andere Moleküle als Katalysator so wirkt, dass sie Prozesse eingehen, die letztlich zur Produktion von M führen. Dies verstärkt diese Prozesse immer mehr. (139f) Allerdings fehlen auch für diese Hypothesen empirische und experimentelle Belege. (140f) Davies weist auch darauf hin, dass selbstorganisierende Prozesse in allen wesentlichen Eigenschaften von den Umgebungsbedingungen bestimmt werden; biologische Reproduktion ist aber wesentlich ‚intrinsisch‘ bestimmt durch die Informationen der DNA/ RNA-Moleküle. Alle die Modelle zur Selbstorganisation liefern keine wirklichen Hinweise, wie es zu den selbstbestimmten Formen der Reproduktion kommen konnte, zur Herausbildung der Software [zur Dekodierung?]. (141) Dabei erinnert Davies nochmals an den Aspekt der ’nicht-zufälligen‘ Ordnung, d.h. alle jene Muster, die regelmäßige Anteile enthalten (wie in den Beispielen von Autokatalyse und Selbstorganisation), sind nicht die Formen von zufälliger Informationsspeicherung, wie man sie im Falle von DNA bzw. RNA-Molekülen findet.(142)

  4. [Anmerkung: So gibt es bislang also Einsichten in das Prinzip der biologischen Selbstreproduktion, aber überzeugende Hinweise auf chemische Prozesse, wie es zur Ausbildung solcher komplexer Prozesse komme konnte, fehlen noch. ]

  5. Im Kapitel 6 ‚The Cosmic Connection‘ (SS.143 – 162) wird aufgezeigt, dass die irdische Chemie nicht losgelöst ist von der allgemeinen Chemie des Universums. Fünf chemische Elemente spielen in der erdgebundenen Biologie eine zentrale Rolle: Kohlenstoff (‚carbon‘), Sauerstoff (‚oxygen‘), Wasserstoff (‚hydrogen‘), Stickstoff (’nitrogen‘), und Phosphor (‚phosphorus‘). Dies sind zugleich die häufigsten Elemente im ganzen Universum. (143) Kohlenstoff hat die außerordentliche Fähigkeit, praktisch unendlich lange Ketten zu bilden (Nukleinsäuren und Proteine sind Beispiele dafür). (143)

  6. Kohlenstoff entsteht durch die Kernfusion in Sternen von Wasserstoff zu Helium zu Kohlenstoff.(146) Buchstäblich aus der ‚Asche‘ erloschener Sterne konnten sich dann Planeten wie die Erde bilden.(144) Kohlenstoff (‚carbon‘), Sauerstoff (‚oxygen‘), Wasserstoff (‚hydrogen‘) und Stickstoff (’nitrogen‘) werden seit Bestehen der Erde beständig in der Atmosphäre, in der Erdkruste, bei allen Verwesungsprozessen ‚recycled‘. Danach enthält jeder Körper Kohlenstoffatome von anderen Körpern, die 1000 und mehr Jahre älter sind.(146f) Mehr als hundert chemische Verbindungen konnten bislang im Universum nachgewiesen werden, viele davon organischer Natur. (147f) Nach den ersten hundert Millionen Jahren war die Oberfläche der Erde immer noch sehr heiß, die Ozeane viel tiefer, die Atmosphäre drückend (‚crushing‘), intensiver Vulkanismus, der Mond näher, die Gezeiten viel höher, die Erdumdrehung viel schneller, und vor allem andauernde Bombardements aus dem Weltall. (152) Eine ausführlichere Schilderung zeigt die vielfältigen Einwirkungen aus dem Weltall auf die Erde. Generell kann hier allerlei (auch organisches) Material auf die Erde gekommen sein. Allerdings sind die Umstände eines Eindringens und Aufprallens normalerweise eher zerstörerischer Natur was biologische Strukturen betrifft. (153-158) Das heftige Bombardement aus dem Weltall mit den verheerenden Folgen macht es schwer, abzuschätzen, wann Leben wirklich begann. Grundsätzlich ist weder auszuschließen, dass Leben mehrfach erfunden wurde noch, dass es Unterstützung aus dem Weltall bekommen haben kann. Andererseits war der ’sicherste‘ Ort irgendwo in einer Tiefe, die von dem Bombardement kaum bis gar nicht beeinträchtigt wurde. (158-161)

  7. Kapitel 7 ‚Superbugs‘ (163-186). Die weltweit auftretende Zerstörung von unterirdischen Kanalleitungen aus Metall (später 1920iger) führte zur Entdeckung eines Mikroorganismus, der ausschließlich in einer säuerlichen Umgebung lebt, Schwefel (’sulfur‘) frißt und eine schweflige Säure erzeugt, die sogar Metall zerstören kann.(163f) Man entdeckte mittlerweile viele verschiedene Mikroorganismusarten, die in Extremsituationen leben: stark salzhaltig, sehr kalt, starke radioaktive Strahlung, hoher Druck, extremes Vakuum, hohe Temperaturen. (164f) Diese Mikroorganismen scheinen darüber hinaus sehr alt zu sein. (165) Am erstaunlichsten von allen sind aber die wärmeliebenden Mikroorganismen (‚thermophiles‘, ‚hyperthermophiles‘), die bislang bis zu Temperaturen von 113C^o gefunden wurden. Von den mittlerweile mehr als Tausend entdeckten Arten sind ein großer Teil Archäen, die als die ältesten bekannten Lebensformen gelten. (166f) Noch mehr, diese thermophilen und hyperthermophylen Mikroorganismen sind – wie Pflanzen allgemein – ‚autotroph‘ in dem Sinne, dass sie kein organisches Material für ihre Versorgung voraussetzen, sondern anorganisches Material. Man nennt die unterseeischen Mikroorganismen abgrenzend von den autotrophen ‚Chemotrophs‘, da sie kein Sonnenlicht (also keine Photosynthese) benutzen, sondern einen eigenen Energiegewinnungsprozess entwickelt haben. (167f) Es dauerte etwa von 1920 bis etwa Mitte der 90iger Jahre des 20.Jahrhunderts bis der Verdacht und einzelne Funde sich zu einem Gesamtbild verdichteten, dass Mikroorganismen überall in der Erdoberfläche bis in Tiefen von mehr als 4000 m vorkommen, mit einer Dichte von bis zu 10 Mio Mikroorganismen pro Gramm, und einer Artenvielfalt von mittlerweile mehreren Tausend. (168-171) Bohrungen in den Meeresgrund erbrachten weitere Evidenz dass auch 750m unter dem Meeresboden überall Mikroorganismen zu finden sind (zwischen 1 Mrd pro cm^3 bis zu 10 Mio). Es spricht nichts dagegen, dass Mikroorganismen bis zu 7km unter dem Meeresboden leben können. (171-173) All diese Erkenntnisse unterstützen die Hypothese, dass die ersten Lebensformen eher unterseeisch und unterirdisch entstanden sind, geschützt vor der Unwirtlichkeit kosmischer Einschläge, ultravioletter Strahlung und Vulkanausbrüchen. Außerdem waren alle notwendigen Elemente wie z.B. Wasserstoff, Methan, Ammoniak, Wasserstoff-Sulfid im Überfluss vorhanden. (173f) Untersuchungen zur Energiebilanz zeigen, dass in der Umgebung von heißen unterirdischen Quellen speziell im Bereich 100-150 C^o sehr günstig ist.(174f) Zusätzlich deuten genetische Untersuchungen zur Abstammung darauf hin, dass gerade die Archäen-Mikroorganismen zu den ältesten bekannten Lebensformen gehören, die sich z.T. nur sehr wenig entwickelt haben. Nach all dem wären es dann diese hyperthermophilen Mikroorganismen , die den Ursprung aller biologischen Lebensformen markieren. Immer mehr Entdeckungen zeigen eine wachsende Vielfalt von Mikroorganismen die ohne Licht, in großer Tiefe, bei hohen Temperaturen anorganische Materialien in Biomasse umformen. (175-183)

  8. Wie Leben wirklich begann lässt sich bislang trotz all dieser Erkenntnisse nicht wirklich klären. Alle bisherigen Fakten sprechen für den Beginn mit den Archäen, die sich horizontal in den Ozeanen und in der Erdkruste in einem Temperaturbereich nicht höher als etwa 120 C^o (oder höher?) ausbreiten konnten. Irgendwann muss es dann einen Entwicklungssprung in die Richtung Photosynthese gegeben haben, der ein Leben an der Oberfläche ermöglichte. (183-186)

  9. Kap.8 ‚Mars: Red and Dead‘ (SS.187-220). Diskussion, ob es Leben auf dem Mars gab bzw. noch gibt. Gehe weiter darauf nicht ein, da es für die Diskussion zur Struktur und Entstehung des Lebens keinen wesentlichen Beitrag liefert.

  10. Kap.9 ‚Panspermia‘ (SS.221-243). Diskussion, inwieweit das Leben irgendwo im Weltall entstanden sein kann und von dort das Leben auf die Erde kam. Aber auch hier gilt, neben der Unwahrscheinlichkeit einer solchen Lösung würde es die Grundsatzfragen nicht lösen. (siehe auch Davies S.243))

  11. Kap.10 ‚A Bio-Friendly Universe‘ (SS.245-273). Angesichts der ungeheuren molekularen Komplexität , deren Zusammenspiel und deren Koevolution steht die Annahme einer rein zufälligen Entwicklung relativ schwach da. Die Annahme, dass die Komplexität durch die impliziten Gesetzmäßigkeiten aller beteiligten Bestandteile ‚unterstützt‘ wird, würde zwar ‚helfen‘, es bleibt aber die Frage, wie. (245-47) Eine andere Erklärungsstrategie‘, nimmt an, dass das Universum ewig ist und dass daher Leben und Intelligenz schon immer da war. Die sich daraus ergebenden Konsequenzen widersprechen den bekannten Fakten und erklären letztlich nichts. Davies plädiert daher für die Option, dass das Leben begonnen hat, möglicherweise an mehreren Orten zugleich. (247-250)
  12. Im Gegensatz zu Monod und den meisten Biologen, die nur reinen Zufall als Entstehungsform annehmen, gibt es mehrere Vertreter, die Elemente jenseits des Zufalls annehmen, die in der Naturgesetzen verankert sind. Diese wirken sich als ‚Präferenzen‘ aus bei der Bildung von komplexeren Strukturen. (250-254) Dem hält Davies aber entgegen, dass die normalen Naturgesetze sehr einfach sind, schematisch, nicht zufällig, wohingegen die Kodierung des Lebens und seiner Strukturen sich gerade von den chemischen Notwendigkeiten befreit haben, sich nicht über ihre materiellen Bestandteile definieren, sondern über eine frei (zufällig) sich konfigurierende Software. Der Rückzug auf die Präferenzen ist dann möglicherweise kein genügender Erklärungsgrund. Davies hält die Annahme eines ‚Kodes im Kode‘ für nicht plausibel. (254-257) Wie aber lässt sich das Problem der biologischen Information lösen? (257f) Grundsätzlich meint Davies, dass vieles dafür spricht, dass man ein ‚Gesetz der Information‘ als genuine Eigenschaft der Materie annehmen muss. (258f) Davies nennt dann verschiedene Theorieansätze zum möglichen Weiterdenken, ohne die gedanklichen Linien voll auszuziehen. Er erinnert nochmals an die Komplexitätstheorie mit ihrem logischen Charakter, erinnert an die Quantenstruktur der Materie, die Dualität von Welle (Information? Software?) und Teilchen (Hardware?) und ‚Quasikristalle‘, die auf den ersten Blick periodisch wirken, aber bei näherer Analyse aperiodisch sind. (259-263)
  13. Eine andere Frage ist die, ob man in der Evolution irgendeine Art von Fortschritt erkennen kann. Das Hauptproblem ist, wie man Fortschritt definieren kann, ohne sich in Vorurteilen zu verfangen. Vielfach wird der Begriff der Komplexität bemüht, um einen Anstieg an Komplexität zu konstatieren. Stephen J.Gould sieht solche Annahmen eines Anstiegs der Komplexität sehr kritisch. Für Christian de Duve hingegen erscheint ein Anstieg von Komplexität klar. (264-270)
  14. In den Schlussbemerkungen stellt Davies nochmals die beiden großen Interpretationsalternativen gegenüber: einmal die Annahme einer Zunahme der Komplexität am Beispiel von Gehirnen und daran sich knüpfenden Eigenschaften aufgrund von impliziten Präferenzen oder demgegenüber die Beschränkung auf reinen Zufall. Im letzteren Fall ist das Auftreten komplexer Lebensformen so hochgradig unwahrscheinlich, dass eine Wiederholung ähnlicher Lebensformen an einem anderen Ort ausgeschlossen erscheint. (270-273)
  15. [Anmerkung: Am Ende der Lektüre des Buches von Davies muss ich sagen, dass Davies hier ein Buch geschrieben hat, das auch ca. 13 Jahre später immer noch eine Aussagekraft hat, die die gewaltig ist. Im Detail der Biochemie und der Diskussion der chemischen Evolution mag sich das eine oder andere mittlerweile weiter entwickelt haben (z.B. ist die Diskussion zum Stammbaum fortgeschritten in einer Weise, dass weder die absolute Datierung noch zweifelsfrei ist noch die genauen Abhängigkeiten aufgrund von Genaustausch zwischen den Arten (vgl. Rauchfuß (326-337)]), doch zeigt Davies Querbeziehungen zwischen vielen Bereichen auf und bringt fundamentale Konzepte zum Einsatz (Information, Selbstorganisation, Autokatalyse, Komplexitätstheorie, Quantentheorie, Thermodynamik, algorithmische Berechenbarkeit ….), die in dieser Dichte und reflektierenden Einbringung sehr selten sind. Sein sehr kritischer Umgang mit allen möglichen Interpretationen ermöglicht Denkansätze, stellt aber auch genügend ‚Warnzeichen‘ auf, um nicht in vorschnelle Interpretationssackgassen zu enden. Eine weitere Diskussion des Phänomen Lebens kann an diesem Buch schwerlich vorbei gehen. Ich habe auch nicht den Eindruck, dass die neueren Ergebnisse die grundsätzlichen Überlegungen von Davies tangieren; mehr noch, ich kann mich des Gefühls nicht erwehren, dass die neuere Diskussion zwar weiter in ‚Details wühlt‘, aber die großen Linien und die grundlegenden theoretischen Modelle nicht wirklich beachten. Dies bedarf weiterer intensiver Lektüre und Diskussion ]
  16. [ Anmerkung: Ich beende hiermit die direkte Darstellung der Position von Davies, allerdings beginnt damit die Reflektion seiner grundlegenden Konzepte erst richtig. Aus meiner Sicht ist es vor allem der Aspekt der ‚logischen Strukturen‘, die sich beim ‚Zusammenwirken‘ einzelner Komponenten in Richtung einer höheren ‚funktionellen Komplexität‘ zeigen, die einer Erklärung bedürfen. Dies ist verknüpft mit dem Phänomen, dass biologische Strukturen solche übergreifenden logischen Strukturen in Form von DNA/ RNA-Molekülen ’speichern‘, deren ‚Inhalt‘ durch Prozesse gesteuert werden, die selbst nicht durch ‚explizite‘ Informationen gesteuert werden, sondern einerseits möglicherweise von ‚impliziten‘ Informationen und jeweiligen ‚Kontexten‘. Dies führt dann zu der Frage, inwieweit Moleküle, Atome, Atombestandteile ‚Informationen‘ ‚implizit‘ kodieren können, die sich in der Interaktion zwischen den Bestandteilen als ‚Präferenzen‘ auswirken. Tatsache ist, dass Atome nicht ’neutral‘ sind, sondern ’spezifisch‘ interagieren, das gleiche gilt für Bestandteile von Atomen bzw. für ‚Teilchen/ Quanten‘. Die bis heute nicht erklärbare, sondern nur konstatierbare Dualität von ‚Welle‘ und ‚Teilchen‘ könnte ein Hinweis darauf sein, dass die Grundstrukturen der Materie noch Eigenschaften enthält, die wir bislang ‚übersehen‘ haben. Es ist das Verdienst von Davies als Physiker, dass er die vielen chemischen, biochemischen und biologischen Details durch diese übergreifenden Kategorien dem Denken in neuer Weise ‚zuführt‘. Die überdimensionierte Spezialisierung des Wissens – in gewisser Weise unausweichlich – ist dennoch zugleich auch die größte Gefahr unseres heutigen Erkenntnisbetriebes. Wir laufen wirklich Gefahr, den berühmten Wald vor lauter Bäumen nicht mehr zu sehen. ]

 

Zitierte Literatur:

 

Mills,D.R.; Peterson, R.L.; Spiegelmann,S.: An Extracellular Darwinian Experiment With A Self-Duplicating Nucleic Acid Molecule, Reprinted from the Proceedings of the National Academy of Sciences, Vol.58, No.1, pp.217-224, July 1997

 

 

Rauchfuß, H.; CHEMISCHE EVOLUTION und der Ursprung des Lebens. Berlin – Heidelberg: Springer, 2005

 

Einen Überblick über alle bisherigen Themen findet sich HIER

 

Ein Video in Youtube, das eine Rede von Pauls Davies dokumentiert, die thematisch zur Buchbesprechung passt und ihn als Person etwas erkennbar macht.

 

Teil 1:
http://www.youtube.com/watch?v=9tB1jppI3fo

Teil 2:
http://www.youtube.com/watch?v=DXXFNnmgcVs

Teil 3:
http://www.youtube.com/watch?v=Ok9APrXfIOU

Teil 4:
http://www.youtube.com/watch?v=vXqqa1_0i7E

Part 5:
http://www.youtube.com/watch?v=QVrRL3u0dF4
Es gibt noch einige andere Videos mit Paul Davies bei Youtube.

 

 

ERKENNTNISSCHICHTEN – Das volle Programm…

 

  1. Wir beginnen mit einem Erkenntnisbegriff, der im subjektiven Erleben ansetzt. Alles, was sich subjektiv als ‚Gegeben‘ ansehen kann, ist ein ‚primärer‘ ‚Erkenntnisinhalt‘ (oft auch ‚Phänomen‘ [PH] genannt).

  2. Gleichzeitig mit den primären Erkenntnisinhalten haben wir ein ‚Wissen‘ um ’sekundäre‘ Eigenschaften von Erkenntnisinhalten wie ‚wahrgenommen‘, ‚erinnert‘, ‚gleichzeitig‘, ‚vorher – nachher‘, ‚Instanz einer Klasse‘, ‚innen – außen‘, und mehr.

  3. Auf der Basis der primären und sekundären Erkenntnisse lassen sich schrittweise komplexe Strukturen aufbauen, die das subjektive Erkennen aus der ‚Innensicht‘ beschreiben (‚phänomenologisch‘, [TH_ph]), aber darin auch eine systematische Verortung von ‚empirischem Wissen‘ erlaubt.

  4. Mit der Bestimmung des ‚empirischen‘ Wissens lassen sich dann Strukturen der ‚intersubjektiven Körperwelt‘ beschreiben, die weit über das ’subjektive/ phänomenologische‘ Wissen hinausreichen [TH_emp], obgleich sie als ‚Erlebtes‘ nicht aus dem Bereich der Phänomene hinausführen.

  5. Unter Einbeziehung des empirischen Wissens lassen sich Hypothesen über Strukturen bilden, innerhalb deren das subjektive Wissen ‚eingebettet‘ erscheint.

  6. Der Ausgangspunkt bildet die Verortung des subjektiven Wissens im ‚Gehirn‘ [NN], das wiederum zu einem ‚Körper‘ [BD] gehört.

  7. Ein Körper stellt sich dar als ein hochkomplexes Gebilde aus einer Vielzahl von Organen oder organähnlichen Strukturen, die miteinander in vielfältigen Austauschbeziehungen (‚Kommunikation‘) stehen und wo jedes Organ spezifische Funktionen erfüllt, deren Zusammenwirken eine ‚Gesamtleistung‘ [f_bd] des Input-Output-Systems Körpers ergibt. Jedes Organ besteht aus einer Vielzahl von ‚Zellen‘ [CL], die nach bestimmten Zeitintervallen ‚absterben‘ und ‚erneuert‘ werden.

  8. Zellen, Organe und Körper entstehen nicht aus dem ‚Nichts‘ sondern beruhen auf ‚biologischen Bauplänen‘ (kodiert in speziellen ‚Molekülen‘) [GEN], die Informationen vorgeben, auf welche Weise Wachstumsprozesse (auch ‚Ontogenese‘ genannt) organisiert werden sollen, deren Ergebnis dann einzelne Zellen, Zellverbände, Organe und ganze Körper sind (auch ‚Phänotyp‘ genannt). Diese Wachstumsprozesse sind ’sensibel‘ für Umgebungsbedingungen (man kann dies auch ‚interaktiv‘ nennen). Insofern sind sie nicht vollständig ‚deterministisch‘. Das ‚Ergebnis‘ eines solchen Wachstumsprozesses kann bei gleicher Ausgangsinformation anders aussehen. Dazu gehört auch, dass die biologischen Baupläne selbst verändert werden können, sodass sich die Mitglieder einer Population [POP] im Laufe der Zeit schrittweise verändern können (man spricht hier auch von ‚Phylogenese‘).

  9. Nimmt man diese Hinweise auf Strukturen und deren ‚Schichtungen‘ auf, dann kann man u.a. zu dem Bild kommen, was ich zuvor schon mal unter dem Titel ‚Emergenz des Geistes?‘ beschrieben hatte. In dem damaligen Beitrag hatte ich speziell abgehoben auf mögliche funktionale Unterschiede der beobachtbaren Komplexitätsbildung.

  10. In der aktuellen Reflexion liegt das Augenmerk mehr auf dem Faktum der Komplexitätsebene allgemein. So spannen z.B. die Menge der bekannten ‚Atome‘ [ATOM] einen bestimmten Möglichkeitsraum für theoretisch denkbare ‚Kombinationen von Atomen‘ [MOL] auf. Die tatsächlich feststellbaren Moleküle [MOL‘] bilden gegenüber MOL nur eine Teilmenge MOL‘ MOL. Die Zusammenführung einzelner Atome {a_1, a_2, …, a_n} ATOM zu einem Atomverband in Form eines Moleküls [m in MOL‘] führt zu einem Zustand, in dem das einzelne Atom a_i mit seinen individuellen Eigenschaften nicht mehr erkennbar ist; die neue größere Einheit, das Molekül zeigt neue Eigenschaften, die dem ganzen Gebilde Molekül m_j zukommen, also {a_1, a_2, …, a_n} m_i (mit {a_1, a_2, …, a_n} als ‚Bestandteilen‘ des Moleküls m_i).

  11. Wie wir heute wissen, ist aber auch schon das Atom eine Größe, die in sich weiter zerlegt werden kann in ‚atomare Bestandteile‘ (‚Quanten‘, ‚Teilchen‘, ‚Partikel‘, …[QUANT]), denen individuelle Eigenschaften zugeordnet werden können, die auf der ‚Ebene‘ des Atoms verschwinden, also auch hier wenn {q_1, q_2, …, q_n} QUANT und {q_1, q_2, …, q_n} die Bestandteile eines Atoms a_i sind, dann gilt {q_1, q_2, …, q_n} a_i.

  12. Wie weit sich unterhalb der Quanten weitere Komplexitätsebenen befinden, ist momentan unklar. Sicher ist nur, dass alle diese unterscheidbaren Komplexitätsebenen im Bereich ‚materieller‘ Strukturen aufgrund von Einsteins Formel E=mc^2 letztlich ein Pendant haben als reine ‚Energie‘. Letztlich handelt es sich also bei all diesen Unterschieden um ‚Zustandsformen‘ von ‚Energie‘.

  13. Entsprechend kann man die Komplexitätsbetrachtungen ausgehend von den Atomen über Moleküle, Molekülverbände, Zellen usw. immer weiter ausdehnen.

  14. Generell haben wir eine ‚Grundmenge‘ [M], die minimale Eigenschaften [PROP] besitzt, die in einer gegebenen Umgebung [ENV] dazu führen können, dass sich eine Teilmenge [M‘] von M mit {m_1, m_2, …, m_n} M‘ zu einer neuen Einheit p={q_1, q_2, …, q_n} mit p M‘ bildet (hier wird oft die Bezeichnung ‚Emergenz‘ benutzt). Angenommen, die Anzahl der Menge M beträgt 3 Elemente |M|=3, dann könnte man daraus im einfachen Fall die Kombinationen {(1,2), (1,3), (2,3), (1,2,3)} bilden, wenn keine Doubletten zulässig wären. Mit Doubletten könnte man unendliche viele Kombinationen bilden {(1,1), (1,1,1), (1,1,….,1), (1,2), (1,1,2), (1,1,2,2,…),…}. Wie wir von empirischen Molekülen wissen, sind Doubletten sehr wohl erlaubt. Nennen wir M* die Menge aller Kombinationen aus M‘ (einschließlich von beliebigen Doubletten), dann wird rein mathematisch die Menge der möglichen Kombinationen M* gegenüber der Grundmenge M‘ vergrößert, wenngleich die Grundmenge M‘ als ‚endlich‘ angenommen werden muss und von daher die Menge M* eine ‚innere Begrenzung‘ erfährt (Falls M’={1,2}, dann könnte ich zwar M* theoretisch beliebig groß denken {(1,1), (1,1,1…), (1,2), (1,2,2), …}, doch ‚real‘ hätte ich nur M*={(1,2)}. Von daher sollte man vielleicht immer M*(M‘) schreiben, um die Erinnerung an diese implizite Beschränkung wach zu halten.

  15. Ein anderer Aspekt ist der Übergang [emer] von einer ’niedrigerem‘ Komplexitätsniveau CL_i-1 zu einem höheren Komplexitätsniveau CL_i, also emer: CL_i-1 —> CL_i. In den meisten Fällen sind die genauen ‚Gesetze‘, nach denen solch ein Übergang stattfindet, zu Beginn nicht bekannt. In diesem Fall kann man aber einfach ‚zählen‘ und nach ‚Wahrscheinlichkeiten‘ Ausschau halten. Allerdings gibt es zwischen einer ‚reinen‘ Wahrscheinlich (absolute Gleichverteilung) und einer ‚100%-Regel‘ (Immer dann wenn_X_dann geschieht_Y_) ein Kontinuum von Wahrscheinlichkeiten (‚Wahrscheinlichkeitsverteilungen‘ bzw. unterschiedlich ‚festen‘ Regeln, in denen man Z%-Regeln benutzt mit 0 < Z < 100 (bekannt sind z.B. sogenannte ‚Fuzzy-Regeln‘).

  16. Im Falle des Verhaltens von biologischen Systemen, insbesondere von Menschen, wissen wir, dass das System ‚endogene Pläne‘ entwickeln kann, wie es sich verhalten soll/ will. Betrachtet man allerdings ‚große Zahlen‘ solcher biologischer Systeme, dann fällt auf, dass diese sich entlang bestimmter Wahrscheinlichkeitsverteilungen trotzdem einheitlich verhalten. Im Falle von Sterbensraten [DEATH] einer Population mag man dies dadurch zu erklären suchen, dass das Sterben weitgehend durch die allgemeinen biologischen Parameter des Körpers abhängig ist und der persönliche ‚Wille‘ wenig Einfluß nimmt. Doch gibt es offensichtlich Umgebungsparameter [P_env_i], die Einfluss nehmen können (Klima, giftige Stoffe, Krankheitserreger,…) oder indirekt vermittelt über das individuelle ‚Verhalten‘ [SR_i], das das Sterben ‚begünstigt‘ oder ‚verzögert‘. Im Falle von Geburtenraten [BIRTH] kann man weitere Faktoren identifizieren, die die Geburtenraten zwischen verschiedenen Ländern deutlich differieren lässt, zu verschiedenen Zeiten, in verschiedenen sozialen Gruppen, usw. obgleich die Entscheidung für Geburten mehr als beim Sterben individuell vermittelt ist. Bei allem Verhalten kann man mehr oder weniger starke Einflüsse von Umgebungsparametern messen. Dies zeigt, dass die individuelle ‚Selbstbestimmung‘ des Verhaltens nicht unabhängig ist von Umgebungsparametern, die dazu führen, dass das tatsächliche Verhalten Millionen von Individuen sehr starke ‚Ähnlichkeiten‘ aufweist. Es sind diese ‚gleichförmigen Wechselwirkungen‘ die die Ausbildung von ‚Verteilungsmustern‘ ermöglichen. Die immer wieder anzutreffenden Stilisierungen von Wahrscheinlichkeitsverteilungen zu quasi ‚ontologischen Größen‘ erscheint vor diesem Hintergrund eher irreführend und verführt dazu, die Forschung dort einzustellen, wo sie eigentlich beginnen sollte.

  17. Wie schon die einfachen Beispiele zu Beginn gezeigt haben, eröffnet die nächst höhere Komplexitätstufe zunächst einmal den Möglichkeitsraum dramatisch, und zwar mit qualitativ neuen Zuständen. Betrachtet man diese ‚Komplexitätsschichtungen‘ nicht nur ‚eindimensional‘ (also z.B. in eine Richtung… CL_i-1, CL_i, CL_i+1 …) sondern ‚multidimensional‘ (d.h. eine Komplexitätsstufe CL_i kann eine Vielzahl von Elementen umfassen, die eine Komplexitätstufe j<i repräsentieren, und diese können wechselseitig interagieren (‚kommunizieren‘)), dann führt dies zu einer ‚Verdichtung‘ von Komplexität, die immer schwerer zu beschreiben ist. Eine einzige biologische Zelle funktioniert nach so einem multidimensionalen Komplexitätsmuster. Einzelne Organe können mehrere Milliarden solcher multidimensionaler Einheiten umfassen. Jeder Körper hat viele solcher Organe die miteinander wechselwirken. Die Koordinierung aller dieser Elemente zu einer prägnanten Gesamtleistung übersteigt unsere Vorstellungskraft bei weitem. Dennoch funktioniert dies in jeder Sekunde in jedem Körper Billionenfach, ohne dass das ‚Bewusstsein‘ eines biologischen Systems dies ‚mitbekommt‘.

  18. Was haben all diese Komplexitätstufen mit ‚Erkenntnis‘ zu tun? Nimmt man unser bewusstes Erleben mit den damit verknüpften ‚Erkenntnissen‘ zum Ausgangspunkt und erklärt diese Form von Erkenntnis zur ‚Norm‘ für das, was Erkenntnis ist, dann haben all diese Komplexitätsstufen zunächst nichts mit Erkenntnis zu tun. Allerdings ist es dieses unser ’subjektives‘ ‚phänomenologisches‘ ‚Denken‘, das all die erwähnten ‚Komplexitäten‘ im Denken ’sichtbar‘ macht. Ob es noch andere Formen von Komplexität gibt, das wissen wir nicht, da wir nicht wissen, welche Form von Erkenntnis unsere subjektive Erkenntnisform von vornherein ‚ausblendet‘ bzw. aufgrund ihrer Beschaffenheit in keiner Weise ‚erkennt‘. Dies klingt paradox, aber in der Tat hat unser subjektives Denken die Eigenschaft, dass es durch Verbindung mit einem Körper einen indirekt vermittelten Bezug zur ‚Körperwelt jenseits des Bewusstseins‘ herstellen kann, der so ist, dass wir die ‚Innewohnung‘ unseres subjektiven Erkennens in einem bestimmten Körper mit dem Organ ‚Gehirn‘ als Arbeitshypothese formulieren können. Darauf aufbauend können wir mit diesem Körper, seinem Gehirn und den möglichen ‚Umwelten‘ dann gezielt Experimente durchführen, um Aufklärung darüber zu bekommen, was denn so ein Gehirn im Körper und damit korrelierend eine bestimmte Subjektivität überhaupt erkennen kann. Auf diese Weise konnten wir eine Menge über Erkenntnisgrenzen lernen, die rein aufgrund der direkten subjektiven Erkenntnis nicht zugänglich sind.

  19. Diese neuen Erkenntnisse aufgrund der Kooperation von Biologie, Psychologie, Physiologie, Gehirnwissenschaft sowie Philosophie legen nahe, dass wir das subjektive Phänomen der Erkenntnis nicht isoliert betrachten, sondern als ein Phänomen innerhalb einer multidimensionalen Komplexitätskugel, in der die Komplexitätsstrukturen, die zeitlich vor einem bewussten Erkennen vorhanden waren, letztlich die ‚Voraussetzungen‘ für das Phänomen des subjektiven Erkennens bilden.

  20. Gilt im bekannten Universum generell, dass sich die Systeme gegenseitig beeinflussen können, so kommt bei den biologischen Systemen mit ‚Bewusstsein‘ eine qualitativ neue Komponente hinzu: diese Systeme können sich aktiv ein ‚Bild‘ (‚Modell‘) ihrer Umgebung, von sich selbst sowie von der stattfindenden ‚Dynamik‘ machen und sie können zusätzlich ihr Verhalten mit Hilfe des konstruierten Bildes ’steuern‘. In dem Masse, wie die so konstruierten Bilder (‚Erkenntnisse‘, ‚Theorien‘,…) die tatsächlichen Eigenschaften der umgebenden Welt ‚treffen‘ und die biologischen Systeme ‚technologische Wege‘ finden, die ‚herrschenden Gesetze‘ hinreichend zu ‚kontrollieren‘, in dem Masse können sie im Prinzip nach und nach das gesamte Universum (mit all seinen ungeheuren Energien) unter eine weitreichende Kontrolle bringen.

  21. Das einzig wirkliche Problem für dieses Unterfangen liegt in der unglaublichen Komplexität des vorfindlichen Universums auf der einen Seite und den extrem beschränkten geistigen Fähigkeiten des einzelnen Gehirns. Das Zusammenwirken vieler Gehirne ist absolut notwendig, sehr wahrscheinlich ergänzt um leistungsfähige künstliche Strukturen sowie evtl. ergänzt um gezielte genetische Weiterentwicklungen. Das Problem wird kodiert durch das Wort ‚gezielt‘: Hier wird ein Wissen vorausgesetzt das wir so eindeutig noch nicht haben Es besteht ferner der Eindruck, dass die bisherige Forschung und Forschungsförderung diese zentralen Bereiche weltweit kum fördert. Es fehlt an brauchbaren Konzepten.

Eine Übersicht über alle bisherigen Beiträge findet sich hier