Archiv der Kategorie: Leben – Ursprung und Bedeutung

Der Ursprung und die Evolution des Lebens auf der Erde. Leben als ein kosmischer Imperativ. Reflexionen zum Buch von Christian de Duve. Teil 1

Christian de Duve, VITAL DUST. Life as a Cosmic Imperative, New York: Basic Books, 1995

Beginn: 14.Okt.2012, 11:10h

Letzte Änderung: 20.Okt.2012, 11:30h

  1. Ich bin auf das Buch von Christian de Duve aufmerksam geworden durch das Buch von Paul Davies.
  2. Christian de Duve bekam 1974 zusammen mit Albert Claude und George Palade den Nobelpreis in Physiologie in seiner Eigenschaft als Zytologe und Biochemiker für die Erkenntnisse zur Struktur und Funktion der Zelle (eine Biographie findet sich auf der Seite der Nobelpreisverleihung.
  3. Man muss sich immer wieder fragen, warum man sich die Zeit nimmt, Bücher zu lesen, deren Inhalt zwangsläufig weniger ‚aktuell‘ ist als die entsprechenden Artikel in den einschlägigen wissenschaftlichen Zeitschriften (‚journals‘). Meine Erfahrung ist aber die, dass die Zeitschriftenartikel immer sehr punktuell sind, wenig Kontext sichtbar machen, und daher das Verständnis eines größeren Zusammenhangs nur bei Lektüre von vielen hundert Artikeln möglich ist (abgesehen davon, dass der heutige Zwang zur Spezialisierung und der übermäßige Druck zum Publizieren wenig geeignet ist, Qualität zu unterstützen. Dazu kommen immer mehr ‚Zitierkartelle‘, durch die bestimmte Arbeitsgruppen versuchen, sich im ‚Haifischbecken‘ der internationalen Anerkennung ‚Gehör‘ zu verschaffen. Weiterhin gibt es den rein statistischen Impactfacor im Verein mit ‚wissenschaftspolitisch orientierten‘ Redaktionen). Die Bücher von Wissenschaftlern mit Rang (wie Davies, Duve, Heisenberg, Schrödinger usw.) enthalten in der Regel einen ‚Metatext‘, implizite ‚Kontexte‘, die die vielen Details in einen Zusammenhang stellen, der es allererst erlaubt, die vielen Details zu gewichten. Sie ersetzen die Lektüre aktueller Artikel nicht, aber sie bilden nach meinem Verständnis einen notwendigen Interpretationskontext, ohne den alles eher ‚unkoordiniert‘, ‚wirr‘ erscheint.
  4. Wie so viele andere beginnt Duve sein Buch in der Vorrede mit der bezeichnenden Feststellung, dass er über das Thema nur schreiben kann, indem er seine Fachgrenzen übersteigt. Niemand habe heute mehr das umfassende Wissen das notwendig sei. Dennoch können wir über unsere Stellung im Kosmos nur Klarheit gewinnen, wenn wir den Gesamtzusammenhang in den Blick nehmen. Und das Leben – einschließlich unserer selbst –, das wir verstehen wollen, gehört zum Komplexesten, was das Universum bisher hervorgebracht hat (vgl. S.xiii).
  5. Er beklagt, dass der normale Wissenschaftsbetrieb für solche umfassenden Betrachtungen nicht ausgelegt ist. Das Alltagsgeschäft und die zunehmende Spezialisierung liegen konträr zur Forderung einer integrativen Gesamtsicht (vgl. S.xiii.f).
  6. Am Ende seines Buches ‚Blueprint for a Cell‘ (1991) war er schon zu der Einsicht gekommen, dass das Leben sich ‚obligatorisch‘ aus den Eigenschaften der Materie ergeben haben muss, eine Einsicht, die weitere Fragen mit sich bringt. (vgl. S.xiv)
  7. In all seinen Untersuchungen geht er davon aus, dass die Phänomene des Lebens sich als ‚rein natürlicher Prozess‘ erklären lassen, durch Bezug auf jene empirischen Gesetze, die auch in den anderen naturwissenschaftlichen Gebieten gelten.(vgl. S.xiv)
  8. Ausgestattet mit diesen Prämissen meint Duve in dem Prozess des Kosmos eine Zunahme von ‚Komplexität‘ zu erkennen, die er in sieben Stufen anordnet: Beginnend mit deterministischen chemischen Prozessen (vor ca. 4 Mrd. Jahren), sieht er in den Wechselwirkungen der chemischen Bestandteil ‚Informationen‚ am Werke, die steuernd wirken; es bilden sich komplexe Protozellen als Vorläufer von Zellen; dann Einzelzellen, die sich unterschiedliche Protozellen als Bestandteile einverleiben. In diesen Zusammenhang gehört auch die ‚Erfindung‘ der Photosynthese, die es erlaubt, Sauerstoff abzuspalten und damit zur Bildung einer Sauerstoffatmosphäre führte. Multizelluläre Organismen besiedeln das Land; erst Pflanzen, dann auch Tiere. Die Fortpflanzungstechniken (Sexualität) passen sich den neuen Verhältnissen an. Bei den Pflanzen von Sporen zu Samen zu Blüten zu Früchten. Bei den Tieren von einer Entwicklung im Wasser zu Kopulation, zu Eiern im Wasser, dann auf dem Land, dann im Bauch. Schließlich bilden sich immer komplexere Netzwerke von neuronalen Zellen, die als Gehirn (‚brain‘), die Grundlage für ein neues Phänomen, den Geist (‚mind‘) bilden. Dies führt zu einer extremen Beschleunigung bei der Entwicklung des Menschen. (vgl. S.xvi-xvii)
  9. Für Duve ist es wichtig, festzustellen, dass das Phänomen des Geistes eine natürliche Manifestation der Materie ist, kein ‚Witz‘ (‚joke‘).(vgl.S.xviii)
  10. [ANMERKUNG: Es ist nicht üblich, in einem Vorwort mehodologische Aspekte zu diskutieren. Da wir hier die Thematik aber aus philosophischer Sicht behandeln, soll hier angemerkt werden, dass die primäre Untersuchungsperspektive die der Naturwissenschaften sein soll. Nimmt man dies an, dann fallen zwei Begriffe auf ‚Komplexität‘ und ‚Geist‘.
  11. ‚Komplexität‘ ist ein theoretischer Begriff, der nicht nur einen bestimmten ‚Theorierahmen‘ voraussetzt, sondern dessen Bedeutungsbereich selbst schon theoretische Begriffe sein müssen, die bestimmten theoretischen Anforderungen entsprechen. Es ist im weiteren Verlauf darauf zu achten, wie Duve mit diesem Begriff umgeht.
  12. ‚Geist‘ ist – nach normalem Sprachgebrauch – kein Begriff aus dem Bereich der Naturwissenschaften. Der Begriff ‚Geist‘ hat eine vielschichte ‚Begriffsgeschichte‘. In den meisten Fällen verbindet man den Begriff ‚Geist‘ mit Eigenschaften von ‚Menschen‘, deren ‚Verhalten‘ man ‚Eigenschaften‘ zuschreibt, die man mit ‚Geist‘ verknüpft. Die Verwendungsweise dieses Begriffs ist aber alles andere als klar. Selbst in der modernen Philosophie gibt es hier keine einheitliche Position. Man darf also gespannt sein, wie Duve diesen Begriff in seinem Buch verwenden wird.
  13. Ferner fällt auf, dass Duve die ‚kosmologische Vorgeschichte‘ in seiner Komplexitätshierarchie ausklammert. Diese wird heute in der neueren Astrobiologie sehr intensiv behandelt. Aus diesen Untersuchungen wissen wir, dass die Vorgeschichte ‚wesentlich‘ ist für die Rahmenbedingungen, unter denen Leben auf der Erde entstehen konnte. Man wird also prüfen müssen, inwieweit sich diese Ausklammerung auf die Ausführungen Duves merklich auswirken.]
  14. In der Einleitung wiederholt Duve die These, dass das Phänomen ‚Leben‘ auf der Erde das außergewöhnlichste Ereignis (‚most extraordinary adventure‘) im bekannten Universum ist und er wiederholt, dass man in dieser Geschichte des Lebens eine Reihe von ‚Innovationen‘ erkennen kann, die sich durch einen jeweiligen Anstieg an ‚Komplexität‘ auszeichnen. Und zur Beschreibung all dieser Phänomene genügen die Gesetze der ‚Physik‘ und ‚Chemie‘. (vgl.S.1)
  15. [ANMERKUNG: Neben den schon getätigten Anmerkungen oben sollte man sich im Hinterkopf behalten, dass der Physiker Paul Davies bzgl. der ‚Beschreibungskraft‘ der Physik eher kritisch daher kommt. Natürlich bleibt uns kaum eine Alternative zum Ansatz einer experimentellen Naturwissenschaft, aber es kann sein – was Davies ausdrückt – dass eine bestimmte Disziplin zu einem bestimmten Zeitpunkt selbst noch zu wenig Erkenntnisse verfügbar hat, um ein ‚komplexes‘ Phänomen adäquat beschreiben zu können. Dies sind die interessanten Grenzfälle, die die Chance bieten, vorhandene Schwachstellen in der Erkenntnis zu identifizieren und evtl. zu verbessern. Um solche Schwachstellen zu erkennen, muss man die methodischen Voraussetzungen immer sehr klar auf den Tisch legen und sich ihrer allzeit bewusst sein. Ob ein Chemiker sich der Grenzen der Physik allzeit voll bewusst ist, darf man zunächst einmal methodisch anzweifeln. Von daher ist es gut, die Worte von Paul Davies nicht zu vergessen.]
  16. Duve beginnt mit der weiteren These, dass das Phänomen des Lebens ‚eins‘ sei, da es aus dem gleichen ‚Material‘ bestehe, da es sich nach den gleichen ‚Prinzipien‘ gebildet habe, und da es – nach allen bisherigen Untersuchungen – auf die gleichen gemeinsamen ‚Vorstrukturen‘ zurückverweisen. (vgl. S.1)
  17. Mit ‚Material‘ meint er ‚Proteine‘ und ‚Nukleinsäuren‘ (’nucleic acids‘). Protein sind Sequenzen von – standardmäßig 20 (in Ausnahmen auch 22) verschiedenen — Aminosäuren, so dass man Proteine auch als ‚Worte‘ über dem Alphabet der Aminosäuren bezeichnet. Die vergleichenden Analysen von Proteinen und Nukleinsäuren haben bislang eine so hohe ‚Ähnlichkeit‘ zwischen allen bekannten Lebewesen gezeigt, dass eine rein ‚zufällige‘ Bildung auszuschließen sei, eine Ähnlichkeit, die zudem jeweils auf gemeinsame Vorstufen verweise. Daraus ergibt sich die weitere Frage, wann und wie es zu den ‚ersten‘ Strukturen kam, die wir als ‚Leben‘ bezeichnen?(vgl. S.1f)
  18. [ANMERKUNG: Bezeichnet man das Alphabet der Aminosäuren, die zum Einsatz kommen mit ‚A‘ und gibt man die Anzahl der Elemente des Alphabets an mit 20 (22), dann kann man schreiben |A| = 20 (22). Die Menge aller ‚Worte‘ (= Sequenzen) über dem Alphabet bezeichnet man normalerweise mit ‚A*‘. Ein einzelnes Protein p aus der Menge aller Proteine P ist dann ein Element aus dieser Menge, also ‚p in A*‘ bzw. ‚P subset A*‘. Die tatsächlich vorkommende Menge der Proteine sei ‚P+ subset P‘. Für die Menge aller theoretisch möglichen Proteine P gilt |P| = 20^L (bzw. 22^L) mit ‚L‘ als Länge eines Proteins. Also bei L=2 gibt es theoretisch schon 22^2 = 484 verschiedene Proteine. Bei 22^8 = 54.875.873.536, usw. Umso größer die Zahl der theoretischen Möglichkeiten wird, umso geringer wird die Wahrscheinlichkeit für ein bestimmtes Protein, vorzukommen, nämlich ‚1/20^L‘.
  19. Auch sollte man beachten, dass das ‚Material‘ der Proteine und Nukleinsäure nur einen kleinen Ausschnitt aus dem darstellt, was die Physik heute als ‚Materie‘ bezeichnen würde. Der heutige Materiebegriff ist grundsätzlich verschieden von dem Materiebegriff der vorausgehenden Jahrhunderte und allemal der vorausgehenden Jahrtausende. Fast alle philosophischen Aussagen, die irgendwie Bezug nehmen auf den Begriff ‚Geist‘ im Unterschied zu ‚Materie‘ sind aus heutiger Sicht von daher stark ‚wertlos‘ geworden, da sie Voraussetzungen implizieren, die so einfach nicht mehr stimmen. In vielen Diskussionen — insbesondere auch theologischen — wird dies kaum bis garnicht beachtet.
  20. Die Angaben zu den konkreten Details der Gemeinsamkeiten zwischen den verschiedenen ‚Lebensmaterialien‘ sind an dieser Stelle noch sehr vage. Man sollte dies im Blick behalten.]
  21. Fragt man sich, wie man über die vorausgehende Geschichte der Lebensformen etwas wissen kann, so verweist Duve auf speziell zwei Quellen: Fossilien, die bis zu 600 Mio Jahren zurückreichen sollen und die genetischen Informationen der lebenden Zellen. (vgl. S.2f) Allerdings gibt es noch spezielle Fossilien von Bakterien und den Zellkörpern von Bakterien, die sich in Ablagerungen bis zu 3.5 Mrd Jahre zurück datieren lassen.(vgl. S.4f)
  22. Im Falle lebender Zellen herrscht die Annahme, dass sich Unterschiede im Laufe der Zeit aufgrund von Mutationen gebildet haben können. Je mehr sich unterschiedliche Codes unterscheiden, um so weiter liegen sie zeitlich (man muss dafür die Veränderungsgeschwindigkeit nach Anzahl von Generationen pro Zeiteinheit ermitteln) auseinander. Nach dieser Logik kann man auf der Zeitachse ‚zurückschauen‘ und die sich immer ähnlicher werdenden Vorfahren (‚ancestors‘) identifizieren. Bei diesem Verfahren muss man nicht das gesamte Genom vergleichen, sondern es hilft oft schon nur ein bestimmte Protein zu nehmen, das eine wichtige Funktion ausübt. (vgl. S.3f)
  23. Bei der Frage nach dem Ursprung des Lebens – auf der Erde oder von außerhalb der Erde – sieht Duve momentan keine überzeugenden Argumente für eine eindeutige Entscheidung in Richtung von ‚außerhalb‘ der Erde. Zumal im letzteren Fall die Frage nach der genauen Entstehung weiter im Dunkel verbliebe. Optiert man für den Entstehungsort Erde, dann bleiben ca. 200 Mio Jahre Zeit für solch einen Prozeß auf einer in dieser Phase eher lebensfeindlichen Erde.(vgl. S.6f) [Anmerkung: Eine Klärung der Frage einer möglichen Entstehung auf der Erde ist ja zugleich auch ein Beitrag zur Grundsatzfrage, wie die erste Zelle entstehen konnte (auch wenn bei einer Entstehung auf einem anderen Planeten durch unterschiedliche Randbedingungen Details im Zellaufbau evtl. anders sein würden)].
  24. Dennoch verbleibt die Frage, ob es wissenschaftlich Sinn macht, die Frage nach der Entstehung des Lebens tatsächlich zu stellen? Was, wenn – wie nicht wenige annehmen – die Entstehung des Lebens auf einer Reihe von absolut zufälligen Ereignissen beruht, die sich als solche nicht reproduzieren lassen? (vgl. S.7f)
  25. Dem hält Duve entgegen, dass die schon heute bekannten molekular-biologischen chemischen Mechanismen von Zellen und deren Bestandteile dermaßen komplex und hochorganisiert sind, dass rein logisch ein rein zufälliges Geschehen ausscheidet. Vielmehr sprechen alle Tatsachen dafür, dass es die Struktur der Materie selbst ist, die gewissen Entwicklungstendenzen als hochwahrscheinlich erscheinen lässt, also in dem Sinne, dass die Materie ‚von Leben geschwängert‘ ist (‚pregnant with life‘). Mit dieser Voraussetzung kann Leben quasi ‚überall‘ entstanden sein und wird auch entstehen, wenn gewissen Bedingungen gegeben sein. (vgl. S.6-7)
  26. Dieses ‚Schwanger sein von Leben‘ ist nicht zu verwechseln mit einem ‚Plan‘, oder einem expliziten ‚Design‘. Es realisiert sich vielmehr schrittweise, über viele Zwischenstationen, in denen zu keinem Zeitpunkt der aktuelle Prozess ‚weiß‘, was noch kommen soll. Der aktuelle Prozess lebt im ‚Augenblick‘ und es passiert nur das, was nach den herrschenden Gesetzen zu diesem Zeitpunkt möglich ist. (vgl. S.9f)

Zur Fortsetzung siehe TEIL 2.

Eine Übersicht über alle bisherigen Blogeinträg nach Themen findet sich HIER.

DIE UNBEGREIFBARKEIT DES MENSCHEN oder DAS GEHIRN ALS SPIEGEL DES UNIVERSUMS (wegen Providerwechsel war dieser Beitrag zeitweise nicht sichtbar)

  1. Wenn man sich aufmacht in die Welt der neuen Erkenntnisse zum Universum und zum Leben, dann ist man sehr bald an einem Punkt, wo die Maschinerie des Alltags ‘bizarr’ wirkt, ‘unwirklich’, wie ein Marionettentheater von ‘Wahnsinnigen’, die sich über Dinge aufregen, die dermaßen lachhaft erscheinen, dass man nicht begreifen kann, wie solch ein Verhalten möglich ist.
  2. Aber, falsche Überheblichkeit ist fehl am Platze. Wo immer wir uns als ‘Beobachter’ wähnen stecken wir zu 100% leibhaftig genau mittendrin in diesem so ‘lächerlich erscheinendem’ Spiel. Was immer wir ‘tief in uns drinnen’ zu fühlen und zu denken meinen, so wahr es uns erscheint, so bedeutsam, gegenüber der ‘Welt da draußen’, der Welt, die wir ‘real’ nennen, so wenig wird das ‘Innere’ ‘wirksam’, ‘gestalterisch mächtig’, ‘verändernd’, solange wir keinen Weg finden, unser ‘Inneres’ mit dem ‘Äußeren’ zu ‘versöhnen’.
  3. Von daher erscheint es oft einfacher, erst gar keine Erkenntnisse zu haben. Man gerät nicht in ‘Spannung’, man spürt keine ‘Differenzen’, man sieht keine Anhaltspunkte, wo man etwas tun sollte….Das Bild von den ‘glücklichen Kühen’… Doch ist auch dies – vermute ich – eine grobe Vereinfachung. Eher scheint es so zu sein, dass alle Lebensformen, selbst die einfachsten, im ‘Medium ihrer inneren Zustände’ Äquivalente von ‘Erleben’ und ‘Leiden’ haben, die wegzudiskutieren bequem ist, aber diesen Zuständen womöglich nicht gerecht wird.
  4. Wenn man aber irgendwelche Erkenntnisse hat – und die haben wir alle, wenngleich unterschiedlich –, dann führen diese unweigerlich zu ‘Spannungen’ zu dem Bisherigen. Wie geht man damit um? Empfindet man sie als ’störend’ und ‘bedrückend’, dann wird man unzufrieden, krank,…. Empfindet man sie als ‘anregend’, ‘belebend’, ‘inspirierend’, dann fühlt man sich gut….
  5. Natürlich macht es einen Unterschied, ob neue Erkenntnisse sich eher in ‘Übereinstimmung’ mit der aktuellen Situation befinden oder eher im ‘Gegensatz’. Im letzteren Fall deuten sich Konflikte an, mögliche Änderungen des Status Quo. Sind die Menschen in der Umgebung aufgeschlossen, neugierig, unternehmungslustig, ist dies kein Problem. Herrscht dagegen ‘Bewahrung’ vor, ‘Festhalten’, Angst vor Veränderung, dann können neue Erkenntnisse zum Problem werden.
  6. Die Geschichte zeigt, dass das Neue, sofern es wirtschaftliche und politische Vorteile zu bringen scheint, eher eine Chance hat, als wenn es liebgewordene Anschauungen in Religion, Politik usw. so in Frage stellt, dass herrschende Vorteilsverhältnisse gefährdet werden (eine Glühbirne, die 100 Jahre hält, will keiner; ein Medikament, das Ursachen beseitigt anstatt Leiden zu mildern, will auch keiner; usw.).
  7. Zurück zu den neuen Erkenntnissen über das Universum und das Leben. Zurück zu unserer Welt, die in ihren konkreten Abläufen so ‘verrückt’ erscheinen kann. Was machen wir dann, wenn wir uns in dieser permanenten Spannung zwischen ‘gedanklich anderer Welt’ und ‘faktisch vorfindlicher So-Welt’ vorfinden? Müssen wir verzweifeln?
  8. Wenn man sich anschaut, wie mühsam dasjenige, was wir von heute aus als ‘Leben’ erkennen können, sich aus dem Raum der Atome und Moleküle der jungen Erde im Laufe von mehr als 3.5 Mrd Jahre herausexperimentiert hat, mit unendlichem Aufwand, unter permanentem Leiden, immer im Totalverlust (Tod) endend, dann erscheint zumindest die aktuelle Situation als ein solch unglaublicher und – vergleichsweise – ‘paradiesischer’ Zustand, dass ein – wie auch immer geartetes – Lamentieren geradezu als ’schäbig’ erscheinen mag .
  9. Andererseits, wir sind – nach allem, was wir wissen – die erste Art von Lebewesen, die ein ‘Gehirn’ besitzen, das uns in die Lage versetzt, nicht nur auf primitive Weise wahrgenommene Reize (Stimuli = S) direkt und ‘festverdrahtet’ (’reaktiv’, ‘Instinktiv’) in fixierte Antworten (Reaktionen = R) zu übersetzen, sondern wir können weit mehr. Unser Gehirn kann z.B. Ereignisse verallgemeinern, in Beziehung zu anderem setzen, kann erinnern, kann relativ zu Körperzuständen ‘bewerten’, kann ‘komplexe Modelle’ von Situationen und deren mögliche Veränderungen ‘denken’…Mit anderen Worten, unser Gehirn versetzt uns in die Lage ‘in’ unserem Körper die Welt ‘da draußen’ ‘nachzubauen’, sie ‘intern zu simulieren’ und in ‘Gedankenexperimenten’ alternative ‘mögliche Welten’ zu ‘denken’. In diesem Kontext können wir auch ein ‘Modell von uns selbst’ und ‘den Anderen’ konstruieren. Es sind diese ’selbstgemachten Bilder’ in unserem Gehirn die wir für ‘real’ halten, nicht die Welt selbst; die kennt unser Gehirn gar nicht.
  10. D.h. – soweit wir wissen — passiert heute, ca. 14,7 Mrd. Jahre nach dem sogenannten ‘Big Bang’, etwas, was innerhalb des bekannten Universums ungeheuerlich ist: im Medium der biologischen Gehirne ’schaut sich das Universum selbst an’ (wobei diese Gehirne ein ‘Produkt’ dieses Universums sind als Teil des Phänomens ‘Leben’!). D.h. das Universum schafft sich gleichsam einen ‘Spiegel’, in dem es sich selbst anschauen kann. Mehr noch, über das ‘Spiegeln’ hinaus ist ein Gehirn (und noch mehr ein ‘Verbund von Gehirnen’) in der Lage, Veränderungen ‘einzuleiten’ auf der Basis der ‘Spiegelungen’. Dies führt zum Paradox, dass das Universum einerseits im Lichte der bekannten physikalischen Gesetze eine ‘bestimmte Entwicklung’ zu nehmen scheint, während es im Medium der Gehirne ’sich selbst in Frage stellen kann’. Welch ein wahnwitziger Gedanke (allerdings bilden wir individuelle Menschen uns bislang eher ein, wir seien die Meister des Universums… eine putzige Vorstellung…).
  11. Aus Sicht des einzelnen Menschen mag dies ‘unwirklich’ erscheinen, ‘artifiziell’, aber im Gesamtkontext des Lebens im Universum ist dies ein absolut herausragendes Ereignis. Während die ‘Materiewerdung’ mit den anschließenden Ausprägungen als stellare Wolken, Sterne, Galaxien sich einigermaßen mit den Gesetzen der Physik beschreiben lassen, entzieht sich die Entstehung des Lebens als Opponentin zur Entropie und durch den ‘inneren Trend’ zur Steigerung der Komplexität bislang allen physikalischen Erklärungsversuchen. Ein Teil der Komplexität ist auch die Zunahme der Kommunikation, die zu einer Koordinierung von Gehirnen, deren ‘gedanklichen Räumen’ führt.
  12. Das Erleben von ‘mehr’ Erkenntnis und einer damit einhergehenden ‘Unruhe’, ‘Spannung’ ist also kein ‘Zufall’, keine ‘Panne’, keine ‘Störung’ sondern gehört wesentlich zum Phänomen des Lebens hinzu. Indem das Leben sich alle frei verfügbare Energien in seiner Umgebung immer mehr ‘einverleibt’ und damit Strukturen schafft, die dies immer besser können, also immer mehr Energie ‘einsammeln’ können, stellt sich die Frage, wozu das Ganze?
  13. Nach gängiger Meinung ist der ‘Big Bang’ dadurch charakterisiert, dass Energie sich in einer Weise in Materie verwandelt hat, dass daraus eben das heute bekannte Universum ‘hervorgehen’ konnte. Sterne und Galaxien sind eine Form der Zusammenballung dieser Materie (durch Gravitation, aber nicht nur (schwarze Materie?)); das uns bekannte ‘Leben’ ist auch eine Zusammenballung von Energie, aber anders. Was verstehen wir noch nicht?
  14. Die klassischen Religionen, so hilfreich sie in er Vergangenheit partiell vielleicht waren, in der heutigen Situation erscheinen sie mir wenig hilfreich, eher hinderlich. Sie verstellen den Blick und können das Herz verdunkeln. Damit will ich nicht sagen, dass auch die Gottesfrage obsolet sei. Wenn es überhaupt so etwas wie ‘Gott’ gibt, so sind wie ihm näher als je zuvor.
  15. Nur sollten wir die ‘Wahrheit’ der Erkenntnis nicht verwechseln mit dem ‘Erkenntniswunsch’. Die Bücher der alten Philosophen (alt kann bis gestern gehen..-:)) sind voll von Pseudorationalismen: man analysiert wie ein Weltmeister um letztlich dann doch nur sein eigenes Vorurteil zu rechtfertigen. Niemand ist davor gefeit; auch ich nicht.
  16. Alle bekannten Positionen muss man immer und immer wieder in Frage stellen, muss sie versuchsweise zerstören. Die ‘wahre Wahrheit’ ist das, was sich nicht zerstören lässt, sie ist das, was vor all unserem individuellen Denken schon immer da war (was nicht heißt, dass sie ‘ewig’ sein muss). Vor der Wahrheit brauchen wir daher keine Angst haben, nur vor uns selbst, vor uns Menschen, die wir unsere individuellen Unwahrheiten schützen und retten wollen, weil wir uns nicht vorstellen können, dass die wahre Wahrheit schlicht und einfach größer ist. Wir klammern uns an das bischen Leben, was wir individuell haben ohne lange zu begreifen, dass dieses ‘Bischen’ nur da ist, weil es ein größeres Ganzes gibt, durch das wir überhaupt geworden sind und in dem alles andere nur weiterlebt.
  17. Was bleibt also: viel Geduld ist notwendig und die Kunst, immer wieder sterben zu können um zu lernen, dass das Leben erst dort anfängt, wo wir oft glauben, dass es zu Ende sei. Freiwillig schaffen dies die wenigsten. Leicht ist es nicht. Transzendenz in Immanenz.
  18. Eigentlich wollte ich über etwas ganz anderes schreiben, aber so kommt es manchmal.

Eine Übersicht über alle bisherige Beiträge findet sich HIER.

SUCHE NACH DEM URSPRUNG UND DER BEDEUTUNG DES LEBENS (Paul Davies). Teil 2 (Information als Grundeigenschaft alles Materiellen?)

Paul Davies, The FIFTH MIRACLE: The Search for the Origin and Meaning of Life, New York:1999, Simon & Schuster

 Fortsetzung von Suche… (Teil 1)

Start: 27.Aug.2012

Letzte Fortsetzung: 1.Sept.2012

  1. Das dritte Kapitel ist überschrieben ‚Out of the Slime‘. (SS.69-96) Es startet mit Überlegungen zur Linie der Vorfahren (Stammbaum), die alle auf ‚gemeinsame Vorfahren‘ zurückführen. Für uns Menschen zu den ersten Exemplaren des homo sapiens in Afrika vor 100.000 Jahren, zu den einige Millionen Jahre zurückliegenden gemeinsamen Vorläufern von Affen und Menschen; ca. 500 Mio Jahre früher waren die Vorläufer Fische, zwei Milliarden Jahre zurück waren es Mikroben. Und diese Rückführung betrifft alle bekannten Lebensformen, die, je weiter zurück, sich immer mehr in gemeinsamen Vorläufern vereinigen, bis hin zu den Vorläufern allen irdischen Lebens, Mikroorganismen, Bakterien, die die ersten waren.(vgl. S.69f)

  2. [Anmerkung: Die Formulierung von einem ‚einzelnen hominiden Vorfahren‘ oder gar von der ‚afrikanischen Eva‘ kann den Eindruck erwecken, als ob der erste gemeinsame Vorfahre ein einzelnes Individuum war. Das scheint mir aber irreführend. Bedenkt man, dass wir ‚Übergangsphasen‘ haben von Atomen zu Molekülen, von Molekülen zu Netzwerken von Molekülen, von Molekülnetzwerken zu Zellen, usw. dann waren diese Übergänge nur erfolgreich, weil viele Milliarden und Abermilliarden von Elementen ‚gleichzeitig‘ beteiligt waren; anders wäre ein ‚Überleben‘ unter widrigsten Umständen überhaupt nicht möglich gewesen. Und es spricht alles dafür, dass dieses ‚Prinzip der Homogenität‘ sich auch bei den ‚komplexeren‘ Entwicklungsstufen fortgesetzt hat. Ein einzelnes Exemplar einer Art, das durch irgendwelche besonderen Eigenschaften ‚aus der Reihe‘ gefallen wäre, hätte gar nicht existieren können. Es braucht immer eine Vielzahl von hinreichend ‚ähnlichen‘ Exemplaren, dass ein Zusammenwirken und Fortbestehen realisiert werden kann. Die ‚Vorgänger‘ sind also eher keine spezifischen Individuen (wenngleich in direkter Abstammung schon), sondern immer Individuen als Mitglieder einer bestimmten ‚Art‘.]

  3. Es ist überliefert, dass Darwin im Sommer 1837, nach der Rückkehr von seiner Forschungsreise mit der HMS Beagle in seinem Notizbuch erstmalig einen irregulär verzweigenden Baum gemalt hat, um die vermuteten genealogischen Zusammenhänge der verschiedenen Arten darzustellen. Der Baum kodierte die Annahme, dass letztlich alle bekannten Lebensformen auf einen gemeinsamen Ursprung zurückgehen. Ferner wird deutlich, dass viele Arten (heutige Schätzungen: 99%) irgendwann ‚ausgestorben‘ sind. Im Falle einzelliger Lebewesen gab es aber – wie wir heute zunehmend erkennen können – auch das Phänomene der Symbiose: ein Mikroorganismus ‚frißt‘ andere und ‚integriert‘ deren Leistung ‚in sich‘ (Beispiel die Mitochondrien als Teil der heute bekannten Zellen). Dies bedeutet, dass ‚Aussterben‘ auch als ‚Synthese‘ auftreten kann.(vgl. SS.70-75)

  4. Die Argumente für den Zusammenhang auf Zellebene zwischen allen bekannten und ausgestorbenen Arten mit gemeinsamen Vorläufern beruhen auf den empirischen Fakten, z.B. dass die metabolischen Verläufe der einzelnen Zellen gleich sind, dass die Art und Weise der genetischen Kodierung und Weitergabe gleich ist, dass der genetische Kode im Detail der gleiche ist, oder ein kurioses Detail wie die molekulare Ausrichtung – bekannt als Chiralität –; obgleich jedes Molekül aufgrund der geltenden Gesetze sowohl rechts- oder linkshändig sein kann, ist die DNA bei allen Zellen ‚rechtshändig‘ und ihr Spiegelbild linkshändig. (vgl.SS.71-73)

  5. Da das DNA-Molekül bei allen bekannten Lebensformen in gleicher Weise unter Benutzung von Bausteinen aus Aminosäure kodiert ist, kann man diese Moleküle mit modernen Sequenzierungstechniken Element für Element vergleichen. Unter der generellen Annahme, dass sich bei Weitergabe der Erbinformationen durch zufällige Mutationen von Generation zur Generation Änderungen ergeben können, kann man anhand der Anzahl der verschiedenen Elemente sowohl einen ‚genetischen Unterschied‘ wie auch einen ‚genealogischen Abstand‘ konstruieren. Der genetische Unterschied ist direkt ’sichtbar‘, die genaue Bestimmung des genealogischen Abstands im ‚Stammbaum‘ hängt zusätzlich ab von der ‚Veränderungsgeschwindigkeit‘. Im Jahr 1999 war die Faktenlage so, dass man annimmt, dass es gemeinsame Vorläufer für alles Leben gegeben hat, die sich vor ca. 3 Milliarden Jahren in die Art ‚Bakterien‘ und ‚Nicht-Bakterien‘ verzweigt haben. Die Nicht-Bakterien haben sich dann weiter verzweigt in ‚Eukaryoten‘ und ‚Archäen‘. (vgl. SS.75-79)

  6. Davies berichtet von bio-geologischen Funden nach denen in de Nähe von Isua (Grönland) Felsen von vor mindestens -3.85 Milliarden Jahren gefunden wurden mit Spuren von Bakterien. Ebenso gibt es Funde von Stromatolythen (Nähe Shark Bay, Australien), mit Anzeichen für Cyanobakterien aus der Zeit von ca. -3.5 Milliarden Jahren und aus der gleichen Zeit Mikrofossilien in den Warrawoona Bergen (Australien). Nach den Ergebnissen aus 1999 hatten die Cyanobakterien schon -3.5 Mrd. Jahre Mechanismen für Photosynthese, einem höchst komplexen Prozess.(vgl. SS.79-81)

  7. Die immer weitere Zurückverlagerung von Mikroorganismen in die Vergangenheit löste aber nicht das Problem der Entstehung dieser komplexen Strukturen. Entgegen der früher verbreiteten Anschauung, dass ‚Leben‘ nicht aus ‚toter Materie‘ entstehen kann, hatte schon Darwin 1871 in einem Brief die Überlegung geäußert, dass in einer geeigneten chemischen Lösung über einen hinreichend langen Zeitraum jene Moleküle und Molekülvernetzungen entstehen könnten, die dann zu den bekannten Lebensformen führen. Aber erst in den 20iger Jahren des 20.Jahrhunderts waren es Alexander Oparin (Rußland) und J.B.S.Haldane (England) die diese Überlegungen ernst nahmen. Statt einem kleinen See,  wie bei Darwin, nahm Haldane an, dass es die Ozeane waren, die den Raum für den Übergangsprozess von ‚Materie‘ zu ‚Leben‘ boten. Beiden Forschern fehlten aber in ihrer Zeit die entscheidende Werkzeuge und Erkenntnisse der Biochemie und Molekularbiologie, um ihre Hypothesen testen zu können. Es war Harold Urey (USA) vorbehalten, 1953 mit ersten Laborexperimenten beginnen zu können, um die Hypothesen zu testen. (vgl. SS.81-86)

  8. Mit Hilfe des Studenten Miller arrangierte Urey ein Experiment, bei dem im Glaskolben eine ‚Mini-Erde‘ bestehend aus etwas Wasser mit den Gasen Methan, Hydrogen und Ammonium angesetzt wurde. Laut Annahme sollte dies der Situation um ca. -4 Millarden Jahren entsprechen. Miller erzeugte dann in dem Glaskolben elektrische Funken, um den Effekt von Sonnenlicht zu simulieren. Nach einer Woche fand er dann verschiedene Amino-Säuren, die als Bausteine in allen biologischen Strukturen vorkommen, speziell auch in Proteinen.(vgl. S.86f)

  9. Die Begeisterung war groß. Nachfolgende Überlegungen machten dann aber klar, dass damit noch nicht viel erreicht war. Die Erkenntnisse der Geologen deuteten in den nachfolgenden Jahren eher dahin, dass die Erdatmosphäre, die die sich mehrfach geändert hatte, kaum Ammonium und Methan enthielt, sondern eher reaktions-neutrales Kohlendioxyd und Schwefel, Gase die keine Aminosäuren produzieren. (vgl.S.87)

  10. Darüber hinaus ist mit dem Auftreten von Aminosäuren als Bausteine für mögliche größere Moleküle noch nichts darüber gesagt, ob und wie diese größere Moleküle entstehen können. Genauso wenig wie ein Haufen Ziegelsteine einfach so ein geordnetes Haus bilden wird, genauso wenig formen einzelne Aminosäuren ‚einfach so‘ ein komplexes Molekül (ein Peptid oder Polypeptid). Dazu muss der zweite Hauptsatz überwunden werden, nach dem ’spontane‘ Prozesse nur in Richtung Energieabbau ablaufen. Will man dagegen komplexe Moleküle bauen, muss man gegen den zweiten Hauptsatz die Energie erhöhen; dies muss gezielt geschehen. In einem angenommenen Ozean ist dies extrem unwahrscheinlich, da hier Verbindungen eher aufgelöst statt synthetisiert werden.(vgl.87-90)

  11. Der Chemiker Sidney Fox erweiterte das Urey-Experiment durch Zufuhr von Wärme. In der Tat bildeten sich dann Ketten von Aminosäurebausteinen die er ‚Proteinoide‘ nannte. Diese waren eine Mischung aus links- und rechts-händigen Molekülen, während die biologisch relevanten Moleküle alle links-händig sind. Mehr noch, die biologisch relevanten Aminosäureketten sind hochspezialisiert. Aus der ungeheuren Zahl möglicher Kombinationen die ‚richtigen‘ per Zufall zu treffen grenzt mathematisch ans Unmögliche.(vgl.S.90f) Dazu kommt, dass eine Zelle viele verschiedene komplexe Moleküle benötigt (neben Proteinen auch Lipide, Nukleinsäuren, Ribosomen usw.). Nicht nur ist jedes dieser Moleküle hochkomplex, sondern sie entfalten ihre spezifische Wirkung als ‚lebendiges Ensemble‘ erst im Zusammenspiel. Jedes Molekül ‚für sich‘ weiß aber nichts von einem Zusammenhang. Wo kommen die Informationen für den Zusammenhang her? (vgl.S.91f) Rein mathematisch ist die Wahrscheinlichkeit, dass sich die ‚richtigen‘ Proteine bilden in der Größenordnung von 1:10^40000, oder, um ein eindrucksvolles Bild des Physikers Fred Hoyle zu benutzen: genauso unwahrscheinlich, wie wenn ein Wirbelsturm aus einem Schrottplatz eine voll funktionsfähige Boeing 747 erzeugen würde. (vgl.S.95)

  12. Die Versuchung, das Phänomen des Lebens angesichts dieser extremen Unwahrscheinlichkeiten als etwas ‚Besonderes‘, als einen extrem glücklichen Zufall, zu charakterisieren, ist groß. Davies plädiert für eine Erklärung als eines ’natürlichen physikalischen Prozesses‘. (S.95f)

  13. Im Kapitel 4 ‚The Message in the Machine‘ (SS.97-122) versucht Davies mögliche naturwissenschaftliche Erklärungsansätze, beginnend bei den Molekülen, vorzustellen. Die Zelle selbst ist so ungeheuerlich komplex, dass noch ein Niels Bohr die Meinung vertrat, dass Leben als ein unerklärbares Faktum hinzunehmen sei (vgl.Anmk.1,S.99). Für die Rekonstruktion erinnert Davies nochmals daran, dass diejenigen Eigenschaften, die ‚lebende‘ Systeme von ’nicht-lebenden‘ Systemen auszeichnen, Makroeigenschaften sind, die sich nicht allein durch Verweis auf die einzelnen Bestandteile erklären lassen, sondern nur und ausschließlich durch das Zusammenspiel der einzelnen Komponenten. Zentrale Eigenschaft ist hier die Reproduktion. (vgl.SS.97-99)

  14. Reproduktion ist im Kern gebunden an das Kopieren von drei-dimensional charakterisierten DNA-Molekülen. Vereinfacht besteht solch ein DNA-Molekül aus zwei komplementären Strängen, die über eine vierelementiges Alphabet von Nukleinsäurebasen miteinander so verbunden sind, dass es zu jeder Nukleinsäurebase genau ein passendes Gegenstück gibt. Fehlt ein Gegenstück, ist es bei Kenntnis des Kodes einfach, das andere Stück zu ergänzen. Ketten von den vierelementigen Basen können ‚Wörter‘ bilden, die ‚genetische Informationen‘ kodieren. Ein ‚Gen‘ wäre dann solch ein ‚Basen-Wort‘. Und das ganze Molekül wäre dann die Summe aller Gene als ‚Genom‘. Das ‚Auftrennen‘ von Doppelsträngen zum Zwecke des Kopierens wie auch das wieder ‚Zusammenfügen‘ besorgen spezialisierte andere Moleküle (Enzyme). Insgesamt kann es beim Auftrennen, Kopieren und wieder Zusammenfügen zu ‚Fehlern‘ (Mutationen) kommen. (vgl.SS.100-104)

  15. Da DNA-Moleküle als solche nicht handlungsfähig sind benötigen sie eine Umgebung, die dafür Sorge trägt, dass die genetischen Informationen gesichert und weitergegeben werden. Im einfachen Fall ist dies eine Zelle. Um eine Zelle aufzubauen benötigt man Proteine als Baumaterial und als Enzyme. Proteine werden mithilfe der genetischen Informationen in der DNA erzeugt. Dazu wird eine Kopie der DNA-Informationen in ein Molekül genannt Boten-RNA (messenger RNA, mRNA) kopiert, dieses wandert zu einem komplexen Molekülnetzwerk genannt ‚Ribosom‘. Ribosomen ‚lesen‘ ein mRNA-Molekül als ‚Bauanleitung‘ und generieren anhand dieser Informationen Proteine, die aus einem Alphabet von 20 (bisweilen 21) Aminosäuren zusammengesetzt werden. Die Aminosäuren, die mithilfe des Ribosoms Stück für Stück aneinandergereiht werden, werden von spezialisierten Transportmolekülen (transfer RNA, tRNA) ‚gebracht‘, die so gebaut sind, dass immer nur dasjenige tRNA-Molekül andocken kann, das zur jeweiligen mRNA-Information ‚passt‘. Sobald die mRNA-Information ‚abgearbeitet‘ ist, liegt eines von vielen zehntausend möglichen Proteinen vor. (vgl.SS. 104-107) Bemerkenswert ist die ‚Dualität‘ der DNA-Moleküle (wie auch der mRNA) sowohl als ‚Material/ Hardware‘ wie auch als ‚Information/ Software‘. (vgl.S.108)

  16. Diese ‚digitale‘ Perspektive vertieft Davies durch weitere Betrachtung und führt den Leser zu einem Punkt, bei dem man den Eindruck gewinnt, dass die beobachtbaren und messbaren Materialien letztlich austauschbar sind bezogen auf die ‚impliziten Strukturen‘, die damit realisiert werden. Am Beispiel eines Modellflugzeugs, das mittels Radiowellen ferngesteuert wird, baut er eine Analogie dahingehend auf, dass die Hardware (das Material) des Flugzeugs wie auch der Radiowellen selbst als solche nicht erklären, was das Flugzeug tut. Die Hardware ermöglicht zwar grundsätzlich bestimmte Flugeigenschaften, aber ob und wie diese Eigenschaften genutzt werden, das wird durch ‚Informationen‘ bestimmt, die per Radiowellen von einem Sender/ Empfänger kommuniziert werden. Im Fall einer Zelle bilden komplexe Molekülnetzwerke die Hardware mit bestimmten verfügbaren chemischen Eigenschaften, aber ihr Gesamtverhalten wird gesteuert durch Informationen, die primär im DNA-Molekül kodiert vorliegt und die als ‚dekodierte‘ Information alles steuert.(vgl. SS.113-115)

  17. [Anmerkung: Wie schon zuvor festgestellt, repräsentieren Atome und Moleküle als solche keine ‚Information‘ ‚von sich aus‘. Sie bilden mögliche ‚Ereignisse‘ E ‚für andere‘ Strukturen S, sofern diese andere Strukturen S auf irgendeine Weise von E ‚beeinflusst‘ werden können. Rein physikalisch (und chemisch) gibt es unterschiedliche Einwirkungsmöglichkeiten (z.B. elektrische Ladungen, Gravitation,…). Im Falle der ‚Information‘ sind es aber nicht nur solche primären physikalisch-chemischen Eigenschaften, die benutzt werden, sondern das ‚empfangende‘ System S befindet sich in einem Zustand, S_inf, der es dem System ermöglicht, bestimmte physikalisch-chemische Ereignisse E als ‚Elemente eines Kodes‘ zu ‚interpretieren. Ein Kode ist minimal eine Abbildungsvorschrift, die Elemente einer Menge X (die primäre Ereignismenge) in eine Bildmenge Y (irgendwelche anderen Ereignisse, die Bedeutung) ‚übersetzt‘ (kodiert), also CODE: X —> Y. Das Materiell-Stoffliche wird damit zum ‚Träger von Informationen‘, zu einem ‚Zeichen‘, das von einem Empfänger S ‚verstanden‘ wird. Im Falle der zuvor geschilderten Replikation wurden ausgehend von einem DNA-Molekül (= X, Ereignis, Zeichen) mittels mRNA, tRNA und Ribosom (= Kode, CODE) bestimmte Proteine (=Y, Bedeutung) erzeugt. Dies bedeutet, dass die erzeugten Proteine die ‚Bedeutung des DNA-Moleküls‘ sind unter Voraussetzung eines ‚existierenden Kodes‘ realisiert im Zusammenspiel eines Netzwerkes von mRNA, tRNAs und Ribosom. Das Paradoxe daran ist, das die einzelnen Bestandteile des Kodes, die Moleküle mRNA, tRNA und Ribosom (letzteres selber hochkomplex) ‚für sich genommen‘ keinen Kode darstellen, nur in dem spezifischen Zusammenspiel! Wenn also die einzelnen materiellen Bestandteile, die Atome und Moleküle ‚für sich gesehen‘ keinen komplexen Kode darstellen, woher kommt dann die Information, die alle diese materiell hochkomplexen Bestandteile auf eine Weise ‚zusammenspielen‘ lässt, die weit über das hinausgeht, was die Bestandteile einzeln ‚verkörpern‘? ]

  18. "Zelle und Turingmaschine"
    zelle_tm

    [Anmerkung: Es gibt noch eine andere interssante Perspektive. Das mit Abstand wichtigste Konzept in der (theoretischen) Informatik ist das Konzept der Berechenbarkeit, wie es zunächst von Goedel 1931, dann von Turing in seinem berühmten Artikel von 1936-7 vorgelegt worden ist. In seinem Artikel definiert Turing das mathematische (!) Konzept einer Vorrichtung, die alle denkbaren berechenbaren Prozesse beschreiben soll. Später gaben andere dieser Vorrichtung den Namen ‚Turingmaschine‘ und bis heute haben alle Beweise immer nur dies eine gezeigt, dass es kein anderes formales Konzept der intuitiven ‚Berechenbarkeit‘ gibt, das ’stärker‘ ist als das der Turingmaschine. Die Turingmaschine ist damit einer der wichtigsten – wenn nicht überhaupt der wichtigste — philosophischen Begriff(e). Viele verbinden den Begriff der Turingmaschine oft mit den heute bekannten Computern oder sehen darin die Beschreibung eines konkreten, wenngleich sehr ‚umständlichen‘ Computers. Das ist aber vollständig an der Sache vorbei. Die Turingmaschine ist weder ein konkreter Computer noch überhaupt etwas Konkretes. Genau wie der mathematische Begriff der natürlichen Zahlen ein mathematisches Konzept ist, das aufgrund der ihm innewohnenden endlichen Unendlichkeit niemals eine reale Zahlenmenge beschreibt, sondern nur das mathematische Konzept einer endlich-unendlichen Menge von abstrakten Objekten, für die die Zahlen des Alltags ‚Beispiele‘ sind, genauso ist auch das Konzept der Turingmaschine ein rein abstraktes Gebilde, für das man konkrete Beispiele angeben kann, die aber das mathematische Konzept selbst nie erschöpfen (die Turingmaschine hat z.B. ein unendliches Schreib-Lese-Band, etwas, das niemals real existieren kann).
    ]

  19. [Anmerkung: Das Interessante ist nun, dass man z.B. die Funktion des Ribosoms strukturell mit dem Konzept einer Turingmaschine beschreiben kann (vgl. Bild). Das Ribosom ist jene Funktionseinheit von Molekülen, die einen Input bestehend aus mRNA und tRNAs überführen kann in einen Output bestehend aus einem Protein. Dies ist nur möglich, weil das Ribosom die mRNA als Kette von Informationseinheiten ‚interpretiert‘ (dekodiert), die dazu führen, dass bestimmte tRNA-Einheiten zu einem Protein zusammengebaut werden. Mathematisch kann man diese funktionelle Verhalten eines Ribosoms daher als ein ‚Programm‘ beschreiben, das gleichbedeutend ist mit einer ‚Funktion‘ bzw. Abbildungsvorschrift der Art ‚RIBOSOM: mRNA x tRNA —> PROTEIN. Das Ribosom stellt somit eine chemische Variante einer Turingmaschine dar (statt digitalen Chips oder Neuronen). Bleibt die Frage, wie es zur ‚Ausbildung‘ eines Ribosoms kommen kann, das ’synchron‘ zu entsprechenden mRNA-Molekülen die richtige Abbildungsvorschrift besitzt.
    ]
  20. Eine andere Blickweise auf das Phänomen der Information ist jene des Mathematikers Chaitin, der darauf aufmerksam gemacht hat, dass man das ‚Programm‘ eines Computers (sein Algorithmus, seine Abbildungsfunktion, seine Dekodierungsfunktion…) auch als eine Zeichenkette auffassen kann, die nur aus Einsen und Nullen besteht (also ‚1101001101010..‘). Je mehr Wiederholungen solch eine Zeichenkette enthalten würde, um so mehr Redundanz würde sie enthalten. Je weniger Wiederholung, um so weniger Redundanz, um so höher die ‚Informationsdichte‘. In einer Zeichenkette ohne jegliche Redundanz wäre jedes einzelne Zeichen wichtig. Solche Zeichenketten sind formal nicht mehr von reinen zufallsbedingten Ketten unterscheidbar. Dennoch haben biologisch nicht alle zufälligen Ketten eine ’nützliche‘ Bedeutung. DNA-Moleküle ( bzw. deren Komplement die jeweiligen mRNA-Moleküle) kann man wegen ihrer Funktion als ‚Befehlssequenzen‘ als solche binär kodierten Programme auffassen. DNA-Moleküle können also durch Zufall erzeugt worden sein, aber nicht alle zufälligen Erzeugungen sind ’nützlich‘, nur ein verschwindend geringer Teil.  Dass die ‚Natur‘ es geschafft hat, aus der unendlichen Menge der nicht-nützlichen Moleküle per Zufall die herauszufischen, die ’nützlich‘ sind, geschah einmal durch das Zusammenspiel von Zufall in Gestalt von ‚Mutation‘ sowie Auswahl der ‚Nützlichen‘ durch Selektion. Es stellt sich die Frage, ob diese Randbedingungen ausreichen, um das hohe Mass an Unwahrscheinlichkeit zu überwinden. (vgl. SS. 119-122)
  21. [Anmerkung: Im Falle ‚lernender‘ Systeme S_learn haben wir den Fall, dass diese Systeme einen ‚Kode‘ ‚lernen‘ können, weil sie in der Lage sind, Ereignisse in bestimmter Weise zu ‚bearbeiten‘ und zu ’speichern‘, d.h. sie haben Speichersysteme, Gedächtnisse (Memory), die dies ermöglichen. Jedes Kind kann ‚lernen‘, welche Ereignisse welche Wirkung haben und z.B. welche Worte was bedeuten. Ein Gedächtnis ist eine Art ‚Metasystem‘, in dem sich ‚wahrnehmbare‘ Ereignisse E in einer abgeleiteten Form E^+ so speichern (= spiegeln) lassen, dass mit dieser abgeleiteten Form E^+ ‚gearbeitet‘ werden kann. Dies setzt voraus, dass es mindestens zwei verschiedene ‚Ebenen‘ (layer, level) im Gedächtnis gibt: die ‚primären Ereignisse‘ E^+ sowie die möglichen ‚Beziehungen‘ RE, innerhalb deren diese vorkommen. Ohne dieses ‚Beziehungswissen‘ gibt es nur isolierte Ereignisse. Im Falle multizellulärer Organismen wird diese Speicheraufgabe durch ein Netzwerk von neuronalen Zellen (Gehirn, Brain) realisiert. Der einzelnen Zelle kann man nicht ansehen, welche Funktion sie hat; nur im Zusammenwirken von vielen Zellen ergeben sich bestimmte Funktionen, wie z.B. die ‚Bearbeitung‘ sensorischer Signale oder das ‚Speichern‘ oder die Einordnung in eine ‚Beziehung‘. Sieht man mal von der spannenden Frage ab, wie es zur Ausbildung eines so komplexen Netzwerkes von Neuronen kommen konnte, ohne dass ein einzelnes Neuron als solches ‚irgend etwas weiß‘, dann stellt sich die Frage, auf welche Weise Netzwerke von Molekülen ‚lernen‘ können.  Eine minimale Form von Lernen wäre das ‚Bewahren‘ eines Zustandes E^+, der durch ein anderes Ereignis E ausgelöst wurde; zusätzlich müsste es ein ‚Bewahren‘ von Zuständen geben, die Relationen RE zwischen primären Zuständen E^+ ‚bewahren‘. Solange wir es mit frei beweglichen Molekülen zu tun haben, ist kaum zu sehen, wie es zu solchen ‚Bewahrungs-‚ sprich ‚Speicherereignissen‘ kommen kann. Sollte es in irgend einer Weise Raumgebiete geben, die über eine ‚hinreichend lange Zeit‘ ‚konstant bleiben, dann wäre es zumindest im Prinzip möglich, dass solche ‚Bewahrungsereignisse‘ stattfinden. Andererseits muss man aber auch sehen, dass diese ‚Bewahrungsereignisse‘ aus Sicht eines möglichen Kodes nur möglich sind, wenn die realisierenden Materialien – hier die Moleküle bzw. Vorstufen zu diesen – physikalisch-chemische Eigenschaften aufweisen, die grundsätzlich solche Prozesse nicht nur ermöglichen, sondern tendenziell auch ‚begünstigen‘, und dies unter Berücksichtigung, dass diese Prozesse ‚entgegen der Entropie‘ wirken müssen. Dies bedeutet, dass — will man keine ‚magischen Kräfte‘ annehmen —  diese Reaktionspotentiale schon in den physikalisch-chemischen Materialien ‚angelegt‘ sein müssen, damit sie überhaupt auftreten können. Weder Energie entsteht aus dem Nichts noch – wie wir hier annehmen – Information. Wenn wir also sagen müssen, dass sämtliche bekannte Materie nur eine andere Zustandsform von Energie ist, dann müssen wir vielleicht auch annehmen, dass alle bekannten ‚Kodes‘ im Universum nichts anderes sind als eine andere Form derjenigen Information, die von vornherein in der Energie ‚enthalten‘ ist. Genauso wie Atome und die subatomaren Teilchen nicht ’neutral‘ sind sondern von vornherein nur mit charakteristischen (messbaren) Eigenschaften auftreten, genauso müsste man dann annehmen, dass die komplexen Kodes, die wir in der Welt und dann vor allem am Beispiel biologischer Systeme bestaunen können, ihre Wurzeln in der grundsätzlichen ‚Informiertheit‘ aller Materie hat. Atome formieren zu Molekülen, weil die physikalischen Eigenschaften sie dazu ‚bewegen‘. Molkülnetzwerke entfalten ein spezifisches ‚Zusammenspiel‘, weil ihre physikalischen Eigenschaften das ‚Wahrnehmen‘, ‚Speichern‘ und ‚Dekodieren‘ von Ereignissen E in einem anderen System S grundsätzlich ermöglichen und begünstigen. Mit dieser Annahme verschwindet ‚dunkle Magie‘ und die Phänomene werden ‚transparent‘, ‚messbar‘, ‚manipulierbar‘, ‚reproduzierbar‘. Und noch mehr: das bisherige physikalische Universum erscheint in einem völlig neuen Licht. Die bekannte Materie verkörpert neben den bislang bekannten physikalisch-chemischen Eigenschaften auch ‚Information‘ von ungeheuerlichen Ausmaßen. Und diese Information ‚bricht sich selbst Bahn‘, sie ‚zeigt‘ sich in Gestalt des Biologischen. Das ‚Wesen‘ des Biologischen sind dann nicht die ‚Zellen als Material‘, das Blut, die Muskeln, die Energieversorgung usw., sondern die Fähigkeit, immer komplexer Informationen aus dem Universum ‚heraus zu ziehen, aufzubereiten, verfügbar zu machen, und damit das ‚innere Gesicht‘ des Universums sichtbar zu machen. Somit wird ‚Wissen‘ und ‚Wissenschaft‘ zur zentralen Eigenschaft des Universums samt den dazugehörigen Kommunikationsmechanismen.]

  22. Fortsetzung Teil 3

Einen Überblick über alle bisherigen Themen findet sich HIER

Zitierte  Literatur:

Chaitin, G.J. Information, Randomness & Incompleteness, 2nd ed.,  World Scientific, 1990

Turing, A. M. On Computable Numbers with an Application to the Entscheidungsproblem. In: Proc. London Math. Soc., Ser.2, vol.42(1936), pp.230-265; received May 25, 1936; Appendix added August 28; read November 12, 1936; corr. Ibid. vol.43(1937), pp.544-546. Turing’s paper appeared in Part 2 of vol.42 which was issued in December 1936 (Reprint in M.DAVIS 1965, pp.116-151; corr. ibid. pp.151-154).

 Interessante Links:

Ein Video in Youtube, das eine Rede von Pauls Davies dokumentiert, die thematisch zur Buchbesprechung passt und ihn als Person etwas erkennbar macht.

Teil 1:
http://www.youtube.com/watch?v=9tB1jppI3fo

Teil 2:
http://www.youtube.com/watch?v=DXXFNnmgcVs

Teil 3:
http://www.youtube.com/watch?v=Ok9APrXfIOU

Teil 4:
http://www.youtube.com/watch?v=vXqqa1_0i7E

Part 5:
http://www.youtube.com/watch?v=QVrRL3u0dF4
Es gibt noch einige andere Videos mit Paul Davies bei Youtube.

SUCHE NACH DEM URSPRUNG UND DER BEDEUTUNG DES LEBENS. Reflexionen zum Buch von Paul Davies “The fifth Miracle”

Paul Davies, The FIFTH MIRACLE: The Search for the Origin and Meaning of Life, New York:1999, Simon & Schuster

 Start: 20.Aug.2012

Letzte Fortsetzung: 26.Aug.2012

  1. Mein Interesse an der Astrobiologie geht zurück auf das wundervolle Buch von Peter Ward und Donald Brownlee (2000) „Rare Earth: Why Complex Life is Uncommon in the Universe“. Obwohl ich zum Thema aus verschiedenen Gebieten schon einiges gelesen hatte war es doch dieses Buch, das all die verschiedenen Fakten für mich in einen Zusammenhang stellte, der das Phänomen ‚Leben‘ in einen größeren Zusammenhang erscheinen lies, der Zusammenhang mit der Geschichte des ganzen Universums. Dinge, die zuvor merkwürdig und ungereimt erschienen, zeigten sich in einem neuen Licht. Neben anderen Büchern war es dann das berühmte Büchlein „What Is Life?“ von Erwin Schroedinger (1944), das half, manche Fragen zu verschärfen Neben anderen Publikationen fand ich hier das Buch von von Horst Rauchfuß (2005) „Chemische Evolution und der Ursprung des Lebens“ sehr erhellend (hatte früher dazu andere Bücher gelesen wie z.B. Manfred Eigen (1993, 3.Aufl.) „Stufen zum Leben. Die frühe Evolution im Visier der Molekularbiologie“). Einen weiteren Schub erhielt die Fragestellung durch das – nicht so gut lesbare, aber faktenreiche – Buch von J. Gale (2009) „Astrobiology of Earth: The Emergence, Evolution and Future of Life on a Planet in Turmoil“. Gegenüber ‚Rare Earth‘ ergibt es keine neuen grundsätzlichen Erkenntnisse, wohl aber viele aktuelle Ergänzungen und z.T. Präzisierungen. Dass ich bei diesem Sachstand dann noch das Buch von Paul Davies gelesen habe, war eher systematische Neugierde (parallel habe ich noch angefangen Christian de Duve (1995) „Vital Dust. The origin and Evolution of Life on Earth“ sowie Jonathan I.Lunine (2005) „Astrobiology. A multidisciplinary Approach“).

  2. Der Titel des Buchs „Das fünfte Wunder“ (The 5th Miracle) wirkt auf den ersten Blick leicht ‚esoterisch‘ und für sachlich orientierte Leser daher eher ein wenig abschreckend, aber Paul Davies ist ein angesehener Physiker und hat hier ein Buch geschrieben, das auf der Basis der Physik und Chemie die grundlegende Frage zum Ursprung und der Bedeutung des Lebens systematisch und spannend aufrollt. Hier wird man nicht einfach mit Fakten überschüttet (obgleich er diese hat), sondern anhand von Beobachtungen, daraus sich ergebenden Fragen und Hypothesen beschreibt er einen gedanklichen Prozess, der über Fragen zu Antworten führt, die wiederum neue Fragen entstehen lassen. Es gibt wenige wissenschaftliche Bücher, die so geschrieben sind. Ich halte es für ein glänzendes Buch, wenngleich manche Hypothesen sich durch die weitere Forschung als nicht so ergiebig erwiesen haben. Seine grundsätzlichen Überlegungen bleiben davon unberührt.

  3. Den leicht irritierenden Titel erklärt Davies auf S.22 als Anspielung auf den biblischen Schöpfungsbericht, wo in Vers 11 vom ersten Buch Mose (= Buch Genesis) (abgekürzt Gen 1:11) beschrieben wird, dass Gott die Pflanzen geschaffen habe. Nach Davies war dies das fünfte Wunder nachdem zuvor laut Davies das Universeum (universe), das Licht (light), der Himmel (firmament) und das trockene Land (dry land) geschaffen worden seien. Einer bibelwissenschaftlichen Analyse hält diese einfache Analyse von Davies sicher nicht stand. Sie spielt auch für den gesamten restlichen Text überhaupt keine Rolle. Von daher erscheint mir dieser Titel sehr unglücklich und wenig hilfreich. Für mich beschreibt der Untertitel des Buches den wahren Inhalt am besten: „Die Suche nach dem Ursprung und der Bedeutung des Lebens“.

  4. Im Vorwort (Preface, pp.11-23) formuliert Davies seine zentralen Annahmen. Mit einfachen Worten könnte man es vielleicht wie folgt zusammen fassen: Das Phänomen des Lebens zu definieren bereitet große Schwierigkeiten. Es zu erklären übersteigt die bisher bekannten physikalischen Gesetze. Dass Leben irgendwann im Kosmos aufgetreten ist und der ungefähre Zeitraum wann, das ist Fakt. Nicht klar ist im Detail, wie es entstehen konnte. Ferner ist nicht klar, ob es ein außergewöhnlicher Zufall war oder ob es im Raum der physikalischen Möglichkeiten einen favorisierten Pfad gibt, der durch die ‚inhärenten‘ Eigenschaften von Energie (Materie) dies ‚erzwingt‘. Nur im letzteren Fall wäre es sinnvoll, anzunehmen, dass Leben überall im Universum entstehen kann und – höchstwahrscheinlich – auch entstanden ist.

  5. Dies sind dürre trockene Worte verglichen mit dem Text von Davies, der mit den zentralen Aussagen auch gleich ein bischen Forschungs- und Ideengeschichte rüberbringt (verwoben mit seiner eigenen Lerngeschichte) und der einen exzellenten Schreibstil hat (von daher kann ich jedem nur empfehlen, das Buch selbst zu lesen).

  6. Für Davies ist die Frage der Entstehung des Lebens (Biogenese, engl. Biogenesis) nicht ‚irgend ein anderes‘ Problem, sondern repräsentiert etwas ‚völlig Tieferes‘, das die Grundlagen der gesamten Wissenschaft und des gesamten Weltbildes herausfordert (vgl. S.18). Eine Lösung verlangt radikal neue Ideen, neue Ansätze gegenüber dem Bisherigen (vgl. S.17). Das Phänomen des Lebens entzieht sich eindeutig dem zweiten Hauptsatz der Thermodynamik (der einen Ausgleich aller Energieunterschiede impliziert) und seine Besonderheiten ergeben sich nicht einfach durch bloßen Aufweis seiner chemischen Bestandteile (vgl. S.19). Er vermutet die Besonderheit des Phänomen Lebens in der ‚Organisation von Information‘, was dann die Frage aufwirft, wo diese Information herkommt (vgl.S.19). Als informationsgetriebene Objekte entziehen sich die Phänomene des Lebens allen bekannten Gesetzen der Physik und Chemie (und der Biologie, sofern sie diesen Aspekt nicht als Leitthema hat?).

  7. Davies zieht aus diesen Annahmen den Schluß, dass kein bekanntes Naturgesetz solche hochkomplexe Strukturen von zusammenhanglosen chemischen Bestandteilen induzieren konnte. Er sieht in dem ganzen Entstehungsprozess ein ‚atemberaubendes geniales (ingeniuos)‘ lebens-freundliches Universum, das zu verstehen, wir ganz am Anfang stehen. (vgl. S.20).

  8. Dass Davies aufgrund der atemberaubenden Komplexität von lebensfreundlichen Strukturen eine Interaktion der Erde mit anderen Planeten (z.B. dem Mars) in früheren Phasen nicht ausschließt und im weiteren Verlauf auch akribisch das Für und Wider untersucht, sei hier nur angemerkt. Ein eindeutiges Ergebnis gibt es aufgrund der komplizierten Zusammenhänge – soweit ich sehe – bis heute nicht. Ob spezielle Moleküle, die Bestandteile von lebenskonstituierenden Strukturen geworden sind, teilweise von außerhalb der Erde gekommen sind oder nicht, berührt die wichtigen Grundfragen nach der Struktur und der ‚Bedeutung‘ von Leben im Universum nicht.

  9. Das erste Kapitel (SS.25-47) überschreibt er mit ‚Die Bedeutung des Lebens‘. Er beginnt nochmals mit der Feststellung, dass die Wissenschaft bislang nicht mit Sicherheit weiß, wie das Phänomen des Lebens tatsächlich begann (auf der Erde? mit Unterstützung aus dem Weltall,… ?)(vgl. S.26), um dann nochmals an die bekannten Fakten zu erinnern, wann in der zurückliegenden Zeit Lebensphänomene dokumentiert sind: das älteste gut dokumentierte Tierfossil datiert auf -560 Mio Jahren und findet sich in Australien (Flinders Ranges, nördlich von Adelaide). Etwa 15 Mio Jahre später findet man eine Artenexplosion, die vom Meer ausgehend das Land mit Pflanzen und Tieren ‚kolonisierte‘. Davor aber, ab etwa -1 Milliarde Jahre rückwärts, gab es nur einzellige Organismen. Alle Evidenzen sprechen nach Davies dafür, dass alle späteren komplexen Lebensformen sich aus diesen einfachen, einzelligen Formen entwickelt haben.(vgl.S.29)

  10. Von diesen einzelligen Lebewesen (‚Mikroorganismen‘, ‚Bakterien‘ genannt) weiß man, dass Sie seit mindestens -3.5 Milliarden Jahre existieren [Ergänzung, kein Zitat bei Davies: nach Christian de Duve gibt es auf der ganzen Erde aus allen Zeiten Ablagerungen von Mikroorganismen, die sich versteinert haben und als Stromatolithen Zeugnis geben von diesen Lebensformen, vgl. Duve S.4f] (vgl. S.45)(laut Davies kann ein Löffel Erde bester Qualität 10 Billionen (10*10^12) Mikroorganismen enthalten, die 10.000 verschiedene Arten repräsentieren!(vgl. S.45). Die Verbindungen zwischen den verschiedenen Lebensformen werden durch Vergleiche ihrer Biochemie (auch Metabolismus) und über ihr genetisches Material identifiziert.(vgl. S.46) Von den heute bekannten Mikroorganismen leben diejenigen, die den ältesten Formen von Mikroorganismen am ähnlichsten sind, in großen Meerestiefen am Fuße unterseeischer Vulkane.(vgl. S.47)

  11. Zugleich weiß man nach Davies, dass die lebenden Zelle in ihrer Größe das komplexeste System darstellen, was wir Menschen kennen. (vgl.S.29) Und genau dies bereitet ihm Kopfzerbrechen: Wie ist es möglich, dass ‚geistlose Moleküle‘, die letztlich nur ihre unmittelbaren Nachbarn ’stoßen und ziehen‘ können, zu einer ingeniösen Kooperation zusammenfinden, wie sie eine lebende Zelle verkörpert? (vgl. S.30)

  12. Welche Eigenschaften sind letztlich charakteristisch für eine lebende Zelle? Davies listet oft genannte Eigenschaften auf (Autonomie, Reproduktion, Metabolismus, Ernährung , Komplexität, Organisation, Wachstum und Entwicklung, Informationsgehalt, Hardware/ Software Einheit , Permanenz und Wechsel (vgl.SS.33-36)) und stellt dann fest, dass es offensichtlich keine einfache Eigenschaft ist, die ‚Lebendes‘ von ‚Nicht-Lebendem‘ trennt. (vgl. S.36) Auch scheint eine ‚rein mechanistische‘ Erklärung der chemischen Kausalketten nicht ausreichend zu sein. Es gibt das Moment der ‚Selbstbestimmung‘ (self-determination) bei jeder Zelle, eine Form von ‚Autonomie‘, die sich von keinen physikalischen Eigenschaften herleiten lassen. (vgl. S.33) Biologische Komplexität ist offensichtlich ‚instruierte Komplexität‘, die auf Information basiert (information-based). (vgl. S.31)

  13. Damit würde sich andeuten, dass die beiden Eigenschaften ‚Metabolismus‘ und ‚Reproduktion‘ zwei Kerneigenschaften darstellen (vgl. S.36f), die sich in dem Vorstellungsmodell ‚Hardware (= Metabolismus)‘ und ‚Software (= Reproduktion)‘ wiederfinden.

  14. An dieser Stelle lenkt Davies den Blick nochmals auf ein zentrales Faktum des ganzen Phänomen Lebens, auf das außergewöhnlichste Molekül, das wir kennen, bestehend aus vielen Milliarden sequentiell angeordneten Atomen, bezeichnet als Desoxyribonukleinsäure (deoxyribonucleic acid) (DNA), eine Ansammlung von ‚Befehlen‘, um damit Organismen (Pflanzen, Tiere inklusiv Menschen) ‚hervorbringen‘ zu können. Und dieses Molekül ist unvorstellbar alt, mindestens 3.5 Milliarden Jahre. (vgl. S.41)

  15. Wenn Davies dann weiter schreibt, dass diese DNA die Fähigkeit hat, sich zu Vervielfältigen (to replicate) (vgl. S.41f), dann ist dies allerdings nicht die ganze Wahrheit, denn das Molekül als solches kann strenggenommen garnichts. Es benötigt eine spezifische Umgebung, damit ein Vervielfältigungsprozess einsetzen kann, an den sich dann ein höchst komplexer Umsetzungsprozeß anschliesst, durch den die DNA-Befehle in irgendwelche dynamischen organismischen Strukturen überführt werden. D.h. dieses ‚Wunder‘ an Molekül benötigt zusätzlich eine geeignete ebenfalls höchst komplexe Umgebung an ‚Übersetzern‘ und ‚Machern, die aus dem ‚Bauplan‘ (blueprint) ein lebendes Etwas generieren. Das zuvor von Davies eingeführte Begriffspaar ‚Hardware’/ ‚Software‘ wäre dann so zu interpretieren, dass die DNA eine Sequenz von Ereignissen ist, die als ‚Band‘ einer Turingmaschine einen möglichen Input darstellen und die Umgebung einer DNA wäre dann der ausführende Teil, der einerseits diese DNA-Ereignisse ‚lesen‘ kann, sie mittels eines vorgegebenen ‚Programms‘ ‚dekodiert‘ und in ‚Ausgabeereignisse‘ (Output) überführt. Folgt man dieser Analogie, dann ist der eigentliche ‚berechnende‘ Teil, die ‚rechnende Maschine‘ eine spezifisch beschaffene ‚Umgebung‘ eines DNA-Moleküls (COMPUTER_ENV)! In der ‚Natur‘ ist diese rechnende Maschine realisiert durch Mengen von spezifischen Molekülen, die miteinander so interagieren können, dass ein DNA-Molekül als ‚Input‘ eine Ereigniskette auslöst, die zum ‚Aufbau‘ eines Organismus führt (minimal einer einzelnen Zelle (COMPUTER_INDIVIDUAL)), der dann selbst zu einer ‚rechnenden Maschine‘ wird, also (vereinfacht) COMPUTER_ENV: DNA x ENV —> COMPUTER_INDIVIDUAL.

  16. Die von Davies erwähnte Vervielfältigung (Replikation) wäre dann grob eine Abbildung entweder von einem individuellen System (COMPUTER_INDIVIDUAL) zu einem neuen DNA-Molekül, das dann wieder zu einem Organismus führen kann, oder – wie später dann weit verbreitet – von zwei Organismen, die ihre DNA-Informationen ‚mischen‘ zu einer neuen DNA, vereinfachend REPLICATION: COMPUTER_INDIVIDUAL [x COMPUTER_INDIVIDUAL] x ENV —> DNA.

  17. Sobald in der Entwicklung des Lebens die Brücke von ‚bloßen‘ Molekülen zu einem Tandem aus (DNA-)Molekül und Übersetzer- und Bau-Molekülen – also COMPUTER_ENV und COMPUTER_INDIVUDAL — geschlagen war, ab dann begann die ‚biologische Evolution‘ (wie Darwin und Vorläufer) sie beschrieben haben ‚zu laufen‘. Dieser revolutionäre Replikationsmechanismus mit DNA-Molekülen als Informationsformat wurde zum Generator aller Lebensformen, die wir heute kennen. (vgl.S.42)

  18. Aus der Kenntnis dieses fundamentalen Replikationsmechanismus folgt aber keinerlei Hinweis, wie es zu diesem hochkomplexen Mechanismus überhaupt kommen konnte, und das vor mehr als 3.5 Milliarden Jahren irgendwo unter der Erdoberfläche [Eigene Anmerkung: eine Frage, die auch im Jahr 2012 noch nicht voll befriedigend beantwortet ist!]. (vgl.S.44)

  19. Im Kapitel 2 ‚Against the Tide‘ (S.49-67) greift Davies nochmals den Aspekt des zweiten Hauptsatzes der Thermodynamik auf, nachdem in einem geschlossenen System die Energie erhalten bleibt und vorhandene Ungleichheiten in der Verteilung der Energie (geringere Entropie, geringere Unordnung = höhere Ordnung) auf Dauer ausgeglichen werden, bis eine maximale Gleichverteilung vorliegt (maximale Entropie, maximale Unordnung, minimale Ordnung). [Anmerkung: Dies setzt implizit voraus, dass Energieverdichtungen in einer bestimmten Region des geschlossenen Systems prinzipiell ‚auflösbar‘ sind. Materie als einer Zustandsform von Energie realisiert sich (vereinfacht) über Atome und Verbindungen von Atomen, die unter bestimmten Randbedingungen ‚auflösbar‘ sind. Verbindungen von Atomen speichern Energie und stellen damit eine höhere ‚Ordnung‘ dar als weniger verbundene Atome.]

  20. Wie oben schon festgestellt, stellt die Zusammenführung von Atomen zu komplexen Molekülen, und eine Zusammenfügung von Molekülen zu noch komplexeren Strukturen, wie sie das Phänomen des Lebens auszeichnet, lokal begrenzt eine ‚Gegenbewegung‘ zum Gesetz der Zunahme von Entropie dar. Das Phänomen des Lebens widersetzt sich darin dem allgemeinen Trend (‚against the tide‘). Dies ist nur möglich, weil die biologischen Strukturen (Moleküle, Molekülverbände, Zellen, Replikation…) für ihre Zwecke Energie einsetzen! Dies bedeutet, sie benötigen ‚frei verfügbare Energie‘ (free energy) aus der Umgebung. Dies sind entweder Atomverbindungen, deren Energie sich mittels eines geringen Energieaufwandes teilweise erschließen lässt (z.B. Katalyse mittels Enzymen), oder aber die Nutzung von ‚Wärme‘ (unterseeische Vulkane, Sonnenlicht,…). Letztlich ist es die im empirischen Universum noch vorhandene Ungleichverteilungen von Energie, die sich partiell mit minimalem Aufwand nutzen lässt, die biologische Strukturen ermöglicht. Aufs Ganze gesehen führt die Existenz von biologischen Strukturen auf Dauer aber doch auch zum Abbau eben dieser Ungleichheiten und damit zum Anwachsen der Entropie gemäß dem zweiten Hauptsatz. (vgl. 49-55) [Anmerkung: durch fortschreitende Optimierungen der Energienutzungen (und auch der organismischen Strukturen selbst) kann die Existenz von ‚Leben‘ im empirischen Universum natürlich ’sehr lange‘ andauern.]

  21. Davies weist an dieser Stelle ausdrücklich darauf hin, dass die scheinbare Kompatibilität des Phänomens Leben mit dem zweiten Hauptsatz der Thermodynamik nicht bedeutet, dass die bekannten Gesetze der Physik damit auch schon ‚erklären‘ würden, wie es überhaupt zur Ausbildung solcher komplexer Ordnungen im Universum kommen kann, wie sie die biologischen Strukturen darstellen. Sie tun es gerade nicht.(vgl. S.54) Er zitiert hier u.a. auch Erwin Schroedinger mit den Worten ‚Wir müssen damit rechnen, einen neuen Typ von physikalischem Gesetz zu finden, das damit klarkommt‘ (vgl. S.52)

  22. Davies macht hier auch aufmerksam auf die strukturelle Parallelität zwischen dem physikalischen Begriff der Entropie, dem biologischen Begriff der Ordnung und dem von Shannon geprägten Begriff der Information. Je mehr ‚Rauschen‘ (noise) wir in einer Telefonverbindung haben, um so weniger können wir die gesprochenen Worte des Anderen verstehen. Rauschen ist ein anderes Wort für ‚Unordnung = Entropie‘. Je geringer die Entropie heißt, d.h. umso höher die ‚Ordnung‘ ist, um so höher ist der Informationsgehalt für Sender und Empfänger. Shannon hat daher ‚Information‘ als ‚Negentropie‘, als ’negative Entropie‘ definiert. Biologische ‚Ordnung‘ im Sinne von spezifisch angeordneten Atomen und Molekülen würde im Sinne der Shannonschen Informationstheorie dann einen hohen Informationsgehalt repräsentieren, wie überhaupt jede Form von Ordnung dann als ‚Information‘ aufgefasst werden kann, da diese sich von einer ‚gleichmachenden Unordnung‘ ‚abhebt‘.(vgl. S.56)

  23. Wie kann aus einem Rauschen (Unordnung) Information (Ordnung) entstehen? Davies (im Einklang mit Schroedinger) weist darauf hin, dass die Ordnung aus der frei verfügbaren Energie aus der Umgebung stammt.(vgl. S.56f). Das DNA-Molekül repräsentiert in diesem Sinne als geordnete Struktur auch Information, die durch ‚Mutationen‘ (= Rauschen!) verändert werden kann. Es werden aber nur jene Organismen in einer bestimmten Umgebung überleben, deren in der DNA-gespeicherten Information für die jeweilige Umgebung ‚hinreichend gut‘ ist. D.h. in der Interaktion zwischen (DNA, Replikationsmechanismus, Umgebung) filtert die Umgebung jene Informationen heraus, die ‚geeignet‘ sind für eine fortdauernde Interaktion [Anmerkung: salopp könnte man auch sagen, dass die Umgebung (bei uns die Erde) sich genau jene biologischen Strukturen ‚heranzüchtet‘, die für eine Kooperation ‚geeignet‘ sind, alle anderen werden aussortiert.](vgl. S.57)

  24. Ein anderer Aspekt ist der Anteil an ‚Fehlern‘ in der DNA-Bauanleitung bzw. während des Replikationsprozesses. Ab einem bestimmten Anteil können Fehler einen funktionstüchtigen Organismus verhindern. Komplexe Organismen setzen entsprechend leistungsfähige Fehlervermeidungsmechanismen voraus. (vgl. SS.58-60)

  25. Weiterhin ist zu beachten, dass ‚Information‘ im Sinne von Shannon eine rein statistische Betrachtung von Wahrscheinlichkeiten im Auftreten von bestimmten Kombinationen von Elementen einer Grundmenge darstellt. Je ’seltener‘ eine Konfiguration statistisch auftritt, umso höher ist ihr Informationsgehalt (bzw.  ‚höhere Ordnungen‘ sind ’seltener‘). Dies Betrachtungsweise lässt die Dimension der ‚Bedeutung‘ ganz außer Acht.

  26. Eine Bedeutung liegt immer dann vor, wenn ein Sender/ Empfänger von einer Entität (z.B. von einem DNA-Molekül oder von einem Abschnitt eines DNA-Moleküls) auf eine andere Entität (z.B. anderen Molekülen) ’schließen‘ kann. Im Falle der biologischen Strukturen wäre dies z.B. der Zusammenhang zwischen einem DNA-Molekül und jenen organismischen Strukturen, die aufgrund der Information im DNA-Molekül ‚gebaut‘ werden sollen. Diese zu bauenden organismischen Strukturen würden dann die ‚Bedeutung‘ darstellen, die mit einem DNA-Molekül zu verbinden wäre.

  27. Shannonsche Information bzw. biologische Ordnung haben nichts mit dieser ‚(biologischen) Bedeutung‘ zu tun. Die biologische Bedeutung in Verbindung mit einem DNA-Molekül wäre damit in dem COMPUTER_ENV zu lokalisieren, der den ‚Input‘ DNA ‚umsetzt/ verwandelt/ übersetzt/ transformiert…‘ in geeignete biologische Strukturen.(vgl.S.60) [Anmerkung: Macht man sich hier die Begrifflichkeit der Semiotik zunutze, dann könnte man auch sagen, dass die spezifische Umgebung COMPUTER_ENV eine semiotische Maschine darstellt, die die ‚Syntax‘ der DNA übersetzt in die ‚Semantik‘ biologischer Organismen. Diese semiotische Maschine des Lebens ist ‚implementiert‘ als ein ‚chemischer Computer‘, der mittels diverser chemischer Reaktionsketten arbeitet, die auf den Eigenschaften unterschiedlicher Moleküle und Umgebungseigenschaften beruhen.]

  28. Mit den Begriffen ‚Entropie‘, ‚Ordnung‘ und ‚Information‘ erwächst unweigerlich die Frage, wie konnte Ordnung bzw. Information im Universum entstehen, wo doch der zweite Hauptsatz eigentlich nur die Entropie favorisiert? Davies lenkt den Blick hier zurück auf den Ursprung des bekannten Universums und folgt dabei den Eckwerten der Big-Bang Theorie, die bislang immer noch die überzeugendste empirische Beschreibung liefert. In seiner Interpretation fand zu Beginn eine Umwandlung von Energie sowohl in die uns bekannte ‚Materie‘ statt (positive Energie), zugleich aber auch in ‚Gravitation‘ (negative Energie). Beide Energien heben sich gegenseitig auf. (vgl. S.61f)

  29. Übernimmt man die übliche Deutung, dass die ‚kosmische Hintergrundstrahlung‘ einen Hinweis auf die Situation zu Beginn des Universums liefert, dann war das Universum zu Beginn ’nahezu strukturlos‘, d.h. nahe bei der maximalen Entropie, mit einer minimale Ordnung, nahezu keiner Information. (vgl. S.62f) Wie wir heute wissen, war es dann die Gravitation, die dazu führte, dass sich die fast maximale Entropie schrittweise abbaute durch Bildung von Gaswolken und dann von Sternen, die aufgrund der ungeheuren Verdichtung von Materie dann zur Rückverwandlung von Materie in Energie führte, die dann u.a. als ‚freie Energie‘ verfügbar wurde. [Anmerkung: der andere Teil führt zu Atomverbindungen, die energetisch ‚höher aufgeladen‘ sind. Diese stellt auch eine Form von Ordnung und Information dar, also etwa INF_mat gegenüber der INF_free.] Davies sieht in dieser frei verfügbare Energie die Quelle für Information. (vgl. S.63)

  30. Damit wird auch klar, dass der zweite Hauptsatz der Thermodynamik nur eine Seite des Universums beschreibt. Die andere Seite wird von der Gravitation bestimmt, und diese arbeitet der Entropie diametral entgegen. Weil es die Gravitation gibt, gibt es Ordnung und Information im Universum. Auf dieser Basis konnten und können sich biologische Strukturen entwickeln. (vgl. S.64)

  31.  [Anmerkung: In dieser globalen Perspektive stellt die Biogenese letztlich eine folgerichtige Fortsetzung innerhalb der ganzen Kosmogenese dar. Aktuell bildet sie die entscheidende Phase, in der die Information als freie Energie die Information als gebundene Energie zu immer komplexeren Strukturen vorantreibt, die als solche einer immer mehr ‚verdichtete‘ (= komplexere) Information verkörpern. Biologische Strukturen bilden somit eine neue ‚Zustandsform‘ von Information im Universum.]

  32. Mit den Augen der Quantenphysik und der Relativitätstheorie zeigt sich noch ein weiterer interessanter Aspekt: die einzelnen Teilchen, aus denen sich die bekannte Materie konstituiert, lassen ‚an sich‘, ‚individuell‘ keine ‚Kontexte‘ erkennen; jedes Teilchen ist wie jedes andere auch. Dennoch ist es so, dass ein Teilchen je nach Kontext etwas anderes ‚bewirken‘ kann. Diese ‚Beziehungen‘ zwischen den Teilchen, charakterisieren dann ein Verhalten, das eine Ordnung bzw. eine Information repräsentieren kann. D.h. Ordnung bzw. Information ist nicht ‚lokal‘, sondern eine ‚globale‘ Eigenschaft. Biologische Strukturen als Repräsentanten von Information einer hochkomplexen Art sind von daher wohl kaum durch physikalische Gesetze beschreibbar, die sich auf lokale Effekte beschränken. Man wird sicher eine neue Art von Gesetzen benötigen. (vgl. S.67)

  33. [Anmerkung: Eine strukturell ähnliche Situation haben wir im Falle des Gehirns: der einzelnen Nervenzelle im Verband von vielen Milliarden Zellen kann man als solche nicht ansehen, welche Funktion sie hat. Genauso wenig kann man einem einzelnen neuronalen Signal ansehen, welche ‚Bedeutung‘ es hat. Je nach ‚Kontext‘ kann es von den Ohren kommen und einen Aspekt eines Schalls repräsentieren, oder von den Augen, dann kann es einen Aspekt des Sehfeldes repräsentieren, usw. Dazu kommt, dass durch die immer komplexere Verschaltung der Neuronen ein Signal mit zahllosen anderen Signalen ‚vermischt‘ werden kann, so dass die darin ‚kodierte‘ Information ’semantisch komplex‘ sein kann, obgleich das Signal selbst ‚maximal einfach‘ ist. Will man also die ‚Bedeutung‘ eines neuronalen Signals verstehen, muss man das gesamte ‚Netzwerk‘ von Neuronen betrachten, die bei der ‚Signalverarbeitung‘ zusammen spielen. Und das würde noch nicht einmal ausreichen, da der komplexe Signalfluss als solcher seine eigentliche ‚Bedeutung‘ erst durch die ‚Wirkungen im Körper‘ ‚zeigt‘. Die Vielzahl der miteinander interagierenden Neuronen stellen quasi nur die ‚Syntax‘ eines neuronalen Musters dar, dessen ‚Bedeutung‘ (die semantische Dimension) in den vielfältigen körperlichen Prozessen zu suchen ist, die sie auslösen bzw. die sie ‚wahrnehmen‘. Tatsächlich ist es sogar noch komplexer, da für die ‚handelnden Organismen‘ zusätzlich noch die ‚Umgebung‘ (die Außenwelt zum Körper) berücksichtigen müssen.]

  34. Davies erwähnt im Zusammenhang der Gravitation als möglicher Quelle für Information auch Roger Penrose und Lee Smolin. Letzterer benutzt das Konzept der ‚Selbstorganisation‘ und sieht zwischen der Entstehung von Galaxien und biologischen Populationen strukturelle Beziehungen, die ihn zum Begriff der ‚eingebetteten Hierarchien von selbstorganisierenden Systemen führen. (vgl. S.65)

     

Fortsetzung Teil 2

Einen Überblick über alle bisherigen Themen findet sich HIER