Archiv der Kategorie: Newtonsche

NOTIZ ZU DEN UNWISSENSCHAFTLICHEN VORAUSSETZUNGEN DER WISSENSCHAFTEN

  1. Als ich gestern weiter im Buch ‚An Inventive Universe‘ von Denbigh las, diskutierte er dort u.a. die verschiedenen Positionen, die in der Physik und in der Philosophie zum Thema Determinismus eingenommen werden. Er arbeitete heraus, dass jede physikalische Theorie einen nicht unwesentlichen nicht-wissenschaftlichen Anteil besitzt, nämlich diejenigen Interessen, Fragen und Grundannahmen, die der Bildung einer wissenschaftlichen Theorie voraus liegen. Ohne diese Annahmen und vorauseilenden Interessen gibt es keine wissenschaftliche Aktivitäten.
  2. Moderne Wissenschaft versteht sich zwar so, dass sie ihr Vorgehen transparent machen will, wiederholbar, unabhängig (invariant) von individuelle Gefühle und Fantasien, aber die nicht-wissenschaftlichen vorausgehenden Annahmen sind unausweichlich individuell bedingt, aus allen möglichen Quellen (auch individuellen Interessen, Fantasien, Erinnerungen, Vorstellungen) gespeist. Etwas anderes hat auch ein Wissenschaftler nicht zur Verfügung.
  3. Im Fall des Determinismus ist z.B. die Vorstellung, dass die Ereignisse in der Natur nicht zufällig sind, sondern bestimmten Regeln, Gesetzen folgen, dass sie damit berechenbar sind, dass damit Voraussagen möglich sind, eine solche Grundannahme.
  4. Diese Annahmen kommen nicht aus der Welt jenseits des Kopfes, sondern sie entstehen im individuellen Gehirn eines potentiellen Forschers. Sie werden ihm bewusst, prägen seine Sehweise, wie er die Welt betrachtet und interpretiert. Als solche sind sie weder wahr noch falsch. Es sind Formen der Wahrnehmung von Welt.
  5. Die Mechanik von Newton passte sehr gut in diese Erwartung: plötzlich konnte man scheinbar alle Bewegungen damit berechnen. Sowohl die Bewegung der Sterne wie auch die der Körper auf der Erde.
  6. Der weitere Gang der Forschung zeigte dann aber, dass diese Wahrnehmung der Natur unvollständig, wenn nicht gar in einem tiefen Sinne falsch ist. Beim immer weiter Vordringen in das ‚Innere der Natur‘ lernten die Wissenschaftler, dass die Natur alles andere als determiniert ist; ganz im Gegenteil, sie ist radikal probabilistisch, nicht ausrechenbar im Detail, auch nicht ausrechenbar in ihren komplexesten Erscheinungen, den biologischen Lebensformen. Die Annahme einer deterministischen, Gesetzen folgenden Natur erwies sich als Fiktion des individuellen Denkens. Das, was man für objektive Wissenschaft gehalten hatte zeigte sich plötzlich als überaus subjektives Gebilde mit hohem metaphysischen Unterhaltungswert.
  7. Die Einstellung, dass Wissenschaft um so objektiver sei, umso weniger man den Anteil des erkennenden Subjektes in den Erklärungsprozess einbezieht, erweist sich immer mehr als falsch. Gerade diese Verweigerung, den handelnden Wissenschaftler mit seinen spezifischen biologischen Voraussetzungen als konstitutives Element des Erkennens nicht kritisch in die Reflexion einzubeziehen, macht Wissenschaft ideologieanfällig, lässt sie unbewusst in das Schlepptau einer verdeckten Metaphysik geraten, die umso schlimmer wütet, als man so tut, als ob es so etwas doch gar nicht gibt [Anmerkung: Eine solche Wissenschaftskritik ist nicht neu. Die Wissenschaftsphilosophie bzw. Wissenschaftstheorie ist voll von diesen kritischen Überlegungen seit mehr als 100 Jahren].
  8. Für das wissenschaftliche Denken hat dies weitreichende Konsequenzen, vorausgesetzt, man nimmt diese Erkenntnisse ernst.
  9. Streng genommen dürfte es keine einzige wissenschaftliche Disziplin mehr geben, die in ihrem Alltagsbetrieb nicht eine Theorie-kritische, sprich wissenschaftsphilosophische Abteilung besitzt, die sich kontinuierlich aktiv mit den ganzen nichtwissenschaftlichen Annahmen auseinandersetzt, die in jeden Wissenschaftsbetrieb eingehen. Insofern die Verantwortlichen eines solchen wissenschaftskritischen Unterfangens natürlich selbst von den jeweiligen Annahmen infiziert sind, gibt es keine Garantie, dass der nicht-wissenschaftliche Anteil tatsächlich immer angemessen erkannt und behandelt wird.
  10. Das heute oft so beklagte Auseinanderdriften von naturwissenschaftlichem Denken einerseits und und sozialem-kulturellem-geisteswissenschaftlichem Denken andererseits könnte durch die direkte philosophische Aufbereitung des naturwissenschaftlichen Denkens möglicherweise vermindert werden. Doch trotz aller Einsichten in die metaphysischen Schwachstellen des naturwissenschaftlichen Wissenschaftsbetriebs sieht es momentan nicht so aus, dass der Mainstream naturwissenschaftlichen Forschens sich solchen Maßnahmen öffnen würde.
  11. Man könnte sich jetzt einfach vom Geschehen abwenden und sagen, dann lass sie halt (die Naturwissenschaftler). Das Problem ist nur, dass diese Art von eingeschränktem Denken vielfache Fernwirkungen hat, die – für viele unmerkbar – grundlegende Anschauungen über die Welt und die Menschen beeinflussen.
  12. Wichtige Themen hier sind (i) das Bild vom Menschen generell, (ii) davon abhängig die Auffassung möglicher Werte, Grundwerte, Menschenrechte und Verfassungstexte, u.a. auch (iii) die Vorstellungen vom Sinn des Lebens im Kontext von religiösen Vorstellungen.
  13. Diese Überlegungen sind weiter zu führen.

Literaturhinweis:

Kenneth George Denbigh (1965 – 2004), Mitglied der Royal Society London seit 1965 (siehe: https://en.wikipedia.org/wiki/List_of_Fellows_of_the_Royal_Society_D,E,F). Er war Professor an verschiedenen Universitäten (Cambridge, Edinbugh, London); sein Hauptgebet war die Thermodynamik. Neben vielen Fachartikeln u.a. Bücher mit den Themen ‚Principles of Chemical Equilibrium, ‚Thermodynamics of th Steady State‘ sowie ‚An Inventive Universe‘.

Einen Überblick über alle Blogbeiträge des Autors cagent nach Titeln findet sich HIER.

K.G.DENBIGH: AN INVENTIVE UNIVERSE — Relektüre — Teil 2

K.G.Denbigh (1975), „An Inventive Universe“, London: Hutchinson & Co.

NACHTRAG: Am 30.9.2015 habe ich noch einen Diskussionsteil angefügt

BISHER

Im Teil 1 der Relektüre von Kenneth George Denbighs Buch „An Inventive Universe“ hatte ich, sehr stark angeregt durch die Lektüre, zunächst eher mein eigenes Verständnis von dem Konzept ‚Zeit‘ zu Papier gebracht und eigentlich kaum die Position Denbighs referiert. Ich hatte sehr stark darauf abgehoben, dass die Struktur der menschlichen Wahrnehmung und des Gedächtnisses es uns erlaubt, subjektiv Gegenwart als Jetzt zu erleben im Vergleich zum Erinnerbaren als Vergangenes. Allerdings kann unsere Erinnerung stark von der auslösenden Realität abweichen. Im Lichte der Relativitätstheorie ist es zudem unmöglich, den Augenblick/ das Jetzt/ die Gegenwart objektiv zu definieren. Das individuelle Jetzt ist unentrinnbar subjektiv. Die Einbeziehung von ‚Uhren-Zeit’/ technischer Zeit kann zwar helfen, verschiedene Menschen relativ zu den Uhren zu koordinieren, das grundsätzliche Problem des nicht-objektiven Jetzt wird damit nicht aufgelöst.

In der Fortsetzung 1b von Teil 1 habe ich dann versucht, die Darlegung der Position von Kenneth George Denbighs Buch „An Inventive Universe“ nachzuholen. Der interessante Punkt hier ist der Widerspruch innerhalb der Physik selbst: einerseits gibt es physikalische Theorien, die zeitinvariant sind, andere wiederum nicht. Denbigh erklärt diese Situation so, dass er die zeitinvarianten Theorien als idealisierende Theorien darstellt, die von realen Randbedingungen – wie sie tatsächlich überall im Universum herrschen – absehen. Dies kann man daran erkennen, dass es für die Anwendung der einschlägigen Differentialgleichungen notwendig sei, hinreichende Randbedingungen zu definieren, damit die Gleichungen gerechnet werden können. Mit diesen Randbedingungen werden Start- und Zielzustand aber asymmetrisch.

Auch würde ich hier einen Nachtrag zu Teil 1 der Relektüre einfügen: in diesem Beitrag wurde schon auf die zentrale Rolle des Gedächtnisses für die Zeitwahrnehmung hingewiesen. Allerdings könnte man noch präzisieren, dass das Gedächtnis die einzelnen Gedächtnisinhalte nicht als streng aufeinanderfolgend speichert, sondern eben als schon geschehen. Es ist dann eine eigene gedankliche Leistungen, anhand von Eigenschaften der Gedächtnisinhalte eine Ordnung zu konstruieren. Uhren, Kalender, Aufzeichnungen können dabei helfen. Hier sind Irrtümer möglich. Für die generelle Frage, ob die Vorgänge in der Natur gerichtet sind oder nicht hilft das Gedächtnis von daher nur sehr bedingt. Ob A das B verursacht hat oder nicht, bleibt eine Interpretationsfrage, die von zusätzlichem Wissen abhängt.

KAPITEL 2: DISSIPATIVE PROZESSE (54-64 …)

1. Anmerkung: bei der Lektüre des Buches merke ich, dass im Buch die Seiten 65 – 96 fehlen! Das ist sehr ungewöhnlich. Die Besprechung erfolgt also zunächst mal mit dem unvollständigen Text. Ich werde versuchen, doch noch einen vollständigen Text zu bekommen.

2. Eine Argumentationslinie in diesem Kapitel greift jene physikalischen Theorien auf, die bezüglich der Zeit invariant sind. Reversibilität von Prozessen, Konservierung (z.B. von Energie) und Determiniertheit sind Begriffe, die untereinander zusammen hängen. (vgl.S.58) Eine solche ’statische‘ Theorie ist die klassische (newtonsche) Mechanik.

3. Denbigh sieht einen Zusammenhang zwischen diesem stark idealisierenden Denken, das sich an etwas ‚Festem‘ orientiert, an etwas, das bleibt, etwas, das sich konserviert, und der griechischen Denktradition, die die Grundlagen allen Wandels in den unveränderlichen Atomen entdeckten. Ein typisches Beispiel ist die chemische Reaktionsgleichung für die Umwandlung von Wasserstoff 2H_2 und Sauerstoff O_2 in Wasser 2H_2O. Die Bestandteile werden hier als unveränderlich angenommen, nur ihre Anordnung/ ihr Muster ändert sich.

4. Diesem Hang zur Verdinglichung des Denkens über die Realität steht aber die ganze Entwicklung der physikalischen Erkenntnis entgegen: die scheinbar unteilbaren Atome setzen sich aus Partikeln zusammen, und die Partikel wiederum sind umwandelbar in Energie. Materie und Energie wurden als äquivalent erkannt. Die Gesamtheit von Energie-Materie mag konstant sein, aber die jeweiligen Zustandsformen können sich ändern.

5. Der Ausgangspunkt für die Entdeckung des Begriffs Entropie war die Ungleichheit in der Umwandlung von mechanischer Energie in Wärme und umgekehrt. (vgl. S.60f) Viele solcher Asymmetrien wurden gefunden. Während eine Richtung funktioniert, funktioniert die andere Richtung höchstens partiell. (vgl. S.62) Solche höchstens partiell reversible Prozesse sind dissipativ Prozesse. Und diese Eigenschaft, die den Unterschied in der Umwandelbarkeit charakterisiert, wurde Entropie [S] genannt. Sie kommt generell Systemen zu. Liegen zwei Systeme A und B vor, so drückt die Gleichung S_B >= S_A für t_B > t_A aus, dass für alle Zeitpunkt von B (T_B) nach dem aktuellen Zeitpunkt die Entropie von B (S_B) entweder gleich oder größer ist als die von A. Die Entropie kann also nicht abnehmen, sondern nur gleich bleiben oder zunehmen.

6. Das Besondere an der Entropie ist, dass die Entropie zunehmen kann, obwohl die Energie insgesamt konstant bleibt. (vgl. S.63f) [Anmerkung: Dies deutet implizit darauf hin, dass es unterschiedliche ‚Zustandsformen‘ von Energie gibt: solche in denen Energie lokal verfügbar ist, um Umwandlungsprozesse zu ermöglichen, und solche, in denen Energie lokal nicht mehr verfügbar ist. Die Nichtverfügbarkeit von Energie wäre dann gleichbedeutend mit maximaler Entropie. Die Nichtverfügbarkeit von Energie käme einer Unveränderlichkeit von Energie gleich. Ein schwieriger Begriff, da Energie als solche ‚Zustandslos‘ ist.]

7. Ferner deuten alle bekannten physikalischen Prozesse immer nur in eine Richtung: Zunahme von Entropie. (vgl. S.64)

8. … ab hier fehlt der Text im Buch ….

KAPITEL 3: FORMATIVE PROZESSE (…97 – 116)

9. Laut Inhaltsverzeichnis fehlen bei mir die ersten 7 Seiten vom dritten Kapitel.

10. Der Text startet mit dem Begriff der Organisation, den Denbigh als ein Konzept einstuft, das oberhalb der Elemente eines Systems liegt. Seine Einführung setzt voraus, dass man am Verhalten des Systems eine Funktion erkennt, die ein spezifisches Zusammenwirken der einzelnen Elemente voraussetzt. (vgl. S.98)

11. Zur Charakterisierung einer Organisation stellt Denbigh zwei zusätzliche Postulate auf. Einmal (i) sollen die einzelnen Elemente – bezogen auf die Gesamtleistung des Systems – nur eine begrenzte Fähigkeit besitzen, die erst im Zusammenspiel mit den anderen die Systemleistung ergibt, zum anderen (ii) müssen die Elemente untereinander verbunden sein.

12. Er führt dann die Begriffe Anzahl der Verbindungen [c] ein, Anzahl der Elemente ohne Kopien [n], sowie Anzahl der Elemente mit Kopien [N] ein. Die minimale Anzahl der Verbindungen wird mit N-1 gleichgesetzt, die maximale Zahl aller paarweisen Verbindungen (inklusive der Verbindungen der Elemente mit sich selbst) wird mit N * (N-1) angegeben. Die Anzahl c aller Verbindungen liegt also irgendwo zwischen N und N^2. Nimmt man das Produkt c x n, dann berücksichtigt man nur die unterscheidbaren Elemente ohne die Kopien.(vgl. S.100)

13. Damit konstruiert er dann den theoretischen Begriff der Zusammengesetztheit (‚integrality‘) [Anmerkung: man könnte hier auch von einer bestimmten Form der Komplexität sprechen] einer Organisation basierend auf ihren Elementen und ihren Verbindungen.

14. Denbigh referiert dann, dass im Bereich des Biologischen der Grad der Zusammengesetztheit der Nachkommen von biologischen Systemen zunimmt. (vgl. S.100) In diesem Zusammenhang sind Untersuchungen von von Neumann interessant. Im Versuch zu zeigen, ob und wie man Phänomene des Biologischen mit Automaten nachbauen könnte, kam von Neumann zu dem Resultat, dass die Ausgangssysteme eine kritische Größe haben müssen, damit ihre Nachkommen einen höheren Grad der Zusammengesetztheit haben können als die Elternsysteme. In seiner Untersuchung waren dies viele Millionen ‚Elemente‘. (vgl. S.100f)

15. Ein erster interessanter Befund ist, dass der Grad der Zusammengesetztheit unabhängig ist von den Konservierungsgesetzen der Physik. (vgl. S.102f) In einem isolierten Ei kann — nach Denbigh — der Grad der Zusammengesetztheit zunehmen ohne dass die Gesamtenergie sich ändert.

16. Allerdings ändert sich normalerweise die Entropie. Innerhalb des Eis mag die Entropie abnehmen, insgesamt aber erhalten biologische Systeme den Grad ihrer Zusammengesetztheit abseits eines Gleichgewichtszustands, was nur durch ständige Zufuhr von Energie möglich ist. Lokal nimmt die Entropie am/ im System ab, im Kontext mit der Umwelt, aus der die Energie entzogen wird, nimmt aber die Entropie zu. (vgl. S.103f)

17. [Anmerkung: Es fragt sich hier, ob es Sinn macht, von der ‚globalen‘ Entropie zu sprechen, da ja die Entropie der Teilbereiche ‚Umwelt‘ und ‚System‘ für sich unterschiedlich ist. Ein System mit ‚geringerer‘ Entropie ist eigentlich nicht vergleichbar mit einem System ‚höherer‘ Entropie.]

18. Denbigh schlussfolgert hier, dass die Änderungen der Entropie und der Grad der Zusammengesetztheit unabhängig voneinander sind. (vgl. S.104)

19. [Anmerkung: Dies erscheint zweifelhaft. Denn im Falle von biologischen Systemen bedeutet die Zunahme des Grads der Zusammengesetztheit notwendigerweise Verbrauch von Energie, die der Umgebung entzogen wird (Zunahme von Entropie) und dem System zugeführt wird (Abnahme der Entropie). Die Organisiertheit biologischer Systeme erscheint daher eher wie ein Entropie-Umwandler/ -Wandler/ -Transformator. Dies hat zu tun mit Zustandsformen von Energie: es gibt jene, die von biologischen Systemen umgewandelt werden kann und solche, die nicht umgewandelt werden kann.]

20. Denbigh führt dann das Symbol phi für den Grad der Zusammengesetztheit eines einzelnen Systems s_i ein und das Symbol PHI für die Summe aller einzelnen Systeme. (vgl. S.105f) Während der Grad der Zusammengesetztheit phi_i eines einzelnen Systems von der Geburt bis zum Tode zu- bzw. abnehmen kann, bildet die Summe PHI einen Querschnitt. Mit solch einem Maß kann man sowohl beobachten, dass PHI im Laufe der Zeit – abzgl. gewisser lokaler Schwankungen – generell zunimmt, zugleich auch die Zahl der Mitglieder der Population. (vgl. 106f) Zusätzlich zum Grad der Zusammengesetztheit des individuellen Systems mss man auch den Organisationsgrad der Systemumgebung berücksichtigen: Werkzeuge, Landwirtschaft, Verkehr, Rechtssysteme, Schrift, usw. (vgl. 107f) Nimmt insgesamt der Grad der Zusammengesetztheit zu, will Denbigh von einem Prozess der Formation sprechen.

21. Denbigh spekuliert auch darüber, ob man den Grad der Zusammengesetztheit dazu benutzen kann, um den Begriff der Kreativität ins Spiel zu bringen.

22. Ferner geht es um die Entstehung biologischer Systeme. Während für die Änderungen von organisatorisch einfachen Systemen die allgemeinen physikalischen Gesetze zur Beschreibung ausreichen, haben Organisationen mit einem höheren Grad von Zusammengesetztheit die Besonderheit, dass sehr spezifische Konstellationen vorliegen müssen, die für sich genommen extrem unwahrscheinlich sind. Im Fall biologischer Systeme ist die Entstehung bislang nicht klar und erscheint extrem unwahrscheinlich.

23. Ein Denkansatz wäre – nach Denbigh –, dass sich die Komplexität in kleinere Subprobleme delegieren lässt. (Vgl.S.110f) Dazu kommt die weitere Beobachtung/ Überlegung, dass sich im Falle von biologischen Systemen feststellen lässt, biologische Systeme dazu tendieren, die Ausgangslage für die Aggregation neuer Systeme immer weiter zu optimieren. (vgl.S.112f)

24. Stellt man eine Folge wachsender Organisiertheit auf (Denbigh nennt: Partikel – Atome – Moleküle – Zellen – Organismen), dann kann man nach Denbigh einen Zuwachs an Individualität und an Kontrolle beobachten bei gleichzeitiger Abnahme der Gesetzeskonformität; letzteres besagt, dass biologische Systeme je komplexer sie werden umso weniger direkt unter irgend ein physikalisches Gesetzt fallen. (vgl. S,114f)

25. Die Funktionen, die auf den jeweils höheren Ebenen der Organisation sichtbar werden, lassen sich nicht direkt aus den Komponenten der darunter liegenden Ebenen ableiten. Sie zeigen – hier zitiert Denbigh (Polanyi 1967) – etwas Neues. Dieses Auftreten von etwas Neuem verglichen mit den bisherigen Systemeigenschaften markiert nach (Polanyi 1967) einen Prozess, den er Emergenz nennt. Das neue Ganze ‚erklärt‘ die Teile, nicht umgekehrt. (vgl. S.116)

DISKUSSION

  1. Trotz der Behinderung durch die fehlenden Seiten (ein angeblich vollständiges Exemplar ist nachbestellt) bietet der Text von Denbigh doch spannende Stichworte, die unbedingt weiter verfolgt und geklärt werden müssen. Hier nur mal erste Notizen, damit diese Aspekte nicht untergehen.
  2. Das Zusammenspiel von Energie-Materie einerseits und Entropie andererseits wirft noch viele Fragen auf. Wenn man davon ausgeht, dass die Gesamtmenge der Energie-Materie konstant ist (was letztlich nicht wirklich klar ist; es ist eine Annahme!), man aber zugleich beobachten kann, dass die Energie-Materie unterschiedliche Zustände annehmen kann, was die Wahrscheinlichkeit von Veränderungen auf allen (?) Ebenen betrifft, so bedeutet dies, dass das Reden über Energie-Materie für uns Menschen letztlich nur interessant ist, sofern Energie-Materie sich messen lässt und im Messen mögliche Veränderungen zeigt. Eine unveränderliche und unmessbare Energie-Materie existiert für uns nicht.
  3. Was wir aber messen, das sind punktuelle Ereignisse in einem unbekannten riesigen Raum von Zuständen/ Ereignissen, der sich uns weitestgehend entzieht.
  4. Wenn wir nun feststellen, dass es Veränderungsphänomene gibt (Zerfallsprozesse, Partikelabstrahlungen, Wärmeaustausch, …), dann deutet dies darauf hin, dass Energie-Materie eine große Zahl von unterschiedlichen Zuständen einnehmen kann, von denen einige so sind, dass im Zustandswechsel endliche Energie-Materie-Mengen auf andere Zustände einwirken können und dabei – falls es sich um sogenannte biologische Systeme handelt – diese andere Zustände diese verfügbare Energie-Materie-Mengen für systeminterne Prozesse nutzen können.
  5. Obwohl der Begriff der Entropie in der Literatur viele unterschiedliche Bedeutungen besitzt (dem wird noch weiter nachzugehen sein), ist ein Bedeutungskern jener, dass die Verfügbarkeit von solchen endlichen Energie-Materie-Mengen damit beschrieben wird: maximale Entropie liegt vor, wenn keine Energie-Materie-Mengen verfügbar sind, und minimale Entropie entsprechend, wenn maximal viele Energie-Materie-Mengen verfügbar sind.
  6. Während sich im Universum Veränderungsprozesse auch unabhängig von biologischen Systemen beobachten lassen, so sind die biologischen Systeme im Kontext von Entropie dennoch auffällig: während Veränderungsprozesse im Universum abseits biologischer Systeme von minimaler zu maximaler Entropie zu führen scheinen (dissipative Prozesse, irreversible Prozesse, …), zeigen sich die biologischen Systeme als Entropie-Konverter! Sie kehren die Prozessrichtung einfach um: sie nutzen die Veränderungsprozesse von minimaler zu maximaler Entropie dahingehend aus, dass sie diese lokal für endliche Zeitspannen von einem Entropielevel X zu einem Entropielevel X-n konvertieren (mit ‚X-n‘ als weniger Entropie als ‚X‘).
  7. Für diese Prozessumkehr gibt es keine physikalischen Gesetze außer der zwielichtigen Gravitation. Im Gefüge der aktuellen physikalischen Theorien passt die Gravitation bislang nicht so recht hinein, macht sie doch genau das, was die biologischen Systeme im kleinen Maßstab vorexerzieren: die Gravitation zieht Energie-Materie-Mengen so zusammen, dass die Entropie abnimmt. Die dadurch entstehenden Energie-Materie-Konstellationen sind die Voraussetzungen dafür, dass Veränderungsprozesse – und damit biologische Systeme – stattfinden können (ist Gravitation jene innere ‚Feder‘, die ein Universum auf lange Sicht immer wieder soweit zusammen zieht, bis es zum nächsten BigBang kommt?).
  8. Folgt man der Idee von den biologischen Systemen als Entropie-Konvertern, dann wird interessant, wie man das Besondere an jenen Systemen charakterisiert, die wir biologisch nennen. Denbigh offeriert hier – offensichtlich stark beeinflusst von anderen Autoren, u.a. Michael Polanyi – das Konzept eines Systems, dessen Organisation durch Elemente (n,N), Beziehungen (c) und Systemfunktionen (f,…) beschreibbar ist. Je nach Anzahl und Dichte der Verschränkungen kann man dann Organisationsgrade (Komplexitätsstufen) unterscheiden. Diese Begrifflichkeit ist noch sehr grob (verglichen z.B. mit den Details in einem Handbuch über die biologischen Zellen), aber sie bietet erste Angriffsflächen für weitergehende Überlegungen.
  9. So stellt sich die Frage nach der Entstehung solch komplexer Systeme, die bis heute nicht klar beantwortet ist.
  10. So stellt sich die Frage nach der Entwicklung solcher Strukturen von einem einfacheren Zustand zu einem komplexeren: woher kommen die viel komplexeren Strukturen und speziell dann Systemfunktionen, die sich nicht aus den Bestandteilen als solchen herleiten? Das Wort Emergenz an dieser Stelle klingt gut, erklärt aber natürlich nichts.
  11. Faktisch beobachten wir entlang einer Zeitachse eine letztlich kontinuierliche Zunahme der Komplexität biologischer Systeme sowohl als individuelle Systeme wie aber auch und gerade im Zusammenspiel einer Population mit einer organisatorisch aufbereiteten Umgebung (Landwirtschaft, Städtebau, Technik allgemein, Kultur, …).
  12. Für alle diese – mittlerweile mehr als 3.8 Milliarden andauernde – Prozesse haben wir bislang keine befriedigenden theoretischen Modelle, die das Phänomen biologischer Systeme im Kontext der gesamten Naturprozesse plausibel machen. Die bisherigen naturwissenschaftlichen Theorien erscheinen für dieses komplex-dynamische Phänomen der biologischen Systeme zu einfach, zu primitiv. Das liegt zu großen Teilen möglicherweise auch daran, dass sich die meisten Naturwissenschaftler bislang schwer tun, die Phänomene des biologischen Lebens in ihren vollen Komplexität ernst zu nehmen. Möglicherweise wird dies dadurch erschwert, dass die traditionellen Geisteswissenschaften ebenfalls die Brücke zum naturwissenschaftlichen Zusammenhang noch nicht gefunden haben. Statt sich gegenseitig zu befruchten, grenzt man sich voneinander ab.
  13. Letzte Anmerkung: in zwei vorausgehenden Beiträgen direkt (und in weiteren indirekt) hatte ich auch schon mal Bezug genommen auf das Phänomen der Komplexitätsentwicklung biologischer Systeme (siehe: Randbemerkung: Komplexitätsentwicklung (Singularität(en)) und Randbemerkung: Komplexitätsentwicklung (Singularität(en)) – Teil 2. Die Formulierungen in meinen Beiträgen war etwas schwerfällig und noch wenig überzeugend. Mit dem Ansatz von Denbigh, Polanyi und anderen lässt sich dies sicher deutlich verbessern.

 

Fortsetzung folgt

QUELLEN

1. Kenneth George Denbigh (1965 – 2004), Mitglied der Royal Society London seit 1965 (siehe: https://en.wikipedia.org/wiki/List_of_Fellows_of_the_Royal_Society_D,E,F). Er war Professor an verschiedenen Universitäten (Cambridge, Edinbugh, London); sein Hauptgebet war die Thermodynamik. Neben vielen Fachartikeln u.a. Bücher mit den Themen ‚Principles of Chemical Equilibrium, ‚Thermodynamics of th Steady State‘ sowie ‚An Inventive Universe‘.
2. John von Neumann (1966), Theory of Self-Reproducing Automata, edited and completed by Arthur W.Burks, Urbana – London: University of Illinois Press
3. Michael Polanyi (1967), The Tacit Dimension, Routledge & Keagan Paul.
4. Michael Polanyi (1968) Life’s Irreducible Structure. Live mechanisms and information in DNA are boundary conditions with a sequence of boundaries above them, Science 21 June 1968: Vol. 160 no. 3834 pp. 1308-1312
DOI: 10.1126/science.160.3834.1308 (Abstract: Mechanisms, whether man-made or morphological, are boundary conditions harnessing the laws of inanimate nature, being themselves irreducible to those laws. The pattern of organic bases in DNA which functions as a genetic code is a boundary condition irreducible to physics and chemistry. Further controlling principles of life may be represented as a hierarchy of boundary conditions extending, in the case of man, to consciousness and responsibility.)
5. Michael Polanyi (1970), Transcendence and Self-Transcendence, Soundings 53: 1 (Spring 1970): 88-94. Online: https://www.missouriwestern.edu/orgs/polanyi/mp-transcendence.htm

Einen Überblick über alle Blogbeiträge des Autors cagent nach Titeln findet sich HIER.