In diesem Beitrag soll das Konzept einer praktischen kollektiven Mensch-Maschine Intelligenzby design weiter entwickelt werden. Der unmittelbar vorhergehende Beitrag findet sich hier. In diesem Text geht es jetzt darum, das Anwendungsszenario explorative Entwicklung unter Einbeziehung einer kontinuierlichen Simulation [ESBD] zu beschreiben.
Die explorative simulations-basierte Entwicklung geht davon aus, dass eine Gruppe von Experten sich auf eine Ausgangslage S und auf eine Vision V geeinigt haben. Beide zusammen, also S und V, werden als Aufgabe (S,V) begriffen. Gesucht wird nach einer Menge von Veränderungsregeln X, deren Anwendung eine Folge von Zuständen/ Situationen <S.0, S.1, …, S.n> erzeugt, die letztlich einen Weg bilden, der von S nach V führt. In dieser Folge von Zuständen gilt, dass ein beliebiger Nachfolgezustand S.i aus einem vorhergehenden Zustand S.i-1 dadurch entstanden ist, dass mindestens eine Veränderungsregel X.i aus X auf den vorhergehenden Zustand S.i-1 angewendet worden ist, was dann zur Entstehung von S.i geführt hat. Die Anwendung von Veränderungsregeln X auf einen gegebenen Zustand S können entweder von den Experten selbst ‚per Hand‘ (‚manuell‘) ausgeführt werden oder automatisch durch den eingebauten Simulator ∑. Die Anwendung des Simulators auf die Aufgabe (S,V) mittels der Regeln X wird geschrieben: ∑(S,V,X) = SQ(S,V,X,∑) = <S.0, S.1, …, S.n>. Neben der Folge der Zustände zeigt der Simulator zu jeder neuen Nachfolgesituation auch an, wie viel % der Ausdrücke aus der Vision schon im aktuellen Zustand S.i enthalten sind. Falls verfügbar, kann man zusätzlich zum Simulator noch die algorithmische Intelligenz ⊪ aktivieren, um die wichtigsten guten Lösungen anzuzeigen.
AUSGANGSLAGE S
Die Ausgangslage S wird gebildet durch eine Menge von Ausdrücken E einer Alltagssprache L (z.B. Deutsch, Englisch, Spanisch, …). Ein einzelner Ausdruck E.i hat als solcher keine Bedeutung. Es wird aber vorausgesetzt, das derjenige, der diesen Ausdruck E.i eingibt, aufgrund seines Sprachverständnisses mit diesem Ausdruck E.i eine Bedeutungsvorstellung B(E.i) verknüpft, von der angenommen werden kann, dass diese sich auf eine beobachtbare Eigenschaft B(E.i)* in einer Alltagssituation S* beziehen lässt oder aber sich in andere Ausdrücke E‘ übersetzen lässt, von denen dies gilt. Die Menge der Ausdrücke E in der Zustandsbeschreibung/ Situationsbeschreibung S korrespondiert danach einer Menge von beobachtbaren Eigenschaften in einer Alltagssituation S* zu einem gewählten Zeitpunkt TS, also S*(TS). Unter Voraussetzung dieses Bezuges zu einer Alltagssituation S* kann gesagt werden, dass die Menge der Ausdrücke E in der Beschreibung S = {E.1, E.2, …, , E.n} als empirisch zutreffend zum Zeitpunkt T angenommen werden; eine andere Formulierung wäre, dass diese Ausdrücke von S als wahr bezeichnet werden. Sobald die Menge der Ausdrücke einer Situation S sich zur Situation S‘ ändert, weil mindestens ein Ausdruck in S‘ anders ist als in S (z.B. die Zeitmarke T‘), wird angenommen werden, dass sich auch die korrespondierende Alltagssituation geändert hat.
Im Rahmen einer Aufgabenstellung (S,V) soll die Ausgangslage S eine reale Situation in einem Alltag beschreiben, die alle Beteiligten als real gegeben annehmen. Die Ausgangslage S kann, aber muss nicht, auch explizit solche Eigenschaften E* enthalten, die die Beteiligten als Verbesserungswürdig klassifizieren. In welchem Sinne diese verbesserungswürdigen Zustände E* mit Blick auf eine Zukunft verbessert werden sollen, wird in einem separaten Visionstext V beschrieben.
Ein Startzustand S kann beliebig erweitert werden. Es kann auch parallel verschiedene Startzustände {STs.1, …, STs.n} geben, die thematisch unterschiedliche Aspekte beleuchten oder verschiedenen Raumgebiete betreffen. Verschiedene Startzustände können nach Bedarf ‚per Knopfdruck‘ zu einem einzigen Zustand S zusammen gefasst werden.
VISION V
Ohne die Angabe eines Zustands SF für einen Zeitpunkt TF > TS, der größer ist als der Startzeitpunkt TS, gibt es in der möglichen Entwicklung des Startzustands S keine Entwicklung in eine bestimmte Richtung. Da dieser Zustand SF in der Zukunft liegt, nicht gegenwärtig ist, haben die Bedeutungen B(SF) der Ausdrücke im Zustand SF keine externe, beobachtbare Entsprechung im Alltag. Deshalb wird diese für die Zukunft angenommene Situation SF auch Vision genannt. Allerdings wird unterstellt, dass die Ausdrücke E von SF in der Zukunft ab einem Zeitpunkt TFzutreffen werden, d.h. ab diesem Zeitpunkt wahr sein werden. Es ist dabei nicht ausgeschlossen, dass dieser Fall schon vor dem angezielten Zeitpunkt TF stattfinden kann. Ebenso kann er sich verzögern.
Auch für den Visionstext gilt — wie im Falle des Startzustands S –, dass er beliebig erweitert werden kann oder dass es parallel verschiedene Visionstexte gibt, die nach Bedarf ‚per Knopfdruck‘ zu einem vereinigt werden.
Je mehr Ausdrücke der Visionstext V umfasst, um so differenzierter kann man die Zielsituation beschreiben.
KONSTRUIEREN DER VERÄNDERUNGSREGELN X
Im Kontext einer Folge von beschreibbaren Situationen kann man die Veränderungen in der Form von Veränderungs-Regeln fassen: Man sagt: wenn die Bedingung C in einer aktuellen Situation S erfüllt ist, dann sollen mit der Wahrscheinlichkeit π die Aussagen Eplus der Situation S hinzugefügt werden, um die Nachfolgesituation S‘ zu generieren, und die Aussagen Eminus sollen von S weggenommen werden, um die Nachfolgesituation S‘ zu generieren.
Man kann für jede Ausgangslage S beliebig viele Veränderungsregeln X erstellen. Insofern gilt XS = {XS.1, …, XS.n}. Ist eine bestimmte Situation S.i im Verlauf gegeben, dann kann es mehr als eine Veränderungsregel geben, die aus X zutrifft, also XS.i ⊆ X. In diesem Fall werden alle diese Regel XS.i auf S.i angewendet XS.i(S.i) = S.i+1. Die Reihenfolge der Regeln aus XS.i wird für die Anwendung auf S.i jeweils per Zufall bestimmt.
TESTEN DER VERÄNDERUNGSREGELN X
Da sich die möglichen Auswirkungen der Regeln in ihrer Anwendung auf einen gegeben Zustand S mit zunehmender Zahl und wachsender Komplexität von S (und auch V) immer schwerer ‚im Kopf‘ vorstellen lassen, kann man sich vom eingebauten Simulator ∑ anzeigen lassen, welche Folge von Situationen <S.1, S.2, …> entsteht und wie weit diese schon die angezielte Vision V enthalten.
Durch diese Möglichkeit der jederzeit möglichen Simulation hat die Konstruktion eines Weges von S nach V mittels Veränderungsregeln X einen spielerischen Charakter.
UNTERSTÜTZUNG DURCH ALGORITHMISCHE INTELLIGENZ ⊪α
Liegt eine Aufgabe (S,V) vor zusammen mit einer Menge von Veränderungsregeln X dann kann der eingebaute Simulator ∑ daraus eine Sequenz der Art ∑(S,V,X) = SQ.i = <S.1, S.2, …, S.n> erzeugen, wobei jede einzelne Situation S.i in dieser Folge mit einer Bewertung indiziert ist. Der Simulator ∑ funktioniert in diesem Zusammenhang wie eine logische Folgerungsbeziehung ⊢, geschrieben: S,V,X ⊢∑ SQ.i.
Im allgemeinen Fall kann man mehr als eine Sequenz SQ.i mit Hilfe von ⊢∑ aus {S,V,X} ableiten. Schreibt man sich einen Algorithmus α der alle möglichen Ableitungen durchführt, die z.B. einen bestimmten minimalen Bewertungsindex haben und die z.B. die kürzesten Sequenzen sind, dann entsteht eine Menge SQ+, die alle diese Sequenzen enthält. Dieser Algorithmus α funktioniert dann auch wie eine Ableitung; diese Form der Ableitung nennen wir hier algorithmische Intelligenz und schreiben ihre Anwendung: S,V,X ⊪α SQ+ [1]
Statt also alle möglichen Simulationen selbst durchführen zu müssen, können die Experten mit Hilfe der algorithmischen Intelligenz α mit Feinjustierung von Parametern gezielt nach der Menge der möglichen Ableitungen suchen, die diese Parameter erfüllen. Dies kann eine Menge Arbeit ersparen und vor allem, es kann helfen relativ schnell, ein tieferes Verständnis des Problemraumes zu bekommen.
QUELLENNACHWEISE und ANMERKUNGEN
[1] Im Englischen gibt es für den Begriff ‚Künstliche Intelligenz [KI]‘ (bzw. ‚Maschinelles Lernen [ML]‘) eine Vielzahl von Begriffen — z.B. ‚Artificial Intelligence [AI]‘, “Machine Learning [ML]‘, ‚Computational Intelligence [CI]‘ , ‚Algorithmic Intelligence [AI]‘, ‚Embodied Intelligence‘, …) — die alle mehr oder weniger nicht wirklich definiert sind. Zusätzlich verwirrend ist die Tatsache, dass wir Menschen den Begriff ‚Intelligenz‘ eigentlich nur aus dem Kontext menschlichen Verhaltens — mittlerweile auch ausgedehnt auf verschiedene Formen tierischen und pflanzlichen Verhaltens — kennen. Hier haben Biologie und Psychologie schon seit Jahrzehnten einigermaßen brauchbare Definitionen von ‚Intelligenz‘ bereit gestellt (die man kritisieren kann, aber sie sind immerhin da und sie funktionieren). Die Vielstimmigkeit der technischen Intelligenzbegriffe bietet dagegen eher eine Dissonanzwolke. Ein zusammenfassendes, alle Aspekte integrierendes Konzept von ‚Intelligenz‘ — auch in den Vergleichen — wäre für uns alle extrem hilfreich. In dieser Situation habe ich mich für den Begriff ‚Algorithmische Intelligenz‘ entschieden, da er der Tatsache Rechnung trägt, dass der Kern aller technischen Intelligenzleistungen in der Software (= Computerprogramm, Algorithmus) lokalisiert ist. Ob man nun einen bestimmten Algorithmus als ‚Intelligent‘ oder ’nicht intelligent‘ bezeichnen will, hängt dann davon ab, welche verhaltensrelevanten Eigenschaften man mit diesem Algorithmus in Zusammenhang bringen kann. Am Beispiel des oksimo-Paradigmas lässt sich sehr genau ein sogenannter Problemraum definieren, der ‚by design‘ als Abfallprodukt menschlichen Verhaltens entsteht, und in diesem Problemraum gibt es Suchprozesse und Bewertungsprozesse, die zusammen die Identifizierung eines — von Menschen definierten — interessanten Teilraumes ermöglichen. Dieser Prozess von Suchen + Bewerten + Auszeichnung einer Teilmenge wird hier mit dem Begriff der algorithmischen Intelligenz verknüpft. Ob und wie sich dieser Begriff von algorithmischer Intelligenz mit den Intelligenbzbegriffen der Biologen und Psychologen vergleichen lässt, soll demnächst diskutiert werden.
FORTFÜHRUNG DIESER GEDANKEN
(Letzte Änderung: 25.März 2021)
Die oben beschriebenen Gedanken finden eine Fortsetzung wie folgt:
Im eJournal uffmm.org einmal auf der Seite https://www.uffmm.org/2020/04/02/case-studies/ mit vier Beiträgen
im eJournal uffmm.org in der neuen Rubrik Philosophy of Science mit einer ganzen Folge von Beiträgen.
im neuen Anwendungsblog oksimo.org der oksimo Software.
Das Thema wird daher in diesem eJournal Philosophie Jetzt. Auf der Suche … nicht mehr weiter behandelt.
DER AUTOR
Einen Überblick über alle Beiträge von Autor cagent nach Titeln findet sich HIER.
In diesem Beitrag soll das Konzept einer praktischen kollektiven Mensch-Maschine Intelligenzby design, das im vorausgehenden Beitrag grob vorgestellt worden ist, weiter konkretisiert werden. In diesem Text geht es um eine erste Beschreibung der auslösenden Problemstellung und einem möglichen Zukunftskonzept.
Die Problemstellung, die hier beschrieben wird, wird so knapp wie möglich gehalten.
Eine ausführliche Beschreibung könnte sehr schnell viele hundert Seiten umfassen, da es bei dem Problem um nichts weniger als um uns selbst geht, um unsere Situation als Menschen in einem Alltag; hier primär um einen Alltag in der Bundesrepublik Deutschland. Doch da es um das generelle Problem geht, wie beliebige Menschen weltweit — wenn sie denn wollen — gemeinsam ihr Wissen, ihre Erfahrungen, ihre Motive so austauschen, dass dabei ihre Gegenwart mit identifizierten Problemen vorkommt, mögliche Zielvorstellungen, wie es denn besser sein könnte, mögliche Maßnahmen, wie man die Gegenwart schrittweise ändern könnte, geht es nicht nur um Deutschland, nicht nur um Europa, sondern um die ganze Menschheit. Auf diesem Planet Erde zu überleben ist schon jetzt nur noch möglich, wenn alles positiv-konstruktiv zusammenspielt; Nachhaltigkeit ist hier keine ‚Modewort‘ sondern knallharte Realität: entweder wir lösen das Problem gemeinsam oder wir werden gemeinsam untergehen.
Es macht daher Sinn, mit möglichst wenig, möglichst einfach, anzufangen, um die Problembeschreibung dann schrittweise auszuweiten.
DER MENSCH SELBST
Der primäre Ansatzpunkt der Problemstellung ist der Mensch selbst, Wir, die Lebensform des homo sapiens. Die biologische Evolution hat dem homo sapiens mindestens zwei Eigenschaften mitgegeben, die ihm eine besondere Rolle — und damit auch eine besondere Verantwortung ? — zukommen lässt (für weitere Erläuterungen zu den folgenden Gedanken siehe z.B. [1] und [2]):
Außen nach Innen
(i) Ein einzelner homo sapiens ist so gebaut, dass er automatisch die Realität der Außenwelt in die Realität seiner Gehirnzustände verwandelt, und innerhalb dieser realen Gehirnzustände real-virtuelle Signalzustände erzeugt, die speziell und partiell Eigenschaften der realen Welt außerhalb des Gehirns (einschließlich des Gehirns selbst) in real-virtuelle Zustände innerhalb des Gehirns verwandelt. Diese internen virtuellen Zustände sind partiell das, was wir subjektiv als Welt erleben (der größte Teil der neuronalen Zustände ist unbewusst). Zwischen der auslösenden realen Welt und der internen virtuellen Welt kann es große Unterschiede geben.
Ausdruckssysteme
(ii) Zusätzlich verfügt der homo sapiens über die Eigenschaft und Fähigkeit, auch intern, virtuell, ein eigenes Ausdruckssystem zu entwickeln, das über Lernprozesse mit sehr vielen (wie vielen?) Aspekten der internen virtuellen Welt verknüpft werden kann. Durch eine Übersetzung des internen Ausdruckssystem in äußerliche, reale Ereignisse (Laute, Gesten, Schriftzeichen,…) kann das eine Gehirn unter bestimmten Bedingungen mit einem anderen Gehirn eine Interaktion aufbauen, die zu einer Kommunikation führen kann: Laute erzeugt von einem Gehirn A können Bezug nehmen auf interne Zustände des Gehirns A und — unter speziellen Bedingungen — können diese Laute in einem anderen Gehirn B auf seine eigenen internen Zustände bezogen werden. Es fragt sich nur: auf welche? Die Koordinierung der Zuordnung in zwei verschiedenen Gehirnen ist eine spezifische Lernleistung und Teil einer Lebenswelt, einer Kultur. Erfahrungsgemäß ist eine Koordinierung am einfachsten und stabilsten, wenn verschiedene Gehirne sich auf ein Ereignis in der realen Außenwelt beziehen (‚es regnet‘), das bei allen Beteiligten interne Prozesse auslöst. Ähnlich gut, wenngleich nicht ganz so eindeutig, sind Ereignisse im realen Körper, sofern die Körper eine hinreichend ähnliche Struktur untereinander aufweisen (‚Ich sehe dort ein Licht‘, ‚Zahnschmerzen‘, ‚Ellbogen gestoßen‘, …). Schwieriger bis ganz schwierig wird es bei subjektiven Ereignissen und Prozessen wie verschiedene Emotionen, Gefühle, Stimmungen, Ängste, Überlegungen usw. Diese sind einem anderen Gehirn prinzipiell verschlossen, es sei denn …
Als einzige Lebensform auf dem Planet Erde — und vielleicht im gesamten bekannten Universum — verfügt die Lebensform des homo sapiens über diese einzigartige Fähigkeiten.[4] Die Geschichte des homo sapiens zeigt — soweit sie anhand von Artefakten rekonstruierbar ist –, dass der homo sapiens zu Kooperationsleistungen fähig war, die schrittweise zu hochkomplexen Siedlungsformen, Technologien, kulturellen Mustern und Wissensformen geführt haben, wie wir sie heute kennen.
ÜBER-INDIVIDUELLE KOMPLEXITÄT
Kooperation durch Kommunikation verweist aus sich heraus aber auch auf einen Umstand, der für die Lebensform des homo sapiens heute zu einem eigenen Problem geworden zu sein scheint. Kooperation kann reale und gedachte Zusammenhänge hervorbringen, die die Perspektive des einzelnen soweit übersteigen, dass der einzelne sich angesichts der gemeinsam hervorgebrachten Leistung nicht nur stolz über die gemeinsam erbrachte Leistung fühlen kann (‚Ja, zusammen können wir ganz viel.‘), sondern ihn auch überfordert. Ich habe diese Form der Überforderung früher als Negative Komplexität bezeichnet [5a,b]: Wenn die für eine bestimmte Lebensform typischen Signale seiner spezifischen Umwelt [6] zahlenmäßig die Verarbeitungskapazitäten des Gehirns wesentlich übersteigen, dann wird die Menge der Lebensform-typischen Informationen in einer Weise größer, dass diese überschießende Menge nicht mehr positiv zur Lebensführung beiträgt, sondern mehr und mehrunbewältigt ist und die Lebensführung dadurch stark negativ beeinflusst werden kann.
Viele einzelne Menschen können zusammen, im Verbund, Landwirtschaft betreiben, große Häuser bauen, Verkehrssystem ermöglichen, viele Hunderttausend Bücher schreiben, aber der einzelne versteht heute immer weniger von dem Zusammenhang, wie das Ganze genau funktioniert [7], und bei vielen Hunderttausend Büchern ist völlig klar, dass das kumulierte Wissen von einem einzelnen nicht mehr rezipiert werden kann. Durch Computer, Internet, und Datenbanken ist die Ereignismenge weiter angeschwollen und macht jeden Experten zu einem Dummkopf, der nichts mehr versteht, weil das individuelle Gehirn, diese Wunderwerk der Evolution, mit seinen endlichen Möglichkeiten, mit diesen Quantitäten einfach nicht mithalten kann.[3] Ein einzelnes menschliches Gehirn ist ein unfassbarer Hotspot von Freiheit und potentieller Zukunft, aber für eine Kommunikation und Koordination mit vielen Milliarden Menschen, in der es real um Verstehen geht, nicht einfach nur Dabei sein, ist es nicht geschaffen. Die hervorgebrachte Komplexität überfordert aktuell ihre Hervorbringer.
Diese Situation markiert den Kern des Problems, um das es hier gehen soll.
VISION: MÖGLICHE LÖSUNG?
Wenn man in der Gegenwart eine Konstellation von Sachverhalten erkennt, die man als ein Problem klassifiziert, dann ist dies natürlich abhängig vom Wissensstand des Sprechers/ Schreibers. Wissen ist notorisch unvollständig und kann mehr oder weniger falsch sein. Nichts desto Trotz: solange der Sprecher zu diesem Zeitpunkt kein anderes Wissen zur Verfügung hat, wird er — will er denn überhaupt handeln — dieses aktuelle Wissen zum Maßstab für sein Handeln nehmen müssen. Dieses Handeln kann in die Irre führen, es kann Schäden anrichten, aber für den Handelnden ist es vielleicht die einzige Chance, heraus zu finden, dass sein aktuelles Wissen nicht gut ist, dass es falsch ist. ‚Durch Fehler lernen‘ ist eine alte Alltagsweisheit.
Diese grundsätzliche Fehler-Behaftetheit eines aktuellen Wissens resultiert aus der Tatsache, dass uns die Zukunft grundsätzlich nicht bekannt ist.[8] Unser Körper mit seinem Gehirn transformiert zwar kontinuierlich — ohne dass wir dies explizit wollen — aktuelle Gegenwart in stark veränderte innere Zustände, die dann durch verschiedene Speichervorgänge das werden, was wir erinnerbare Gegenwart nennen, unsere Vergangenheit, aber die Zukunft im engeren Sinne, das, was im zeitlichen Anschluss an das Gegenwärtige die neue aktuelle Gegenwart sein wird, diese Zunft kennen wir nicht. Zukunft als solche kommt in unserem Erfahrungsbereich nirgendwo vor; sie ist kein Objekt der Wahrnehmung.
Klassifizieren wir also einige Sachverhalte der Gegenwart als ein Problem, und wir möchten dazu beitragen, dass dieses Problem mindestens abgeschwächt wird, vielleicht sogar ganz gelöst wird, dann müssen wir für uns irgendwie das Bild einer möglichen Zukunft entwickeln, in der die angedachte Lösung (= die Vision), kein bloßer Gedanke ist, sondern die neue Realität, die neue Gegenwart.
Damit stellt sich die grundsätzliche — letztlich philosophische — Frage, in welcher Form wir überhaupt über die Zukunftnachdenken können, wenn wir nur Fragmente einer Gegenwart und unterschiedlich neuronal abgewandelte Fragmente unserer Vergangenheit zur Verfügung haben? Was nützt es mir, zu wissen, dass es gestern in London geregnet hat, in Paris die Sonne schien, und es in Moskau kühl war? Was nützt es mir, zu wissen, dass im 20.Jahrhundert zwei große Kriege stattgefunden haben? Was nützt es mir, zu wissen, dass es in den vergangenen 5000 Jahren viele Großreiche gab, mit hochkomplexen Organisationsformen, die heute aber völlig verschwunden sind? Was nützt es mir, zu wissen, dass sich die heutigen biologischen Lebensformen im Rahmen dessen, was wir biologische Evolution nennen, im Laufe von 3.5 Milliarden Jahren schrittweise heraus gebildet haben? Was nützt es mir, zu wissen, dass das heute bekannte Universum vor ca. 13.7 Milliarden (10^9) entstanden ist? [9]
Von den modernen empirischen Wissenschaften (entwickelt seit ca. 400 Jahren, nimmt man Galilei Galileo als einen groben Bezugspunkt [13])) wissen wir, dass wissenschaftliche Erkenntnis im größeren Stil erst möglich wurde, nachdem man nicht nur das Konzept von standardisierten und reproduzierbaren Messverfahren entwickelt hatte, sondern man auch explizite begriffliche Zusammenhänge (=Theorien) formulieren konnte, so dass es möglich wurde, Beziehungen zwischen den einzelnen Messwerten zu beschreiben. Für sich alleine sind Messwerte (= empirische Daten) zwar individuell, punktuell bedeutungsvoll (‚Die Laborratte im Labyrinth X zum Zeitpunkt T gemessen mit Verfahren V öffnete die weiße Tür und nicht die schwarze.‘), aber man kann daraus zunächst nichts weiter ableiten. Wenn man aber weiß, dass die Forscher ein Verhaltensexperiment durchführen, bei dem eine Laborratte zwischen zwei Türen mit unterschiedlicher Farbe wählen kann und hinter der weißen Tür gelegentlich Futter zu finden ist, nicht aber hinter der schwarzen, und man dann feststellt, dass die Laborrate nach anfänglichem zufälligen Entscheiden ab dem ersten Fund von Futter hinter der weißen Tür die weiße Tür eindeutig bevorzugt, dann kann ein empirisches Datum im Kontext einer zeitlichen Folge von Daten im weiteren Kontext des Experiments von theoretischer Bedeutung sein: man kann einen Zusammenhang formulieren, der besagt, dass die Laborratte (meistens hat man mehrere), wenn sie sich in einer unübersichtlichen Umgebung bewegt, sich Wege in solch einer Umgebung so einprägen kann, dass sie bei Erfolg (Hunger und Futter) aufgrund der Gedächtnisleistung genau jenen Weg finden und wählen kann, der zum Futter geführt hat.(Das klassische Experiment dazu stammt von Tolman [11]).
Im Falle der empirischen Verhaltensforschung (siehe auch [12]) sind Aussagen über das Verhalten von Organismen natürlich in ihrem zeitlichen Horizont sehr begrenzt, da nicht nur die Lebensdauer eines biologischen Organismus sehr begrenzt ist, sondern auch, weil biologische Organismen grundlegend lernende Systeme sind, die ihr Verhalten z.T. dramatisch ändern können. Dennoch lassen sich mit verhaltensbasierten Theorien Voraussagen über ein mögliches Verhalten in der Zukunftableiten, die begrenzt hilfreich sein können.
Im Falle von nicht-biologischen Systemen wie Planeten, Sonnensystemen, Galaxien usw. kann man aufgrund der Stabilität der Systeme eher belastbare Voraussagen in die Zukunft machen. So kann man mit den heutigen physikalischen Theorien z.B. die Voraussage ableiten, dass der Lebensraum Erde spätestens in 1.4 Milliarden Jahren aufgrund der Ausdehnung der Sonne für die heutigen biologischen Lebensformen unbewohnbar sein wird. Zusätzlich kann man ableiten, dass in spätestens 2.7 Milliarden Jahren von heute aus unsere Milchstraßen Galaxie mit der Andromeda Galaxie kollidieren wird.[10] Im ‚Nahbereich‘ der nächsten Jahrzehnte gibt es Hochrechnungen zur Entwicklung des Erdklimas und der damit zusammenhängenden Lebensbedingungen auf der Erde.
Das Verlassen einer als Problem klassifizierten Situation hin zu einer im Denken als möglich erscheinenden zukünftigen Situation, in der das Problem zumindest minimiert, wenn nicht gar aufgelöst, worden ist, kann nur erfolgen, wenn es (i) mindestens ansatzweise eine Vorstellung von solch einer zukünftigen Situation (= Vision) gibt, und (ii) man sich einen Wegvorstellen kann, wie man von der problematisierten Gegenwart zu einer gewünschten Zukunft als einer neuen Gegenwart kommen kann.
Ein Weg bedeutet hier eine Folge von einzelnen Situationen, in der jede Situation das Ergebnis von vorausgehenden Veränderungen ist. Änderungen werden durch Ereignisse hervorgebracht, die auf unterschiedliche Ursachen zurückgeführt werden können. Zum Teil liegen diese Ursachen in der Eigengesetzlichkeit der jeweiligen Umgebung, zum Teil aber auch im absichtlichen Verhalten von Akteuren, z.B. auch bei uns Menschen.
VISION
Die Herausforderung besteht also darin,
eine Form zu finden,
wie beliebige Menschen
zu beliebigen Problemsituationen
gemeinsam
Wege konstruieren können, auf die man — so wird gehofft — in der Zukunft eine neue Gegenwart erreichen kann,
in der das Problem zumindest minimiert ist.
Für die notwendige Kommunikation zwischen den beteiligten Menschen sollte primär die Alltagssprache genügen,
nach Bedarf erweiterbar um spezielle Ausdruckssysteme.
Die gemeinsamen Denkversuche sollten ferner durch automatisierte Simulationen
und Bewertungen unterstützt werden können.
Sofern verfügbar, sollten auch lernfähige Algorithmen eingesetzt werden können.
QUELLENNACHWEISE
[1] Gerd Doeben-Henisch, 1.Februar 2021, REAL-VIRTUELL. Ein Einschub, https://www.cognitiveagent.org/2021/02/01/real-virtuell-ein-einschub/ (Dieser Text setzt viele andere Texte voraus)
[2] Gerd Doeben-Henisch, 3.Februar 2021, EINE KULTUR DES MINIMALEN IRRTUMS? Ergänzende Notiz, https://www.cognitiveagent.org/2021/02/03/eine-kultur-des-minimalen-irrtums-ergaenzende-notiz/ (Dieser Text setzt viele andere Texte voraus)
[3] Diese Problematik zeigt sich in vielen Bereichen, u.a. auch im wissenschaftlichen Publikationssystem selbst, etwa: Moshe Y.Vardi, Reboot the Computing-Research Publication System, Communications of the ACM, Januar 2021, Vol.64, Nr.1, S.7: https://cacm.acm.org/magazines/2021/1/249441-reboot-the-computing-research-publication-systems/fulltext
[4] In der biologischen Verhaltensforschung hat man mittlerweile bei sehr vielen Lebensformen verschieden vom homo sapiens aufzeigen können, dass diese auch über Ausdruckssysteme verfügen, die zur Kommunikation über Eigenschaften der Außenwelt wie auch über die partielle Eigenschaften der Innenwelt geeignet sind. Es scheint sich also bei der Fähigkeit der Kommunikation mittels eines Ausdruckssystems um eine graduelle Fähigkeit zu handeln: beim homo sapiens ist diese Eigenschaft bislang am stärksten ausgeprägt, aber es gibt ähnliche, wenngleich einfachere Formen, auch bei anderen Lebensformen. Sieh z.B. Stichwort ‚animal language‘ in Wikipedia [EN]: https://en.wikipedia.org/wiki/Animal_language
[5a] Döben-Henisch, G.[2006] Reinforcing the global heartbeat: Introducing the planet earth simulator project In M. Faßler & C. Terkowsky (Eds.), URBAND FICTIONS. Die Zukunft des Städtischen. München, Germany: Wilhelm Fink Verlag, 2006, pp.251-263
[5b] Doeben-Henisch, G.[2006] Reducing Negative Complexity by a Semiotic System In: Gudwin, R., & Queiroz, J., (Eds). Semiotics and Intelligent Systems Development. Hershey et al: Idea Group Publishing, 2006, pp.330-342
[6] Jakob von Uexküll, 1909, Umwelt und Innenwelt der Tiere. Berlin: J. Springer. (Download: https://ia802708.us.archive.org/13/items/umweltundinnenwe00uexk/umweltundinnenwe00uexk.pdf )(Zuletzt: 26.Jan 2021)
[7] Beispiel, eines von vielen: Ein älterer Ingenieur erzählte mir am Beispiel des Abwassersystems einer großen Deutschen Stadt, dass es kaum noch Experten gibt, die das ganze System kennen, und die wenigen, die es gibt, stehen vor dem Berufsende …
[8] Gerd Doeben-Henisch, 25.Januar 2021, Gedanken und Realität. Das Nichts konstruieren. Leben Schmecken. Notiz, https://www.cognitiveagent.org/2021/01/23/gedanken-und-realitaet-das-nichts-konstruieren-leben-schmecken-notiz/
[9] Stichwort ‚age of the universe‘ in der englischen Wikipedia: https://en.wikipedia.org/wiki/Age_of_the_universe
[10] Unter dem Stichwort ‚Formation and Evolution of the Solar System‘ findet sich in der Englischen Wikipedia ein Eintrag: https://en.wikipedia.org/wiki/Formation_and_evolution_of_the_Solar_System#Timeline_of_Solar_System_evolution
[11] Edward Tolman, 1948, COGNITIVE MAPS IN RATS AND MEN, The Psychological Review, 55(4), 189-208, online auch hier: http://psychclassics.yorku.ca/Tolman/Maps/maps
[12] Charles R. Gallistel.The Organization of Learning. MIT Press, 1990.
[13] Stichwort ‚Galileo Galilei‘ in der Englischen Wikipedia: https://en.wikipedia.org/wiki/Galileo_Galilei
Das Thema in diesem Beitrag kam in der einen oder anderen Weise auch in vorausgehenden Beiträgen schon mehrfach zur Sprache. In diesem Beitrag versucht der Autor dieses Textes eine thematische Zuspitzung am Beispiel der empirischen Wissenschaften, die in dieser Weise in diesem Blog so noch nicht vorkam. Zwischen den heutigen Extremen von allgemeinem Wissenschafts-Bashing auf der einen, und einer eher kritiklose Überhöhung der Wissenschaften auf der anderen Seite möchte dieser Beitrag verdeutlichen, dass der modernen empirischen Wissenschaft eine evolutionäre Schlüsselrolle zukommt. Aus dieser postulierten Notwendigkeit folgt aber kein Automatismus für eine gesellschaftlich angemessene Umsetzung von empirischer Wissenschaft.
VIRTUELLE WELTEN ALS INNOVATION
Mit der Verbreitung der Computertechnologie seit den 1950iger Jahren wurde es zunehmend möglich, mit Computern erzeugte Bilder und Sounds so gut zu berechnen, dass es für das sinnliche Wahrnehmungsvermögen des Menschen immer schwerer wird, die so künstlich erzeugten computerbasierten Ereignisse von der realen Körperwelt zu unterscheiden. Nach einem 3/4 Jahrhundert Entwicklung muss man feststellen, dass die junge Generation diese computergestützten virtuellen Ereignisse schon so ’normal‘ ansieht wie die reale Welt ihrer Körper. Es entsteht der Eindruck, dass die reale Welt der Körper und die Interaktion dieser Körper mit der ‚realen‘ Welt im heutigen Weltbild immer weniger Bedeutung einnimmt bis dahin, dass die reale Welt eher als ‚das Fremde‘ erscheint und die computergestützte ‚virtuelle Welt‘ als das primär Vertraute, und damit scheinbar zur ’neuen Realität‘ wird.
VERKEHRTE WELT
Macht man sich bewusst, dass es seit der Existenz erster biologischer Zellen vor ca. 3.5 Mrd. Jahren mindestens 2.9 Mrd. Jahre gebraucht hat, bis vielzellige Tiere aufgetreten sind, und von da ab hat es bis ca. vor 600.000 Jahren gebraucht, bis die Lebensform des homo sapiens ins Geschehen eingriff. Der homo sapiens — der moderne Mensch, wir — zeigt erstmals nicht nur Bewusstsein, sondern im weiteren Verlauf auch ein symbolisches Sprachvermögen.
Innerhalb der Entwicklung des homo sapiens ist es erst innerhalb der letzten 100 Jahre gelungen, durch moderne Evolutionsbiologie, Psychologie und Physiologie herauszufinden, dass es das Gehirn des Menschen ist, das alle Signale von den Sinnesorganen — sowohl der äußeren wie der inneren — einsammelt und daraus in Zeitintervallen von ca. 50 – 500 Millisekunden jeweils ein aktuelles Lagebild zu errechnen, das uns Menschen dann über unser Bewusstsein als ein virtuelles Bild der uns umgebenden realen Körperwelt zur Verfügung steht. Der Clou an dieser Konstruktion ist, dass wir dieses virtuelle Bild der realen Welt als ‚reales Bild‘ nehmen. Außer einige Philosophen in den letzten ca. 3000 Jahren kommt kein Mensch — nicht einmal in der Gegenwart — auf die Idee, sein vermeintlich reales Bild der Welt als ein virtuelles Bild der realen Welt anzusehen.
WISSENSCHAFT ALS EVOLUTIONÄRES EREIGNIS
Wer sich auf eine Reise in die Geschichte der Ideen begibt kann feststellen, dass die Menschen in der Vergangenheit sehr wohl einen Sinn für Realität ausprägen konnten. In allen Bereichen, in denen es ums Überleben geht (Reisen in unbekanntem Gelände, Landwirtschaft, Kriege, technische Konstruktionen, …) bildeten sich Verhaltensweisen und Anschauungen heraus, in denen der Bezug zu bestimmten Eigenschaften der realen Körperwelt charakteristisch waren: Sternbilder für die Reise, Jahreszeiten für die Planung in der Landwirtschaft, Materialeigenschaften für Waffen im Krieg und für Bauten, …
Aber erst vor ca. 400 Jahren begann mit Galileo Galilei und einigen seiner Zeitgenossen das, was wir heute moderne empirische Wissenschaft nennen. Es dauerte mehr als ca. 200 Jahre bis sich das Paradigma ‚moderne empirische Wissenschaft‘ sowohl in den Bildungseinrichtungen wie auch in der ganzen Gesellschaft einigermaßen verankern konnte. Doch ist die Verbreitung von empirischer Wissenschaft bis heute nicht umfassend und vollständig, ja, es gibt Anzeichen, die den Eindruck erwecken, als ob die moderne empirische Wissenschaft in vielen Bereichen wieder zurück gedrängt wird. Der Ausdruck ‚fake news‘ ist in der digitalisierten Welt zu einem Massenphänomen geworden, das sich immer weiter ausbreitet; eine Art mentaler Virus, der immer weiter um sich greift.
Diese Entwicklung ist bizarr und gefährlich. Es hat die gesamte bisherige Entwicklungszeit des biologischen Lebens auf der Erde gebraucht hat, bis das Leben auf dieser Erde die Fähigkeit zur empirischen Wissenschaft erreicht hat, um damit den ‚Bann‘ der körperinneren Virtualität zu durchbrechen um das Innere am Äußeren zu orientieren.
Dazu kommt die erst kürzliche Nutzung der Computertechnologie, die strukturell in jeder biologischen Zelle seit 3.5 Mrd. Jahren am Werke ist. Die mögliche Symbiose von Mensch und Computertechnologie markiert das größte und wichtigste Ereignis zum möglichen Überleben des Lebens nicht nur auf der Erde, sondern im ganzen bekannten Universum. Denn die Erde wird spätestens mit der fusionsbedingten Aufblähung der Sonne in ca. 0.9 Mrd. Jahren einen Temperaturanstieg erleben, der Leben auf der Erde schrittweise unmöglich machen wird. Nur im Zusammenwirken aller Lebensformen — und hier mit der besonderen Rolle des homo sapiens — kann das Leben im Universum eventuell überleben.
ALLTAG
Bislang hat man aber nicht den Eindruck, dass sich der homo sapiens seiner wichtigen Rolle für das gesamte Leben bewusst ist. Bislang demonstriert der homo sapiens eine große Verachtung für das Leben, verbraucht planlos wichtige Ressourcen, zerstört immer massiver das gesamte Ökosystem, dessen Funktionieren seine eigene Lebensbasis ist, und bekriegt sich untereinander. Die aktuellen politischen Systeme erwecken bislang nicht den Eindruck, als ob sie den aktuellen Herausforderungen gewachsen sind.
Die noch funktionierende Wissenschaft muss feststellen, dass politische Macht nicht automatisch wissenschaftliche Erkenntnisse übernimmt. Die politischen Systeme denken in kurzfristigen Zeiträumen, gewichten Tagesinteressen höher als langfristige Entwicklungen, und lassen weitgehend ein adäquates Verstehen vermissen. Das adäquate Verstehen ist — so scheint es — kein Automatismus.
WISSENSCHAFTS-ÖKOSYSTEM
Es braucht ein Ökosystem der besonderen Art, um gesellschaftliche Erkenntnisprozess kontinuierlich möglich zu machen. Wie lernt man dies, wenn es dafür keine Ausbilder gibt, weil der Sachverhalt neu ist?
Greifbar ist, dass die Förderung ausschließlich von Einzelwissenschaften nicht ausreichend ist, um das mögliche Zusammenwirken von mehreren Einzelwissenschaften in komplexen Problemstellungen zu fördern. Dazu bedarf es begriffliche und methodische Reflexionen in der Breite, kontinuierlich verankert in jeder Disziplin, und dennoch verknüpft in einem übergreifenden Verbund. In früheren Zeiten hatte dies die Philosophie geleistet. Neuer Ansätze wie die Wissenschaftsphilosophie haben bislang nirgends den Eingang in den alltäglichen Wissenschaftsbetrieb gefunden.
So gesehen vermehrt sich ständig die Anzahl der aufspielenden Einzelwissenschaften, aber für eine notwendige Gesamtschau fehlen die begrifflichen Dramaturgen. Wo sollen diese herkommen? Das moderne Wissenschaftssystem hat diese nicht vorgesehen und treibt damit freiwillig in eine Komplexität, die sie mehr und mehr von der sie ermöglichenden Gesellschaft abkoppelt. Eine wunderbare Zeit für ‚fake news‘, da ihnen keine öffentlich vermittelte Rationalität entgegen wirkt.
ÄUSSERES AM INNEREN MESSEN
Neben der gefährlichen Desintegration der vielen Einzelwissenschaften tragen die modernen empirischen Wissenschaften ein weiteres Defizit mit sich herum, das langfristig mindestens genauso gefährlich ist: die Ausklammerung der Innerlichkeit des Menschen. Die Erschließung der empirischen Realität für den Erkenntnisprozess war ein entscheidender Schritt als Gegengewicht zu der extrem schwer zu verstehenden inneren Erfahrung des Menschen in seinem Bewusstsein sowie deren Interaktion mit dem gesamten Gehirn und Körper. Aus der anfänglichen Schwierigkeit der empirischen Wissenschaften, das Innere des Menschen zu vermessen, folgt aber nicht notwendigerweise, dass das Innere deshalb grundsätzlich unwichtig oder unwissenschaftlich sei. Die mehr als 3000 Jahre feststellbaren spirituellen Traditionen quer in allen menschlichen Kulturen bilden starke Indikatoren, dass die vielfältigen inneren Erfahrungen für das Lebensgefühl und den Zustand eines menschlichen Lebens von großer Bedeutung sein können bzw. sind.
Unterstützt von einer neuen Querschnittwissenschaft zur Reflexion auf Wissenschaft und möglichen Integrationen von bislang getrennten einzelnen Disziplinen sollte entsprechend auch der Gegenstandsbereich der empirischen Wissenschaften in Richtung auf die inneren Zustände des Menschen radikal ausgeweitet werden. Im Rahmen der Bedeutungsfelder von Meditation, Spiritualität und Mystik gibt es viele starke Indikatoren für eine den einzelnen Menschen übersteigende Perspektive, die die Vielheit und Vielfalt des biologischen Lebens in möglicherweise in neuer Weise von innen her erschließen kann. Die bisherige Quantenmechanik erscheint in diesem Kontext nicht als ein Endpunkt sondern eher als ein Startpunkt, das Ganze nochmals von vorne neu zu denken.
Einen Überblick über alle Blogeinträge von Autor cagent nach Titeln findet sich HIER.
Nach einer längeren Schreibpause, hier ein kurzes Blitzlicht …
SCHWEIGEN IST VIELDEUTIG
Es ist ja ein beliebter Topos, über das Schweigen zu sinnieren. Korrespondiert es mit einem ‚Nichts‘ oder ist es nur ein Artefakt vielschichtiger, sich wechselseitig in Bann haltender Aktivitäten, die sich ’nach Außen quasi ‚aufheben’…
Dies ist ein Bild. Für mein Schweigen trifft weder das eine noch das andere zu. Tatsächlich ist bei mir die letzte Zeit extrem dicht angefüllt mit Aktivitäten, Denken, Schreiben, ja auch mit Programmieren, eine moderne Form des Schreibens. Letzteres leider in unserer Kultur von schöngeistigen Menschen wenig geachtet, tatsächlich aber der Stoff, aus dem das Meiste ist, was wir heute für unser Leben benutzen.
DENKEN – VIELFÄLTIG – IM DENKEN DENKEN
Die vielfältigen Formen des Denkens zu katalogisieren und zu bewerten, dann eventuell noch hierarchisch zu gewichten, ist sicher reizvoll. Bis zu einem gewissen Grade und in gewissen Situationen mag dies sogar notwendig sein (Gesetzestexte, Rezepten, Bauanleitungen, Sportberichte, Finanzberichte ….), aber man verliert die Wahrheit aus dem Blick wenn man übersieht, dass alle diese verschiedenen Spezialformen Ausdrucksformen einer einzigen Sache sind, nämlich der Bemühung des menschlichen Geistes — realisiert in den vielen einzelnen Menschen — sich im Hier und Jetzt zurecht zu finden; zu verstehen, wie denn das alles zusammenhängt. Warum das alles so ist, wie es ist. Gibt es irgendwie ein Ziel für die Zukunft? Mehrere? Welches ist am günstigsten? Für wen? Aus welchem Grund?
Für mich war das Schreiben in diesem Block seit ca. 10 Jahren mein Versuch, mich selbst in ein Gespräch zu verwickeln, das mich zwang, Eindrücken, Fragen nachzugehen, die ich ohne dies Schreiben eher achtlos beiseite gelassen hätte. Natürlich, neben viel Spaß, Lust an der Sache, Neugierde, Entdeckerfreuden usw. war es auch weite Strecken mühsam, quälend, mit der ständigen Frage: Muss das so sein? Bringt das was? Im Rückblick, nach ca. 9000 Seiten Text, würde ich sagen, es hat — zumindest für mich — sehr viel gebracht. Ich habe begonnen, Dinge zu verstehen, von denen ich vorher nicht wusste, dass es sie gibt, Zusammenhänge, die mir verborgen waren, überraschende neue Ausblicke, Glücksgefühle, noch mehr Neugierde, viel Hoffnung, ein wachsendes Vertrauen in dieses unfassbare Wunder genannt Leben. Ich bin jetzt soweit, dass ich zumindest ahnen kann, dass das Leben viel größer, tiefer, komplexer, reicher, gewaltiger ist, als alles, was uns die bekannten alten Traditionen — vor allem die alten Religionen, aber auch Einzelbereiche der Wissenschaften — bisher erzählt haben oder heute noch erzählen.
Insofern habe ich aus dem bisherigen Schreib- und Reflexionsprozess viel Kraft gezogen, viel Hoffnung, viel neues Vertrauen, Unternehmenslust, mit dabei zu sein, wenn es geht, die Unfassbarkeit unseres Lebens weiter zu gestalten.
MITGESTALTEN …
Je mehr man diesen Wunsch hegt, nicht nur passiv aufzunehmen, nicht nur zu verstehen, um so schwieriger wird dann die Frage, wo steigt man ein? Was kann man als einzelner mit seinen jeweiligen Möglichkeiten konkret tun?
Leute, die mit markigen Sprüchen durch die Welt laufen, die vielfarbige Slogans verteilen, die einfache schwarz-weiß Bilder austeilen, gibt es genug. Alles ist sehr einfach…
Aber, das Wunder des Lebens ist — nicht wirklich einfach. Wir selbst sind zwar zunächst als ‚Hineingeworfene‘ auf den ersten Blick einfach, weil wir etwas sehr Komplexes sind, das Komplexeste, was es im ganzen Universum gibt, aber wir haben keinen Finger dafür krumm gemacht, wir finden das alles einfach so vor, wir können sofort loslegen, ohne große umständliche Prozesse zu durchlaufen (OK, es gibt mittlerweile in den meisten Kulturen komplexe selbst definierte Lernprozesse in Kindergärten, Schulen, Betrieben, Hochschulen usw.), aber wir müssen nicht verstehen, wie wir funktionieren, um zu funktionieren. Unser Körper, das Äquivalent von ca. 450 Galaxien im Format der Milchstraße, funktioniert für uns, ohne dass wir verstehen müssen (und auch tatsächlich nicht verstehen können, bislang) wie er funktioniert. Wir sind ein Wunderwerk des Universums und können ‚funktionieren‘, obwohl wir uns praktisch nicht verstehen.
Da beginnt meine zweite Story: auf Ganze gesehen weiß ich so gut wie nichts, nah besehen weiß ich aber mittlerweile zu viel, als dass ich einfach so tun könnte, nichts zu wissen 🙂
EINZELTEILE ZUSAMMEN SUCHEN
Im Rahmen meiner unterschiedlichen Lehr- und Forschungstätigkeiten, zwischendrin auch ’normale‘ berufliche Arbeiten, habe ich schrittweise viele wissenschaftliche Bereiche kennen lernen dürfen und dabei entdeckt, dass wir aktuell ein ‚Zusammenhangs-Problem‘ haben, will sagen, wir haben immer mehr einzelne Disziplinen,die je für sich hoch spezialisiert sind, aber die Zusammenhänge mit anderen Bereichen, ein Gesamtverständnis von Wissenschaft, gar doch noch mit dem ganzen Engineering, dies geht uns zusehends ab. Dies bedeutet u.a. dass ein neuer Beitrag oft gar nicht mehr richtig gewürdigt werden kann, da die Umrisse des Ganzen, für das etwas entdeckt oder entwickelt wurde, kaum noch greifbar sind. Dies ist das Fake-News-Problem der Wissenschaften.
Ob geplant oder spontan oder zufällig, ich kann es nicht genau sagen, jedenfalls habe ich vor einigen Jahren damit begonnen, zu versuchen, die Disziplinen, in denen ich tätig sein konnte, langsam, schrittweise, häppchenweise, zu systematisieren, zu formalisieren, und sie auf die mögliche Wechselwirkungen mit den anderen Bereichen hin abzuklopfen.
Zu Beginn sah dies alles sehr bruchstückhaft, eher harmlos aus.
Doch im Laufe der Jahre entwickelten sich Umrisse, entstanden immer deutlicher Querbezüge, bis dann so langsam klar wurde, ja, es gibt hier mögliche begriffliche Rahmenkonzepte, die sehr prominente und doch bislang getrennte Disziplinen auf eine Weise zusammen führen können, die so bislang nicht sichtbar waren.
MENSCH – MASCHINE – UND MEHR …
Mein Fixpunkt war das Thema Mensch-Maschine Interaktion (MMI) (Englisch: Human-Machine Interaction, HMI), von mir dann weiter entwickelt zum allgemeinen Actor-Actor Interaction (AAI) Paradigma. Mehr zufällig bedingt, genau genommen durch einen wunderbaren Freund, einem Südafrikaner, ein begnadeter Systems Engineer, habe ich auch sehr früh begonnen, das Thema Mensch-Maschine Interaktion immer auch im Kontext des allgemeineren Systems Engineerings zu denken (im englischsprachigen Raum ist das Paradigma des Systems Engineering sehr geläufig, im deutschsprachigen Bereiche gibt es viele Sonderkonzepte). Irgendwann haben wir angefangen, das Systems Engineering zu formalisieren, und im Gefolge davon habe ich dies ausgedehnt auf das Mensch-Maschine Paradigma als Teil des Systems Engineerings. Dies führte zu aufregenden Verallgemeinerungen, Verfeinerungen und letztlich auch Optimierungen. Es war dann nur eine Frage der Zeit, bis das ganze Thema Künstliche Intelligenz (KI) integriert werden würde. KI steht bislang theoretisch ein wenig verloren im Raum der vielen Disziplinen, kaum verortet im Gesamt der Wissenschaften, des Engineering, der allgemeine Kognitions-, Lern- und Intelligenztheorien der biologischen Disziplinen. Im Rahmen des AAI Paradigmas ist KI eine Subdisziplin, die eine spezielle Teilmenge von Akteuren in ihrem Verhalten beschreiben, modellieren und simulieren kann, aber eben nicht isoliert, sondern eingeordnet in den Gesamtrahmen von Engineering und Wissenschaft. Dies eröffnet viele aufregende Perspektiven und Anwendungsmöglichkeiten.
Und so wird es auch niemanden verwunden, dass mein Engagement für ein integriertes begriffliches System für Systems Engineering, MMI und KI zugleich auch ein starkes Engagement für die philosophische Dimension wurde.
Ein Leser dieses Blocks wird nicht verwundert sein, wenn ich feststelle, dass es gerade die intensive Beschäftigung mit dem Engineering und seiner Meta-Probleme waren, die mich zur Philosophie zurück geführt hatten. Nach meiner völligen Frustration mit der klassischen Philosophie während des ersten Anlaufs einer Promotion in Philosophie an der LMU München (ca. 1980 – 1983) — ein Roman für sich — fand ich viele wertvolle Erkenntnisse im intensiven Studium der Wissenschaftsphilosophie und einiger konkreter Wissenschaften. Das Engineering (mit Schwerpunkt Informatik) war dann noch bereichernder. Aber gerade hier, im Systems Engineering, bei dem Thema Mensch-Maschine, und ausgerechnet mitten in den Lerntheorien der KI, bin ich auf so viele grundlegende philosophische Fragen gestoßen, dass ich von da ab — fast notwendigerweise — wieder angefangen habe philosophisch zu denken. Eines der Hauptmotive für diesen Block.
Natürlich, das merkt man wohl auch schon beim Lesen, führt die Breite und Fülle dieser Aspekte dazu, dass man nicht schnell, und nicht immer konzise arbeiten kann. Man muss viele Fragen mehrfach bedenken, oft von verschiedenen Seiten aus, muss immer wieder von vorne anfangen, und wenn man dann meint, jetzt habe man man den Bogen doch gut hinbekommen, entdeckt man von einer anderen Seite so viele anderen Aspekte, Löcher, Unzulänglichkeiten, dass man gerade nochmals von vorne anfangen kann.
Wie schwierig es auch sein mag, die Umrisse eines Ganzen deuten sich doch mittlerweile immer stärker an, so stark, dass ich das Gefühl habe, dass dieser andere Block — uffmm.org–, mein Blog für das Engineering, ab jetzt mehr — oder gar die ganze — Aufmerksamkeit verlangt.
Denn, eine Folge von Zusammenhangs-Sichten ist, dass man — fast unaufhaltsam — immer weitere Zusammenhänge entdeckt. So ist natürlich eng verknüpft mit dem Mensch-Maschine Paradigma der gesamte Komplex der biologischen und psychologischen Verhaltenswissenschaften, dazu gehörig auch das, was man Kognitionswissenschaft nennt, und damit ganz viele weitere spezielle Disziplinen, die irgendwie den Menschen und sein Verhalten thematisieren (Semiotik, Linguistik, Soziologie, …).
Während das Lesen und Studieren einzelner Werke und Artikel aus diesen Bereichen ohne übergreifenden Zusammenhang oft so beliebig, und damit frustrierend, wirkt, gewinnen diese Werke bei einem expliziten begrifflichen Zusammenhang eine ganz andere Farbigkeit, leuchten auf, werden interessant. So ist mir dies z.B. in den letzten Monaten mit Büchern von Edelman, Gallistel und Gärdenfors gegangen (um einige Beispiele zu nennen).
Während es also einerseits darum geht, immer mehr prominente Beispiele aus den genannten Disziplinen in den neuen begrifflichen Rahmen einzuordnen, ist mir auch klar geworden, dass dies alles — so wunderbar das für sich genommen schon ist (obgleich noch im Prozess) — heute nicht mehr ausreichend ist, ohne eine hinreichende Softwareunterstützung, ohne Software-Modellierung und vielerlei Simulationsversionen. Schon ein rein empirisches verhaltenswissenschaftliches Buch wie das grundlegende Werk von Gallistel zur Organisation des biologischen Lernens bleibt ohne zugehörige Softewaremodelle irgendwie ein Torso, entsprechend auch die Werke von Gärdenfors zu Begriffs-Räumen (Conceptual Spaces). Ein positives Beispiel für Theorie und Computersimulation liefert Edelman in vielen Büchern, Artikeln und Programmen. Und ich weiß aus eigener Vorlesungserfahrung, dass die Vorlesungen zum dynamischen Lernen erste mit der zugehörigen Softwaremodellierung jene Farbe und Tiefe bekommen haben, die es heute braucht.
Für mich ergibt sich daraus, dass ich parallel zur Text-Version der Theorie — natürlich mit hinreichenden Formalisierungen — eine vollständige Softwareabdeckung brauche. Ohne diese wird das alles nur Stückwerk bleiben.
Damit entsteht ein ziemliches Aufgabenpaket: Systems Engineering mit Actor-Actor Paradigma, dazu KI integriert, bei AAI Kognitionswissenschaften integriert, und zu allem die notwendige Software.
Allerdings eine wichtige Dimension fehlt bei dieser Aufzählung noch: die allgemeine Philosophie und die Wissenschaftsphilosophie. Die allgemeine Philosophie und die Wissenschaftsphilosophie können zwar die Einzelwissenschaften nicht ersetzen, aber die Einzelwissenschaften ohne eine explizite allgemeine Philosophie und Wissenschaftsphilosophie gleichen einem Haufen gackernder Hühner, deren Einzelbeiträge schnell in Kakophonie umschlagen kann, wenn sie nicht integriert werden.
Also, im Prinzip ist sehr klar, wie es gehen soll, es konkret zu tun ist scheinbar unmöglich. Aber genau das ist es, worum es geht: das Leben als solches in diesem Universum ist die maximale Unmöglichkeit, aber dennoch ist es da, dennoch entwickelt es sich. Dieses Mysterium einer ungeheuren Kraft, das Unmögliche möglich zu machen, das ist das, was jeden Menschen, insbesondere jeden Wissenschaftler, antreiben sollte, ansonsten sind wir tatsächlich — möglicherweise — schlechter als alle denkbaren Roboter der Zukunft.
AUF DIE BAUSTELLE
Wie schon angedeutet, hat meine Theoriebaustelle einen Namen: uffmm.org . ‚uffmm‘ ist die Abkürzung eines ganzen Satzes. Ich verrate jetzt nicht, wie dieser Satz heißt. Schön wäre es, wenn er einmal wahr werden würde.
Wer will, kann die Ereignisse auf dem uffmm-Blog verfolgen, allerdings ist dort alles auf Englisch. Es ist nicht meine Sprache, ich fühle mich damit sprachlich amputiert, aber es ist die zur Zeit beste Arbeitssprache für den internationalen Raum.
Ich habe auch keine Ahnung, wie weit ich kommen werde.
Parallel betreibe ich noch ein Anwendungsprojekt mit Überschrift ‚Kommunalplanung als eGaming‚. Damit zielen wir auf alle ca. 11.000 Kommunen in Deutschland, mit einem neuen Ansatz für mehr Demokratie in einer digitalisierten Welt. Dieser Ansatz ist ein direkter Ausfluss der zuvor angedeuteten Theoriearbeit (plus Software).
Der Philosophie-Jetzt Block war der entscheidende Inkubator für diese Weiterentwicklung. Ob und wie sich dieser Blog weiter entwickelt, wird man sehen. Er war ganz und gar ungeplant, und so wird auch die weitere Zukunft sich ereignen 🙂
Einen Überblick über alle Blogeinträge von Autor cagent nach Titeln findet sich HIER.
Einen Überblick über alle Themenbereiche des Blogs findet sich HIER.
Der folgende Text wurde im September in einer christlichen Zeitschrift veröffentlicht [*]. Es war (und ist) ein ‚experimenteller Text‘, bei dem ich versucht habe, auszuloten, was gedanklich passiert, wenn man die beiden Themenkreise ‚Glaube an Gott im Format christlicher Theologie‘ mit dem Themenkreis ‚Künstliche Intelligenz‘ zusammen führt. Das Ergebnis kann überraschen, muss aber nicht. Dieser ganze Blog ringt von Anbeginn um das Verhältnis von Philosophie, Wissenschaft (mit Technologie) und dem Phänomen der Spiritualität als Menschheitsphänomen, und die christliche Sicht der Dinge (die in sich ja keinesfalls einheitlich ist), ist nur eine Deutung von Welt unter vielen anderen. Wer die Einträge dieses Blogs durch mustert (siehe Überblick) wird feststellen, dass es sehr viele Beiträge gibt, die um die Frage nach Gott im Lichte der verfügbaren Welterfahrung kreisen. Die aktuelle Diskussion von W.T.Stace’s Buch ‚Religion and the Modern Mind‘ (Beginn mit Teil 1 HIER) setzt sich auch wieder mit dieser Frage auseinander.
INHALT BEITRAG
Im Alltag begegnen wir schon heute vielfältigen Formen von Künstlicher Intelligenz. Bisweilen zeigt sie sehr menschenähnliche Züge. In Filmen werden uns Szenarien vorgeführt, in denen Superintelligenzen zukünftig die Herrschaft über uns Menschen übernehmen wollen. Wie verträgt sich dies mit unserem Menschen-und Gottesbild? Macht Glauben an Gott dann noch Sinn?
I. KI IST SCHON DA …
Vielen Menschen ist gar nicht bewusst, wo sie im Alltag schon mit Programmen der Künstlichen Intelligenz (KI) zu tun haben. Schaut man sich aber um, wird man entdecken, dass Sie scheinbar schon überall am Werk ist. Hier ein paar Stichworte: Kundenanfragen werden immer mehr durch KI-Programme bestritten. In der Logistik: In Lagerhallen und ganzen Häfen arbeiten intelligente Roboter, die wiederum von anderen KI-Programmen überwacht und optimiert werden. Ähnliches in Fabriken mit Produktionsstraßen. Für die Wartung von Maschinenbenutzen Menschen Datenhelme, die über ein KI-Programm gesteuert werden und die dem Menschensagen, was er sieht, und wo er was tun soll. In der Landwirtschaft sind die beteiligten Maschinen vernetzt, haben KI-Programme entweder an Bord oder werden über Netzwerke mit KI-Programmen verbunden: diese kontrollieren den Einsatz und steuern Maßnahmen. Auf den Feldern können diese Maschinen autonom fahren. Im Bereich Luftfahrt und Schifffahrt können sich Flugzeuge und Schiffe schon heute völlig autonom bewegen, ebenso beim LKW-Verkehr und auf der Schiene. Durch das Internet der Dinge (IoT) wird gerade der Rest der Welt miteinander vernetzt und damit einer zunehmenden Kontrolle von KI-Programmen zugänglich gemacht. In der Telemedizin ist dies schon Alltag: Ferndiagnose und Fernbehandlung sind auf dem Vormarsch. Schon heute wird für die Diagnose schwieriger und seltener Krankheiten KI eingesetzt, weil sie besser ist als ganze Gruppen menschlicher Experten. Viele komplizierte Operationen – speziell im Bereich Gehirn – wären ohne Roboter und KI schon heute unmöglich. KI-Programme entschlüsseln das Erbgut von Zellen, Suchen und Finden neue chemische Verbindungen und pharmakologische Wirkstoffe.
In der Finanzwirtschaft haben KI-Programme nicht nur den Handel mit Aktien und anderen Finanzprodukten übernommen (Stichwort: Hochfrequenzhandel), sondern sie verwalten auch zunehmend das Vermögen von Privatpersonen, übernehmen den Kontakt mit den Kunden, und wickeln Schadensfälle für Versicherungen ab. Bei anwaltlichen Tätigkeiten werden Routineaufgaben von KI-Programmen übernommen. Richter in den USA lassen sich in einzelnen Bundesländern mit KI-Programmen die Wahrscheinlichkeit ausrechnen, mit der ein Angeklagter wieder rückfällig werden wird; dies wird zum Schicksal für die Angeklagten, weil die Richter diese Einschätzungen in ihr Urteil übernehmen. Das Militär setzt schon seit vielen Jahren in vielen Bereichen auf KI-Programme. Zuletzt bekannt durchfliegende Kampfroboter (Drohnen). Dazu weltweite Ausspähprogramme von Geheimdiensten, die mit Hilfe von KI-Programmen gewaltige Datenströme analysieren und bewerten.Diese Aufzählung mag beeindruckend klingen, sie ist aber nicht vollständig. In vielen anderen Bereichen wie z.B. Spielzeug, Online-Spiele, Musikproduktion,Filmproduktion, Massenmedien, Nachrichtenproduktion,… sind KI-Programme auch schon eingedrungen. So werden z.B. mehr und mehr Nachrichtentexte und ganze Artikel für Online-Portale und Zeitungen durch KI-Programme erstellt; Journalisten waren gestern. Dazu hunderttausende von sogenannten ’Bots’ (Computerprogramme, die im Internet kommunizieren, als ob sie Menschen wären), die Meinungen absondern, um andere zu beeinflussen. Was bedeuten diese Erscheinungsformen Künstlicher Intelligenz für uns?
A. Freund oder Konkurrent?
Bei einem nächtlichen Biergespräch mit einem der berühmtesten japanischen Roboterforschern erzählte er aus seinem Leben, von seinen Träumen und Visionen. Ein Thema stach hervor: seine Sicht der Roboter. Für ihn waren Roboter schon seit seiner Kindheit Freunde der Menschen, keinesfalls nur irgendwelche Maschinen. Mit diesen Roboter-Freunden soll das Leben der Menschen schöner, besser werden können. In vielen Science-Fiction Filmen tauchen Roboter in beiden Rollen auf: die einen sind die Freunde der Menschen, die anderen ihre ärgsten Feinde; sie wollen die Menschen ausrotten, weil sie überflüssig geworden sind. Bedenkt man, dass die Filme auf Drehbüchern beruhen, die Menschen geschrieben haben, spiegelt sich in diesem widersprüchlichen Bild offensichtlich die innere Zerrissenheit wieder, die wir Menschen dem Thema Roboter, intelligenten Maschinen, gegenüber empfinden. Wir projizieren auf die intelligenten Maschinen sowohl unsere Hoffnungen wie auch unsere Ängste, beides übersteigert, schnell ins Irrationale abrutschend.
B. Neue Verwundbarkeiten
Ob intelligente Maschinen eher die Freunde der Menschen oder ihre Feinde sein werden, mag momentan noch unklar sein, klar ist jedoch, dass schon jetzt der Grad der Vernetzung von allem und jedem jeden Tag einen realen Raum mit realen Bedrohungen darstellt. Global operierenden Hacker-Aktivitäten mit Datendiebstählen und Erpressungen im großen Stil sind mittlerweile an der Tagesordnung. Während die einen noch versuchen, es klein zu reden, lecken andere schon längst ihre Wunden und es gibt immer mehr Anstrengungen, diesen Angriffen mehr ’Sicherheit’ entgegen zu setzen. Doch widerspricht das Prinzip der Zugänglichkeit letztlich dem Prinzip der vollständigen Abschottung. Wenn die Vernetzung irgendeinen Sinn haben soll, dann eben den, dass es keine vollständige Abschottung gibt. Dies läuft auf die große Kunst einer ’verabredeten Abschottung’ hinaus: es gibt eine ’bestimmte Datenkonstellation, die den Zugang öffnet’. Dies aber bedeutet, jeder kann herumprobieren, bis er diese Datenkonstellation gefunden hat. Während die einen KI-Programme einsetzen, um diese Datenschlüssel zu finden, versuchen die anderen mit KI-Programmen, mögliche Angreifer bei ihren Aktivitäten zu entdecken. Wie dieses Spiel auf lange Sicht ausgehen wird, ist offen. In der Natur wissen wir, dass nach 3.8 Milliarden Jahren biologischem Leben die komplexen Organismen bis heute beständig den Angriffen von Viren und Bakterien ausgeliefert sind, die sich um Dimensionen schneller verändern können, als das biologische Abwehrsystem(das Immunsystem) lernen kann. Die bisherige Moral aus dieser Geschichte ist die, dass diese Angriffe bei komplexen Systemen offensichtlich ko-existent sind, dazu gehören. Nur ein schwacher Trost ist es, dass der beständige Abwehrkampf dazu beiträgt, die Systeme graduell besser zu machen. Mit Blick auf diese fortschreitende Vernetzung ist es wenig beruhigend, sich vorzustellen, dass es in ca. 70- 90 Jahren (wie viele vermuten) (Anmerkung: Siehe dazu eine längere Argumentation im 1.Kap. von Bostrom (2014) [Bos14]) tatsächlich eine echte technische Superintelligenz geben wird, die allen Menschen gegenüber überlegen ist; eine solche technische Superintelligenz könnte im Handumdrehen alle Netze erobern und uns alle zu ihren Gefangenen machen. Nichts würde mehr in unserem Sinne funktionieren: die Super-KI würde alles kontrollieren und uns vorschreiben, was wir tun dürfen. Über das Internet der Dinge und unsere Smartphones wäre jeder 24h unter vollständiger Kontrolle. Jede kleinste Lebensregung wäre sichtbar und müsste genehmigt werden. Ob und was wir essen, ob wir noch als lebenswert angesehen werden …
C. Noch ist es nicht soweit …
Zum Glück ist dieses Szenario einer menschenfeindlichen Superintelligenz bislang nur Science-Fiction. Die bisherigen sogenannten KI-Programme sind nur in einem sehr eingeschränkten Sinne lernfähig. Bislang sind sie wie abgerichtete Hunde, die nur das suchen,was ihnen ihre Auftraggeber vorgeben, zu suchen. Sie haben noch keine wirkliche Autonomie im Lernen, sie können sich noch nicht selbständig weiter entwickeln(nur unter speziellen Laborbedingungen). Allerdings sammeln sie Tag und Nacht fleißig Daten von allem und jedem und erzeugen so ihre einfachen Bilder von der Welt: z.B. dass die Männer im Alter von 21 in der Region Rhein-Main mit Wahrscheinlichkeit X folgende Gewohnheiten haben …. Herr Müller aus der Irgendwo-Straße hat speziell jene Gewohnheiten …. seine Freunde sind … Es gibt eine hohe Wahrscheinlichkeit dass er Partei Y wählen wird … dass er in drei Monaten ein neues Auto vom Typ X kaufen wird ….am liebsten klickt er folgende Adressen im Internet an …
In den Händen von globalen Firmen, anonymen Nachrichtendiensten, autoritären Regierungen oder verbrecherischen Organisationen können allerdings schon diese Daten zu einer echten Bedrohung werden, und diese Szenarien sind real. Die Rolle der bösen Superintelligenz wird hier bis auf weiteres noch von Menschen gespielt; Menschen haben in der Vergangenheit leider zur Genüge bewiesen, dass sie das Handwerk des Bösen sehr gut beherrschen können…Es stellt sich die Frage, ob sich die bisherigen einfachen künstlichen Intelligenzen weiter entwickeln können? Lernen künstliche Intelligenzen anders als Menschen? Welche Rolle spielen hier Werte? Sind Werte nicht ein altmodischer Kram, den nur Menschen brauchen (oder selbst diese eigentlich nicht)? Schließlich, wo kommt hier Gott ins Spiel? Tangieren künstliche Intelligenzen den menschlichen Glauben an Gott überhaupt?
II. WAS IST ’KÜNSTLICHE INTELLIGENZ’
Für eine Erkundungsreise in das Land der Künstlichen Intelligenz ist die Lage nicht ganz einfach, da das Gebiet der KI sich mittlerweile sehr stürmisch entwickelt. Immer mehr Konzepte stehen nebeneinander im Raum ohne dass es bislang allgemein akzeptierte Theorie- und Ordnungskonzepte gibt. (Anmerkung: Für zwei sehr unterschiedliche historische Rückblicke in das Thema sei verwiesen auf Mainzer (1995) [Mai95] und Nilsson (2010) [Nil10]. Für eine sehr populäre, wenngleich methodisch problematische, Einführung in den Stand der Disziplin siehe Russel und Norvik (2010) [RN10]).
Wir besuchen hier für einen Einstieg einen der großen Gründungsväter ganz zu Beginn 1936 – 1950 Alan Matthew Turing, und dann für die Zeit 1956 – 1976 Alan Newell und Herbert A.Simon. (Anmerkung: Simon war auch ein Nobelpreisträger im Gebiet der Wirtschaftswissenschaften 1978.) Dann schauen wir noch kurz in allerneueste Forschungen zum Thema Computer und Werte.
A. Am Anfang war der Computer
Wenn wir von künstlicher Intelligenz sprechen setzen wir bislang immer voraus, dass es sich um Programme (Algorithmen) handelt, die auf solchen Maschinen laufen, die diese Programme verstehen. Solche Maschinen gibt es seit 1937 und ihre technische Entwicklung hing weitgehend davon ab, welche Bauteile ab wann zur Verfügung standen. Das Erstaunliche an der bisherigen Vielfalt solcher Maschinen, die wir Computer nennen, ist, dass sich alle diese bis heute bekannt gewordenen Computer als Beispiele (Instanzen) eines einzigen abstrakten Konzeptes auffassen lassen. Dieses Konzept ist der Begriff des universellen Computers, wie er von Alan Matthew Turing 1936/7 in einem Artikel beschrieben wurde (siehe: [Tur 7] 4 ). In diesem Artikel benutzt Turing das gedankliche Modell einer endlichen Maschine für jene endlichen Prozesse, die Logiker und Mathematiker intuitiv als ’berechenbar’ und ’entscheidbar’ ansehen. (Anmerkung: Zum Leben Turings und den vielfältigen wissenschaftlichen Interessen und Einflüssen gibt es die ausgezeichnete Biographie von Hodges (1983) [Hod83].) Das Vorbild für Turing, nach dem er sein Konzept des universellen Computers geformt hat, war das eines Büroangestellten, der auf einem Blatt Papier mit einem Bleistift Zahlen aufschreibt und mit diesen rechnet.
B. Computer und biologische Zelle
Was Turing zur Zeit seiner kreativen Entdeckung nicht wissen konnte, ist die Tatsache, dass sein Konzept des universellen Computers offensichtlich schon seit ca. 3.5 Milliarden Jahre als ein Mechanismus in jeder biologischen Zelle existierte. Wie uns die moderne Molekularbiologie über biologische Zellen zur Erfahrung bringt(siehe [AJL + 15]), funktioniert der Mechanismus der Übersetzung von Erbinformationen in der DNA in Proteine (den Bausteinen einer Zelle) mittels eines Ribosom-Molekülkomplexes strukturell analog einem universellen Computer. Man kann dies als einen Hinweis sehen auf die implizite Intelligenz einer biologischen Zelle. Ein moderner Computer arbeitet prinzipiell nicht anders.
C. Computer und Intelligenz
Die bei Turing von Anfang an gegebene Nähe des Computers zum Menschen war möglicherweise auch die Ursache dafür, dass sehr früh die Frage aufgeworfen wurde, ob, und wenn ja, wieweit, ein Computer, der nachdem Vorbild des Menschen konzipiert wurde, auch so intelligent werden könnte wie ein Mensch?
Der erste, der diese Frage in vollem Umfang aufwarf und im einzelnen diskutierte, war wieder Turing. Am bekanntesten ist sein Artikel über Computerintelligenz von 1950 [Tur50]. Er hatte aber schon 1948 in einem internen Forschungsbericht für das nationale physikalische Labor von Großbritannien einen Bericht geschrieben über die Möglichkeiten intelligenter Maschinen. (Anmerkung: Eine Deutsche Übersetzung findet sich hier: [M.87]. Das Englische Original ’Intelligent Machinery’ von 1948 findet sich online im Turing Archiv: http://www.alanturing.net/intelligent_machinery.) In diesem Bericht analysiert er Schritt für Schritt, wie eine Maschine dadurch zu Intelligenz gelangen kann, wenn man sie, analog wie bei einem Menschen, einem Erziehungsprozess unterwirft, der mit Belohnung und Strafe arbeitet. Auch fasste er schon hier in Betracht, dass sein Konzept einer universellen Maschine das menschliche Gehirn nachbaut. Turing selbst konnte diese Fragen nicht entscheiden, da er zu dieser Zeit noch keinen Computer zur Verfügung hatte, mit dem er seine Gedankenexperimente realistisch hätte durchführen können. Aber es war klar, dass mit der Existenz seines universellen Computerkonzeptes die Frage nach einer möglichen intelligenten Maschine unwiderruflich im Raum stand. Die Fragestellung von Turing nach der möglichen Intelligenz eines Computers fand im Laufe der Jahre immer stärkeren Widerhall. Zwei prominente Vertreter der KI-Forschung, Allen Newell und Herbert A.Simon, hielten anlässlich des Empfangs des ACM Turing-Preises1975 eine Rede, in der sie den Status der KI-Forschung sowie eigene Arbeiten zum Thema machten (siehe dazu den Artikel [NS76]).
D. Eine Wissenschaft von der KI
Für Newell und Simon ist die KI-Forschung eine empirische wissenschaftliche Disziplin, die den Menschen mit seinem Verhalten als natürlichen Maßstab für ein intelligentes Verhalten voraussetzt. Relativ zu den empirischen Beobachtungen werden dann schrittweise theoretische Modelle entwickelt, die beschreiben, mit welchem Algorithmus man eine Maschine (gemeint ist der Computer) programmieren müsse, damit diese ein dem Menschen vergleichbares – und darin als intelligent unterstelltes – Verhalten zeigen könne. Im Experiment ist dann zu überprüfen, ob und wieweit diese Annahmen zutreffen.
E. Intelligenz (ohne Lernen)
Aufgrund ihrer eigenen Forschungen hatten Newell und Simon den unterstellten vagen Begriff der ’Intelligenz’ schrittweise ’eingekreist’ und dann mit jenen Verhaltensweisen in Verbindung gebracht, durch die ein Mensch (bzw. ein Computer) bei der Abarbeitung einer Aufgabe schneller sein kann, als wenn er nur rein zufällig’ handeln würde. ’Intelligenz’ wurde also in Beziehung gesetzt zu einem unterstellten ’Wissen’ (und zu unterstellten ‚Fertigkeiten‘), über das ein Mensch (bzw. ein Computer) verfügen kann, um eine bestimmte Aufgabe ’gezielt’ zu lösen. Eine so verstandene ’Intelligenz’ kann sich aus sehr vielfältigen, möglicherweise sogar heterogenen, Elementen zusammen setzen.
Dies erklärt ihre mannigfaltigen Erscheinungsweisen bei unterschiedlichen Aufgaben. ’Intelligenz’ ist dabei klar zu unterscheiden, von einem ’Lernen’. Ist die Aufgabenstellung vor dem Einsatz einer Maschine hinreichend bekannt, dann kann ein Ingenieur all das spezifische Wissen, das eine Maschine für die Ausführung der Aufgabe benötigt, von vornherein in die Maschine ’einbauen’. In diesem Sinne ist jede Maschine durch das Knowhow von Ingenieuren in einem spezifischen Sinne ’intelligent’. Bis vor wenigen Jahrzehnten war dies die Standardmethode, wie Maschinen von Ingenieuren entworfen und gebaut wurden.
F. Lernen ermöglicht Intelligenz
Im Fall von biologischen Systemen ist ein solches Vorgehen kaum möglich. Biologische Systeme entstehen (durch Zellteilung), ohne dass bei der Entstehung bekannt ist, wie die Umwelt aussehen wird, ob sie sich verändert, welche Aufgaben das biologische Systemlösen muss. Zwar haben alle biologische Systeme auch genetisch vorbestimmte Verhaltensmuster, die gleich bei der Geburt zur Verfügung stehen, aber darüber hinaus haben alle biologische Systeme einen ariablen Anteil von Verhaltensweisen, die sie erst lernen müssen. Das Lernen ist hier jene Fähigkeit eines biologischen Systems, wodurch es seine internen Verhaltensstrukturen in Abhängigkeit von der ’Erfahrung’ und von ’spezifischen Bewertungen’ ’ändern’ kann. Dies bedeutet, dass biologische Systeme durch ihre Lernfähigkeit ihr Verhalten ’anpassen’ können. Sie können damit – indirekt – ein ’spezifisches Wissen’ erwerben, das ihnen dann eine spezifische ’Intelligenz’ verleiht, wodurch das biologischen System besser als durch Zufall reagieren kann. Diese Fähigkeit eines situationsgetriebenen Wissens besaßen Maschinen bis vor kurzem nicht. Erst durch die modernen Forschungen zu einer möglichen ’künstlichen Intelligenz (KI)’ machte man mehr und mehr Entdeckungen, wie man Maschinen dazu in die Lage versetzen könnte, auch nach Bedarf neues Verhalten erlernen zu können. Innerhalb dieses Denkrahmens wäre dann eine ’künstliche Intelligenz’ eine Maschine, hier ein Computer, der über Algorithmen verfügt, die ihn in die Lage versetzen, Aufgaben- und Situationsabhängig neues Verhalten zu erlernen, falls dies für eine bessere Aufgabenbearbeitung wünschenswert wäre.
Die noch sehr ursprüngliche Idee von Turing, dass ein Computer Lernprozesse analog dem der Menschen durchlaufen könnte, inklusive Belohnung und Bestrafung, wurde seitdem auf vielfältige Weise weiter entwickelt. Eine moderne Form dieser Idee hat unter dem Namen ’Reinforcement Learning’ sehr viele Bereiche der künstlichen Intelligenzforschung erobert (vgl. Sutton und Barto (1998) [SB98]).
G. KI und Werte
Für die Aufgabenstellung einer ’lernenden Intelligenz’ spielen ’Werte’ im Sinne von ’Verhaltenspräferenzen’ eine zentrale Rolle. Ein Gebiet in der KI-Forschung, in dem diese Thematik sehr intensiv behandelt wird, ist der Bereich der ’Entwicklungs-Robotik’ (Engl.:’developmental robotics’). In diesem Bereich wurde u.a. die Thematik untersucht (vgl. Kathryn Merrick(2017) [Mer17]), wie ein Roboter ’von sich aus’, ohne direkte Befehle, seine Umgebung und sich selbst ’erforschen’ und aufgrund dieses Lernens sein Verhalten ausrichten kann. Dabei zeigt sich, dass reine Aktivierungsmechanismen, die im Prinzip nur die Neugierde für ’Neues’ unterstützen, nicht ausreichend sind. Außerdem reicht es nicht aus, einen Roboter isoliert zu betrachten, sondern man muss Teams oder ganze Populationen von Robotern betrachten, da letztlich ein ’Wert’ im Sinne einer ’Präferenz’ (eine bevorzugte Verhaltenstendenz) nur etwas nützt, wenn sich alle Mitglieder einer Population daran orientieren wollen. Dies führt zur grundlegenden Frage, was denn eine Population von Robotern gemeinschaftlich als solch einen gemeinsamen ’Wert’ erkennen und akzeptieren soll. Wirklich befriedigende Antworten auf diese grundlegenden Fragen liegen noch nicht vor. Dies hat u.a. damit zu tun, dass die Robotersysteme, die hier untersucht werden, bislang noch zu unterschiedlich sind und dass es auch hier bislang – wie bei der KI-Forschung insgesamt – ein großes Theoriedefizit gibt in der Frage, innerhalb welches theoretischen Rahmens man diese unterschiedlichen Phänomene denn diskutieren soll.
Man kann aber den Ball dieser Forschung einmal aufgreifen und unabhängig von konkreten Realisierungsprozessen die Frage stellen, wie denn überhaupt ein ’Wert’ beschaffen sein müsste, damit eine ganze Population von Robotern sich ’von sich aus’ darauf einlassen würde. Letztlich müsste auch ein Roboter entweder eine ’eingebaute Tendenz’ haben, die ihn dazu drängt, ein bestimmtes Verhalten einem anderen vor zu ziehen, oder aber es müsste eine ’nicht eingebaute Tendenz’ geben, die im Rahmen seiner ’internen Verarbeitungsprozesse’ neue Verhalten identifizieren würde, die ihm im Sinne dieser ’Tendenz’ ’wichtiger’ erscheinen würde als alles andere. Es ist bislang nicht erkennbar, wo eine ’nicht eingebaute Tendenz’ für eine Verhaltensauswahl herkommen könnte. Ein industrieller Hersteller mag zwar solche Werte aufgrund seiner Interessenlage erkennen können, die er dann einem Roboter ’zu verstehen geben würde’, aber dann wäre die Quelle für solch eine ’Initiierung einer Verhaltenstendenz’ ein Mensch.
In der aktuellen Forschungssituation ist von daher als einzige Quelle für nicht angeborene Verhaltenstendenzen bislang nur der Mensch bekannt. Über welche Werte im Falle von sogenannten künstlichen Super-Intelligenzen diese verfügen würden ist noch unklar. Dass künstliche Super-Intelligenzen von sich aus Menschen grundsätzlich ’gut’ und ’erhaltenswert’ finden werden, ist in keiner Weise abzusehen. Die künstlichen Superintelligenzen müssten sich in Wertefragen – wenn überhaupt – eher am Menschen orientieren. Da die bisherige Geschichte der Menschheit zeigt, dass der Mensch selbst zu allen Zeiten eine starke Neigung hat, andere Menschen zu unterdrücken, zu quälen, und zu töten, würde dies für alle Menschen, die nicht über künstliche Superintelligenzen verfügen, tendenziell sehr gefährlich sein. Ihr ’Opferstatus’ wäre eine sehr große Versuchung für die jeweilige technologische Macht.
III. WER SIND WIR MENSCHEN?
Wenn Menschen sich in der KI wie in einem Spiegelbetrachten, dann kann dies für den betrachtenden Menschen viele Fragen aufwerfen. Zunächst erfinden die Menschen mit dem Computer einen Typ von intelligenter Maschine, die zunehmend den Eindruck erweckt, dass sich die Menschen in solchen Maschinen vervielfältigen (und möglicherweise noch übertreffen) können. Dann benutzen sie diese Computer dazu, die Strukturen des menschlichen Körpers immer tiefer zu erforschen, bis hin zu den Zellen und dort bis in die Tiefen der molekularen Strukturen, um z.B. unsere Gene zu erforschen, unser Erbmaterial, und zwar so weitgehend, dass wir dieses Erbmaterial gezielt verändern können. Die Menschen verstehen zwar noch nicht in vollem Umfang die möglichen Wirkungen der verschiedenen Änderungen, aber es ist möglich, real Änderungen vorzunehmen, um auszuprobieren, ’was dann passiert’? Mit Hilfe des Computers beginnt der Mensch, seinen eigenen Bauplan, sein eigenes genetisches Programm, umzubauen.
Dazu kommt, dass die Menschen seit dem19.Jahrhundert mit der modernen Biologiewissen können, dass die vielfältigen Formen des biologischen Lebens zu einem bestimmten Zeitpunkt immer das Ergebnis von langen vorausgehenden Entwicklungsprozessen sind. Das Wachsen und Sterben von Organismen gründet jeweils in einer befruchteten Zelle, für die durch das Erbmaterial festgelegt ist, wie sie sich weiter vermehrt und wie sich Millionen, Milliarden und gar Billionen von Zellen zu komplexen Formen zusammen finden. Und bei der Vervielfältigung von Zellen können Änderungen, Abweichungen vom ursprünglichen Plan auftreten, die über viele Tausende und Millionen von Jahren zu deutlichen Änderungen im Bau und Verhalten eines Organismus führen können. Die Biologen sprechen von ’Evolution’. Eine Erkenntnis aus diesem Evolutionsprozess war (und ist), dass wir Menschen, so, wie wir heute da sind, auch solche evolutionär gewordene biologische Strukturen sind, die Vorläufer hatten, die mit uns heutigen Menschen immer weniger zu tun hatten, je weiter wir in der Zeit zurückgehen. Wer sind wir also?
Die Frage, ob Computer als intelligente Maschinen genau so gut wie Menschen werden können, oder gar noch besser, läuft auf die Frage hinaus, ob der Mensch Eigenschaften besitzt, die sich generell nicht durch einen Computer realisieren lassen.
Die moderne Psychologie und die modernen Neurowissenschaften haben bislang nichts zutage fördern können, was sich einem ingenieurmäßigen Nachbau entziehen könnte. Auch wenn es sich hierbei nicht um einen ’strengen Beweise’ handelt, so kann dieser Anschein einer generellen ’maschinelle Reproduzierbarkeit’ des Menschen in Gestalt von intelligenten Maschinen das bisherige Selbstverständnis von uns Menschen stark verunsichern.
IV. GLAUBEN AN GOTT
A. In allen Himmelsrichtungen
Aus der Geschichte der letzten Jahrtausende wissen wir, dass es zu allen Zeiten und in allen Kulturen Religionen gegeben hat. Die größten sind wohl (bis heute) der Hinduismus, der Buddhismus, das Judentum mit dem Christentum, und der Islam. So verschieden diese zu verschiedenen Zeiten und in verschiedenen Regionen äußerlich erscheinen mögen, sie verbindet alle das tiefe Fühlen und Glauben von Menschen an einen über-persönlichen Sinn, der Glaube an ein höheres Wesen, das zwar unterschiedliche Namen hat (’Gott’, ’Deus’, ’Theos’, ’Jahwe’, ’Allah’ …), aber – möglicherweise – vielleicht nur ein einziges ist.
B. Jüdisch-Christlich
So verschieden die christlichen Bekenntnisse der Gegenwart auch sein mögen, was die Anfänge angeht beziehen sich noch immer alle auf die Bibel, und hier, für die Anfänge der Geschichte auf das Alte Testament.(Anmerkung: Für eine deutsche Übersetzung siehe die Katholisch-Evangelische Einheitsübersetzung [BB81]).
Wie uns die modernen Bibelwissenschaften lehren, blickt der Text des Alten Testaments auf eine vielfältige Entstehungsgeschichte zurück. (Anmerkung: Für eine Einführung siehe Zenger et.al (1998) [ZO98]). Nicht nur, dass der Übergang von der mündlichen zur schriftlichen Überlieferung sich im Zeitraum von ca. -700 bis ca.+200 abgespielt hat, auch die redaktionelle Erzeugung verweist auf sehr viele unterschiedliche Traditionen, die nebeneinander existiert und die zu unterschiedlichen Varianten geführt haben. Auch die Kanonbildung dauerte dann nochmals viele hundert Jahre mit dem Ergebnis, dass es schwer ist, von dem einen Urtext zu sprechen. Für jene Menschen, die vorzugsweise Halt an etwas Konkretem, Festen suchen, mag dieses Bild der Überlieferung der Texte des alten Testaments beunruhigend wirken. Wird hier nicht vieles relativiert? Kann man denn da noch von einem ’Wort Gottes an die Menschen’ sprechen? Diese Furcht ist unbegründet, im Gegenteil.
C. Neues Weltbild
Wenn wir Menschen heute lernen (dürfen!), wie unsere individuelle, konkrete Existenz eingebettet ist in einen geradezu atemberaubenden Prozess der Entstehung der bekannten Lebensformen über viele Milliarden Jahre, wie unser eigener Körper ein unfassbares Gesamtkunstwerk von ca. 37 Billionen (10^12 !) Körperzellen in Kooperation mit ca. 100 Bio Bakterien im Körper und ca. 220 Mrd. Zellen auf der Haut ist, die in jedem Moment auf vielfältige Weise miteinander reden, um uns die bekannten Funktionen des Körpers zur Verfügung zu stellen, dann deutet unsere reale Existenz aus sich heraus hin auf größere Zusammenhänge, in denen wir vorkommen, durch die wir sind, was wir sind. Und zugleich ist es die Erfahrung einer Dynamik, die das Ganze des biologischen Lebens auf der Erde in einem ebenfalls sich entwickelnden Universum umfasst und antreibt. Wenn wir verstehen wollen, wer wir sind, dann müssen wir diesen ganzen Prozess verstehen lernen.
Wenn wir uns dies alles vor Augen halten, dann können uns die Texte des alten Testaments sehr nahe kommen. Denn diese Texte manifestieren durch ihre Vielfalt und ihre Entstehungsgeschichte über viele Jahrhunderte genau auch diese Dynamik, die das Leben auszeichnet.
D. Schöpfungsberichte
Claus Westermann, ein evangelischer Theologe und Pfarrer, leider schon verstorben, hat uns einen Kommentar zum Buch Genesis hinterlassen und eine Interpretation der beiden biblischen Schöpfungsberichte, der jedem, der will, aufzeigen kann, wie nah diese alten Texte uns heute noch sein können, vielleicht viel näher als je zuvor. (Anmerkung: Neben seinen beiden wissenschaftlichen Kommentaren aus den Jahren 1972 und 1975 hat er schon 1971 ein kleines Büchlein geschrieben, in dem er seine Forschungsergebnisse in einer wunderbar lesbaren Form zusammengefasst hat (siehe: [Wes76]).
Der erste der beiden Schöpfungstexte in Gen 1,1-2,4a ist der jüngere der beiden; seine Entstehung wird auf die Zeit 6.-5.Jh vor Christus angesetzt, der zweite Schöpfungstext in Gen 2,4b – 24 wird mit seiner Entstehung im 10.-9.Jh vor Christus verortet. Der jüngere wird einer Überlieferungsschicht zugeordnet, die als ’Priesterschrift’ bezeichnet wird, die einen großen Bogen spannt von der Entstehung der Welt mit vielen Stationen bis hin zu einem neuen Bund zwischen Menschen und Gott. Dieser erste Schöpfungsbericht, bekannt durch sein 7-Tage-Schema, steht im Übergang von sehr, sehr vielen Traditionen mythischer Berichte über Schöpfung in den umliegenden Kulturen, Traditionen, die selbst viele Jahrhunderte an Entstehungszeit vorweisen können. Von daher wundert es nicht, wenn sich einzelne Worte, Motive, Bilder, die auch im 7-Tage-Schema auftauchen, Parallelen haben in anderen Schöpfungsgeschichten. Interessant ist das, was die biblische Schöpfungsgeschichte der Priesterschrift anders macht als die anderen bekannten Geschichten es tun.
E. Menschen als Ebenbild
Die zentrale Aussage im neueren Schöpfungsbericht ist nicht, wie im älteren Text, wie Gott den Menschen geschaffen hat, sondern die Aussage, dass er den Menschen nach seinem Bilde geschaffen hat, und dass er dem Menschen eine Verantwortung übertragen hat. In der schon zu dieser Zeit bekannten Vielgestaltigkeit der Welt, ihrer vielen Werdeprozesse, war die zentrale Einsicht und damit verbunden der Glaube, dass der Mensch als ganzer (nicht eine einzelne Gruppe, kein bestimmter Stamm, kein bestimmtes Volk!) über die konkrete, reale Existenz hinausweisend mit Gott verbunden ist als seinem Schöpfer, der auch ansonsten alles geschaffen hat: die Gestirne sind keine Götter, wie in vielen anderen älteren Mythen. Die Menschen sind nicht dazu da, niedere Arbeiten für Gott zu machen, wie in anderen Mythen. Die Menschen werden vielmehr gesehen als in einem besonderen Status im Gesamt der Existenz in der Geschichte, mit einer Verantwortung für das Ganze.
Und diese besondere Stellung des Menschen wird nicht festgemacht an besonderen körperlichen und geistigen Eigenschaften; schon zu dieser Zeit wussten die Autoren der Priesterschrift, wie vielfältig die Lebensformen, ja der konkrete Mensch, sein kann. Wenn wir heute durch die Wissenschaften lernen können, wie der Mensch sich im größeren Ganzen eines biologischen Werdens einsortieren lässt, wie der Mensch selbst durch seine Kultur, seine Technologie in der Lage und bereit ist, sich selbst in allen Bereichen– einschließlich seines biologischen Körpers – zu verändern, dann steht dies in keiner Weise im Gegensatz zu der globalen Sicht des biblischen Schöpfungsberichts. Im Gegenteil, man kann das Gefühl bekommen, das sich in unserer Gegenwart die Weite des biblischen Texte mit den neuen Weiten der Erkenntnisse über Mensch und Universum neu begegnen können. Was allerdings heute auffällig ist, wie viele Menschen sich schwer tun, in diesen neuen primär wissenschaftlichen Weltsichten den Glauben an einen Gott, einen Schöpfer, an eine Geschichtsübergreifende Beziehung zu einem Schöpfer aufrecht zu erhalten. Ist dies heute nicht mehr möglich?
F. Frömmigkeit – Spiritualität
An dieser Stelle sollte man sich vergegenwärtigen, dass zu allen Zeiten die Menschen in ihrer Religiosität nie nur ’gedacht’ haben, nie nur ’mit Bildern’ der Welt oder Gottes umgegangen sind. Zu allen Zeiten gab es – und gibt es noch heute – auch das, was man ’Frömmigkeit’ nennt, ’Spiritualität’, jenes sehr persönliche, individuelle sich einem Gott gegenüber ’innerlich Vorfinden‘, ’Ausrichten’, ’Fühlen’, ’Erleben’. Es ist nicht leicht, dafür die richtigen Worte zu finden, da es nun einmal ’innere’ Prozesse sind, die sich nicht wie Gegenstände vorweisen lassen können. Sie betreffen das grundsätzliche Erleben eines Menschen, ein inneres Suchen, ein Erfahren, ein Erfülltsein (oder auch Leersein), das, was viele Menschen ermöglicht, ihr Leben in einer anderen, neuen Weise zu gestalten, sich zu ändern, anders mit Gefahren und Leiden umzugehen. In den Bildern des Alltags ’mehr’ sehen zu können als ohne dieses innere Erleben, Gestimmt sein.
In einer interessanten Untersuchung hat der britische Philosoph Walter Terence Stace die spirituellen Zeugnisse von vielen Jahrtausenden in unterschiedlichen Kulturen philosophisch untersucht (vgl. [Sta60]). Er kommt zu dem Ergebnis, dass sich trotz aller Verschiedenheiten im Äußeren, auch bei bestimmten Interpretationen, im Kern des Erlebens, des Wahrnehmens, sofern man dieses überhaupt von möglichen Interpretationen trennen lässt, erstaunliche Übereinstimmungen erkennen kann. Er folgert daraus, dass diese Fähigkeit von Menschen, einen übergreifenden Sinn direkt, existentiell erfahren zu können, möglicherweise auf eine sehr grundsätzliche Eigenschaft aller Menschen verweist, die wir einfach haben, weil wir Menschen sind. (Anmerkung: Er schließt auch nicht aus, dass alles Lebendige, von dem wir Menschen ja nur ein Teil sind, an dieser grundsätzlichen Fähigkeit einen Anteil haben könnte, wenn auch möglicherweise verschieden von der Art, wie wir Menschen erleben können.)
Die Tiefe und Weite der Sicht des jüngeren Schöpfungsberichts im Buch Genesis würde einem solchen grundlegenden Sachverhalt gut entsprechen: das Bild vom Menschen als Ebenbild Gottes schließt eine besondere Verbundenheit nicht aus; das ist das, was nach Westermann dem Menschen seine besondere Würde verleiht, diese Beziehung, nicht sein aktuelles konkretes So-sein, das sich ändern kann, ist die zentrale Botschaft.
G. Mensch, KI, Glaube an Gott
Damit beginnt sich der Kreis zu schließen. Wenn die Besonderheit des Menschen, seine zeitübergreifende Würde, in dieser grundlegenden Beziehung zu einem Schöpfergott gründet, die sich vielfältig im Gesamt des Universums und Lebens manifestiert, speziell auch in einer Form von individueller Spiritualität, dann gewinnt die Frage nach der Zukunft von Mensch und intelligenten Maschinen noch eine neue Nuance.
Bislang wird von den Vertretern einer Zukunft ohne Menschen nur noch mit intelligenten Maschinen einseitig abgehoben auf die größere Rechenkraft und die größeren Speicher, die alles erklären sollen. In diesem Beitrag wurde darauf hingewiesen, dass selbst die einfachsten Formen des Lernens ohne ’Werte’ im Sinne von ’Präferenzen’, von ’Bevorzugung von Handlungsalternativen’, ins Leere laufen. Sogenannte ’angeborene’ Präferenzen (oder eingebaute) können nur einen sehr begrenzten Nutzen vermitteln, da sich die Handlungsgegebenheiten und die gesamte Welt beständig weiter verändern. Auch die teilweise sehr komplexen Wertfindungen im sozialen-kulturellen Kontext ganzer Populationen, die von den künstlichen Intelligenzen dieser Welt noch nicht mal ansatzweise beherrscht werden, sind nur von begrenztem Wert, wie die bisherige Kulturgeschichte der Menschen eindrücklich belegt. [Mai95]
Vor diesem Hintergrund ist aktuell nicht zu sehen, wie intelligente Maschinen in der Zukunft alleine zu irgendwelchen brauchbaren Präferenzen kommen können. [SB98][Mer17][Nil10][NS76][RN10][Sta60][Tur37] Ungeklärt ist aktuell allerdings, ob und wieweit der Mensch – also jeder von uns – im Wechselspiel von philosophisch-empirischer Welterkenntnis und Spiritualität jene großen Richtungen ermitteln kann, die für die kommende komplexe Zukunft gefordert wird?
Sollte die Existenz eines Schöpfergottes über Welterkenntnis und Spiritualität wichtig sein für ein weiteres erfolgreiches Fortschreiten, dann hätten intelligente Maschinen möglicherweise ein grundsätzliches Problem. Es sei denn, auch sie könnten Gott erfahren? Einfacher wäre es, wenn Mensch und Maschine ihre aktuelle Koexistenz zu einer intensiveren Symbiose ausbauen würden. Dies würde viele sehr spannende Perspektiven bieten. Der Glaube an einen Schöpfergott ist auch heute, nach allem, was wir jetzt wissen können, keineswegs unsinnig;er erweist sich sogar – rein rational – als scheinbar dringend notwendig. Andererseits ist ein lebendiger Glaube kein Automatismus, sondern erfordert von jedem Menschen sein sehr persönliches Engagement in Verbundenheit mit dem ganzen Leben in einem dynamischen Universum. Gott erscheint hier nicht als das Hindernis, eher unsere Verweigerungen, das Ganze anzuschauen und zu akzeptieren.
QUELLEN
[*] G.Doeben-Henisch, Künstliche Intelligenz und der Glaube an Gott, In: Brennpunkt Gemeinde 70 (Aug./Sept. 2017), Studienbrief R21, 14 S., Hg. AMD Arbeitsgemeinschaft Missionarische Dienste im Verbund der Diakonie, Neukirchener Verlagsgesellschaft mbH, 47497 Neukirchen-Vluyn
[AJL + 15] B. Alberts, A. Johnson, J. Lewis, D. Morgan, M. Raff,
K. Roberts, and P. Walter. Molecular Biology of the Cell.
Garland Science, Taylor & Francis Group, LLC, Abington
(UK) – New York, 6 edition, 2015.
[BB81] Katholisches Bibelwerk and Deutsche Bibelgesellschaft. Die
Heilige Schrift. Einheitsübersetzung. Verlag Katholisches
Bibelwerk & Deutsche Bibelgesellschaft, Stuttgart, 1 edition, 1981.
[Bos14] Nick Bostrom. Superintelligence. Paths, Dangers, Strategies.
Oxford University Press, Oxford (UK), 1 edition, 2014.
[Hod83] Andrew Hodges. Alan Turing, Enigma. Springer Verlag, Wien
– New York, 1 edition, 1983.
[M.87] Turing Alan M. Intelligente maschinen. In Bernhard Dotzler
and Friedrich Kittler, editors, Alan M. Turing. Intelligence
Service, pages 81 – 113. Brinkmann & Bose, Berlin, 1987.
[Mai95] Klaus Mainzer. Computer – Neue Flügel des Geistes? Die
Evolution computergestützter Technik, Wissenschaft, Kultur
und Philosophie. Walter de Gruyter, Berlin – New York, 1th edition, 1995.
[Mer17] Kathrin Merrick. Value systems for developmental cognitive
robotics: A survey. Cognitive Systems Research, 41:38–55, 2017.
[Nil10] Nils J. Nilsson, editor. The Quest for Artificial Intelligence. A
History of Idesas and Achievements. Cambridge University
Press, New York, 2010.
[NS76] Allen Newell and Herbert A. Simon. Computer science as
empirical inquiry: Symbols and search. Communications of
the ACM, 19(3):113–126, 1976.
[RN10] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A
Modern Approach. Prentice Hall, Inc., Upper Saddle River, 2010.
[SB98] Richard S. Sutton and Andrew G. Barto. Reinforcement
Learning. An Introduction. The MIT Press, Ambridge (MA) –
London, 1 edition, 1998.
[Sta60]W.T. Stace. Mysticism and Philosophy. Jeremy P.Tarcher,
Inc., Los Angeles, 1 edition, 1960. (Eine Diskussion hier im Blog findet sich HIER).
[Tur37] Alan M. Turing. Corrections to: On computable numbers, with
an application to the entscheidungsproblem. Proceedings of
the London Mathematical Society, 43:544–546, 1937.
[Tur50] Alan Turing. Computing machinery and intelligence. Mind,
59:433–460, 1950.
[Tur 7] Alan M. Turing. On computable numbers, with an application
to the entscheidungsproblem. Proceedings of the London
Mathematical Society, 42(2):230–265, 1936-7.
[Wes76] Claus Westermann. Schöpfung. Kreuz-Verlag, Stuttgart –
Berlin, 2 edition, 1976.
[ZO98] Erich Zenger and Others. Einleitung in das Alte Testament.
W.Kohlhammer, Stuttgart, 3rd edition, 1998
Einen Überblick über alle Blogeinträge von Autor cagent nach Titeln findet sich HIER.
Einen Überblick über alle Themenbereiche des Blogs findet sich HIER.
I VISION RESILIENZ II VIELE AKTEURE III PROBLEMLÖSUNGSSTRATEGIEN IV MENSCH UND KOMPLEXITÄT V INGENIEURE ALS VORBILD VI CLUB OF ROME – NUR GESTERN? VII DER UMFASSEND DIGITALISIERTE MENSCH ENTSTEHT HEUTE VIII SIMULATIONEN BEHERZTER NUTZEN? IX TECHNISCHE SUPERINTELLIGENZ X WAS KANN EIN COMPUTER? XI DAS EI DES COLUMBUS XII EINE NEUE MENSCH-MASCHINE SUPER-INTELLIGENZ FÜR DEN BALLUNGSRAUM? IX QUELLEN
ÜBERBLICK
Dieser Text wurde ursprünglich als Vorbereitung für das Programmheft der Konferenz ’Der Resiliente Ballungsraum’ des Frankfurter Forschungsinstituts FFin am 13.April 2018 geschrieben. Die aktuelle Version stellt eine leicht überarbeitete Version im Anschluss an die Konferenz dar, ergänzt um Literaturangaben. Ausgehend von der Komplexität heutiger Ballungsräume wird die Frage gestellt, ob und wie wir Menschen die neuen digitalen Technologien, insbesondere auch künstliche Intelligenz, nutzen könnten, um mit dieser Komplexität besser umzugehen. Durch die langsam wachsende Erkenntnis, dass der resiliente Charakter vieler komplexer Systeme zudem ein Denken verlangt, das weit hinter die Oberfläche der Phänomene schaut, wird die Frage nach einer möglichen Unterstützung durch die neuen digitalen Technologien umso dringlicher. Im Text schält sich eine ungewöhnliche mögliche Antwort heraus, die auf eine ganz neue Perspektive in der Planungsdiskussion hinauslaufen könnte.
I. VISION RESILIENZ
Mit der Leitidee der ’Resilienz’ (1) zielt das Denken im Kern ab auf die Dimension der Überlebensfähigkeit von Ballungsräumen, die sich als dynamische Gebilde zeigen, ständigen Veränderungen unterworfen sind, ein dicht verwobenes Knäuel von Faktoren, die alle gleichzeitig miteinander in Wechselwirkung stehen. Und, ja, natürlich, wer ist nicht daran interessiert, dass diese Gebilde als konkrete Lebensräume für konkrete Menschen möglichst lange funktionsfähig bleiben. Doch, was als sinnvoller Wunsch einer breiten Zustimmung sicher sein kann, kann sehr schnell zur Last, oder gar zum Alptraum werden, wenn man auf die eine oder andere Weise zum ’realen Akteur’ werden muss.(2)
(Anmk: 1: Dieser Artikel benutzt den Resilienzbegriff, wie er in dem grundlegenden Artikel von Holling 1973 [Hol73] vorgestellt worden ist)
(Anmk: 2: Eine Auseinandersetzung mit dem neuen Lieblingswort der ’Resilienz’ im Kontext der Städteplanung findet in einem Folgeartikel in diesem Blog statt. Mit Blick auf den Städtebau siehe auch Jakubowski (2013) [Jak13] )
II. VIELE AKTEURE
Ein polyzentrischer Ballungsraum wie das Rhein-Main Gebiet zählt schon heute an die 5 Mio. Bürger, die in tausenden von unterschiedlichen Rollen Akteure sind, die den Ballungsraum nutzen, ihn auf unterschiedliche Weise gestalten, und die alle ihre Ansprüche haben, die sie befriedigt sehen wollen. (3) Jeder dieser Akteure hat ’sein Bild’ von diesem Ballungsraum. Der eigene Wohnbereich, die täglichen Wege zur und von der Arbeit, Einkäufe, Kinder zum Kindergarten oder zur Schule, vielfältige Freizeit, Großereignisse, Unwetter, Krankheiten . . . irgendwie muss alles irgendwie stimmen, muss es lebbar sein, bezahlbar…. Leiter von Firmen haben weitere spezielle Anforderungen, nicht zuletzt die Verfügbarkeit geeigneter Mitarbeiter, Planungssicherheit, möglichst geringe Kosten, Verkehrs- und Telekommunikationsanbindungen, und vieles mehr . . . Die Ämter und Fachreferate in den Kommunen stehen im Kreuzfeuer vielfältigster politischer Interessen, von Alltagsanforderungen, mangelnder Kommunikation zwischen allen Abteilungen, Bergen von Vorschriften, Mangel an Geld, Personalproblemen, einer Vielzahl von komplexen und disparaten Plänen, ungelösten Altlasten aus der Vergangenheit… Polyzentrisch heißt auch, es gibt nicht nur viele Zentren, sondern auch entsprechend viele Kapitäne, die ihre eigenen Routen haben. Wie soll dies alles koordiniert werden?
Aus der Nähe betrachtet mutiert die Vision eines resilienten Planungsraumes schnell zum bekannten Muster des ’Lösens eines Problems’: es gibt einen Ausgangspunkt, die jeweilige Gegenwart, es gibt eine Gruppe von Akteuren, die selbst ernannten Problemlöser, und es gibt verschiedene Strategien, wie man versucht, ausgehend von einer – meist nur partiell bekannten – Gegenwart brauchbare Erkenntnisse für eine unbekannte Zukunft zu gewinnen; dazu soll die Lösung – entsprechend der Vision – ’resilient’ sein.
Schaut man sich konkrete Beispiele von Planungstätigkeiten aus den letzten Monaten im Rhein-Main Gebiet an, dann findet man sehr viele unterschiedliche Formen von Problemlösungsverhalten. Zwischen einer rein ’inner-behördlichen’ Vorgehensweisen mit sehr eingeschränkten Ist-Erfassungen und Lösungsfindungen bis hin zu einer sehr umfassenden Einbeziehungen von vielen Bevölkerungsgruppen über viele Kommunikationsstufen hinweg mit unterschiedlichen kreativen Ideen-Findungen. (4)
Diese letzteren, möglichst viele unterschiedliche Akteure einbeziehenden Vorgehensweisen, wirken auf den ersten Blick vertrauenerweckender, da grundsätzlich mehr Perspektiven zu Wort kommen und damit sowohl ein größerer Erfahrungsraum aus der Gegenwart wie auch eine größere Farbigkeit für eine mögliche Zukunft. Wäre solch eine Strategie die Strategie der Stunde?
(Anmk: 4: Dazu war das Referat von Dr.Gwechenberger vom Dezernat Planen und Wohnen der Stadt Frankfurt, sehr aufschlussreich. Neben der in der Sache gründenden Komplexität spielen die vielfältigen rechtlichen Vorgaben eine große Rolle, dazu die unterschiedlichen Mentalitäten aller Beteiligten, insbesondere die vielfältigen individuellen Interessen und Motivlagen. Das ganze eingebettet in unterschiedliche Zeitfenster, wann welche Aktion möglich, sinnvoll oder notwendig ist. Demokratie ist so gesehen auf jeden Fall zeitaufwendig, dann aber– hoffentlich – resilienter und nachhaltiger)
IV. MENSCH UND KOMPLEXITÄT
Schaut man sich an, was der Mensch als Lebensform des Homo sapiens in den vielen tausend Jahren seit seiner Besiedlung aller Erdteile geleistet hat, dann kann man sich eigentlich nur vor Ehrfurcht verneigen. Quasi aus dem Nichts kommend hat er es im Laufe von ca. 70.000 Jahren geschafft, aufgrund seiner Intelligenz und Sprachfähigkeit immer komplexere Tätigkeiten auszubilden, Handwerkszeug, Technologien, Regeln des Zusammenlebens, Großansiedlungen, komplexe Handelsbeziehungen. Er zeigte sich fähig, komplexe Staaten zu bilden, Großreiche, fantastische Architektur, immer komplexere Maschinen, empirische Forschungen bis in die Tiefen des Universums, in die Tiefen der Materie, in die verschlungenen Wege der Mikrobiologie von den Molekülen zu einfachen, dann komplexen Zellen bis hin zu komplexen Lebewesen, vielfältigste Formen von Klängen, Musik, Sounds, Bildwelten.
Schließlich erfand er auch die Computertechnologie, mit der man unvorstellbar viele Daten in unvorstellbar schneller Zeit verarbeiten kann. Würden heute auf einen Schlag alle Computer und Netzwerke weltweit still stehen, die Welt bräche völlig in sich zusammen. Ein beispielloses Chaos und Elend wäre die Folge.
Dies deutet indirekt auf einen Sachverhalt, den wir als Menschen im Alltag gerne übersehen, um nicht zu sagen, den wir geradezu verdrängen. Dies hat zu tun mit den realen Grenzen unserer kognitiven Fähigkeiten.
Trotz eines fantastischen Körpers mit einem fantastischen Gehirn hat jeder Mensch nur eine sehr begrenzte kognitive Aufnahmefähigkeit von ca. 5-9 Informationseinheiten pro Sekunde, was jeder Mensch in einfachen Selbstversuchen an sich überprüfen kann. (5) Und die Verarbeitung dieser Informationseinheiten mit Hilfe des vorher erworbenen Wissens verläuft unbewusst nach weitgehend relativ festen Schemata, die es einem Menschen schwer machen, Neues zu erfassen bzw. in sein bisheriges Bild von der Welt einzubauen. (6) Noch schwerer tut sich jeder Mensch, wenn es darum geht, Zusammenhänge zu erfassen, die vielerlei Faktoren umfassen, Faktoren, die oft zudem ’verdeckt’, auf den ersten Blick ’unsichtbar’ sind. Ganz schwer wird es, wenn sich komplexe Faktorenbündel zusätzlich in der Zeit ändern können, womöglich noch mit Rückkopplungen.
Gilt schon die Voraussage des Verhaltens eines einzelnen Menschen für nur ein Jahr mathematisch als unmöglich, so erscheint die Voraussage des Verhaltens von 5 Mio. Bewohner des Rhein-Main Gebietes entsprechend undurchführbar, zumal die Ab- und Zuwanderung hier sehr hoch ist. (7) Dazu kommen Veränderungen von Bedürfnislagen, Veränderungen von Technologien, Veränderungen von konkurrierenden Wirtschaftsregionen, und vieles mehr. Die bislang bekannten und praktizierten Planungsverfahren wirken angesichts dieser zu bewältigenden Komplexität nicht sehr überzeugend. Sie wirken eher hilflos, uninformiert. Scheitern wir mit unseren begrenzten individuellen kognitiven Fähigkeiten an der heutigen Komplexität?
(Anmk: 5: Die erste bahnbrechende Untersuchung zu der ’magischen Zahl 7+/-2’ stammt von George A.Miller (1956) [Mil56]. Dazu gibt es zahllose weitere Studien, die das Thema weiter auffächern, aber nicht diese grundsätzliche Kapazitätsbegrenzung.)
(Anmk: 6: Bekannte Texte zum Zusammenspiel zwischen Kurz- und Langzeitgedächtnis sind Baddeley/Logie (1999) [BL99], Baddeley (2003) [Bad03], und Repovs/Baddeley (2006) [RB06]. Allerdings ist das Thema Gedächtnis mit diesen Artikeln nicht abgeschlossen sondern wird in vielen hundert weiteren Artikeln weiter untersucht.)
(Anmk: 7: Hinweis von Dr. Gwechenberger zur Migration der Stadt Frankfurt: rein statistisch wird innerhalb von 12 Jahren die gesamte Bevölkerung von Frankfurt einmal komplett ausgetauscht.)
V. INGENIEURE ALS VORBILD
Vergessen wir für einen Moment das Problem des komplexen Ballungsraumes und schauen, was denn die Ingenieure dieser Welt machen, wenn sie seit Jahrzehnten komplexe Systeme entwickeln, bauen und in Betrieb halten, die die kognitiven Fähigkeiten eines einzelnen Ingenieurs um viele Dimensionen übersteigen.
Moderne Ingenieurleistungen verlangen das Zusammenspiel von oft mehr als 10.000 einzelnen Experten aus sehr vielen unterschiedlichen Gebieten, nicht nur über Monate, sondern oft über Jahre hin. Wie kann dies funktionieren?
Ingenieure haben sehr früh gelernt, ihr Vorgehen zu systematisieren. Sie haben komplexe Regelwerke entwickelt, die unter dem Stichwort ’Systems Engineering’ beschreiben, wie man beliebige Probleme von der Aufgabenstellung in eine funktionierende Lösung überführt, einschließlich umfassender Tests in allen Phasen. Und selbst der spätere Einsatz des entwickelten Produktes oder der entwickelten Dienstleistung ist nochmals spezifiziert. Dies führt dazu, dass z.B. Flugzeuge, Atomkraftwerke, landesweite Energienetzwerke, Raumfahrtprojekte, im Vergleich die sichersten Systeme sind, die wir kennen.
Neben ausgeklügelten Dokumentationstechniken spielen im Engineeringprozess mathematische Modelle eine zentrale Rolle und, seit vielen Jahren unverzichtbar, computergestützte Simulationen. Schon seit vielen Jahren gibt es kein einziges anspruchsvolles Produkt mehr, das zuvor nicht vollständig als Computersimulation ausprobiert und getestet wurde. Dazu gehören z.B. auch Computerchips, speziell jene Prozessoren, die das Herz eines Computers bilden. Schon vor 30 Jahren waren diese so komplex, dass deren Entwicklung und die Tests auf ihre Funktionstüchtigkeit ohne Computer nicht möglich war. Anders gesagt, wir können Computer und all die anderen komplexen Produkte schon seit Jahren nur entwickeln, weil wir dazu Computer einsetzen. Kein menschliches Gehirn ist in der Lage, die schon heute benötigten Komplexitäten noch irgendwie praktisch zu meistern, auch viele tausende Gehirne zusammen nicht.
Angesichts dieser Erfolgsgeschichten im Bereich des Engineerings kann man sich fragen, ob man von diesen Erfahrungen für den Bereich der Planung von Ballungsräumen nicht irgend etwas lernen könnte?
VI. CLUB OF ROME – NUR GESTERN?
Manche von Ihnen erinnern sich vielleicht noch an die zu ihrer Zeit provozierende erste Studie ”The Limits to Growth” des Club of Rome von 1972. (8) Dies war der erste Versuch, die Dynamik der Erde unter der Herrschaft der Menschen mit einem umfassenden Computermodell abzubilden und mit Hilfe des Modells mögliche Hinweise zu bekommen, wie sich die Dinge bei Veränderung der bekannten Faktoren in der Zukunft auswirken.
Seit dieser Veröffentlichung sind mehr als 40 Jahre vergangen. (9) Es gab auf der einen Seite heftigste Kritik, aber zugleich auch viele evaluierende Studien, die immer wieder bekräftigten, dass die Kernaussagen dieses Modells – das vergleichsweise einfach war und ist – sich im Laufe der Jahrzehnte für die Variante ’normaler Verlauf’ weitgehend bestätigt hat. (10)
Es ist hier nicht die Stelle, ein abschließendes Urteil über dieses Computermodell zu fällen (ein Student von mir hatte es mal vollständig nach-programmiert). Man kann aber sagen, dass solche Modelle den bislang einzig bekannte Weg markieren, wie wir Menschen mit unserer sehr begrenzten Fähigkeit zum Denken von Komplexität uns behelfen können, diese Grenzen ansatzweise zu überwinden. Man muss sich die Frage stellen, warum wir diese Anstöße nicht in der Gegenwart systematisch aufgreifen und für unsere Zukunft nutzen?
(Anmk: 8: Meadows et.al (1972) [MLRBI72]. Die Studie des Club of Rome war die Weiterentwicklung eines Computermodells, das zurück geht auf ein Systemmodell (und Programm), das Jay W. Forrester im Laufe von 15 Jahren entwickelt hatte. Thema von Forrester war die Erforschung der Dynamik von sozialen Systemen, speziell auch von Ballungsräumen (’urban areas’). Bemerkenswert ist bei Forresters Modellbildung, dass er auch den individuellen Menschen sieht, der mit seinem jeweiligen Weltbild (er nennt es ’mentales Modell’ bzw. dann einfach ’Modell’) die Welt wahrnimmt, interpretiert und danach handelt. Will man das Verhalten ändern, dann muss man das individuelle Weltbild ändern, das in enger Wechselbeziehung zur aktuellen Gesellschaft steht.(siehe Foorester (1971) [For71]))
(Anmk:9: Da der Club of Rome 1968 gegründet wurde, feiert er 2018 sein 50-jähriges Jubiläum … und er ist immer noch aktiv.)
(Anmk: 10: Ein erster Überblick über die verschiedenen Argumente für und gegen die Analysen des Club of Rome finden sich in dem einschlägigen Wikipedia-Artikel https://en.wikipedia.org/wiki/Club of Rome. Im deutschen Wikipedia-Eintrag finden sich keine Hinweise auf kritische Einwände!)
VII. DER UMFASSEND DIGITALISIERTE MENSCH ENTSTEHT HEUTE
Im Jahre 1972 war der Computer noch keine Maschine des Alltags. Dies begann erst ab dem Jahr 1977 mit dem Auftreten von Kleincomputern für den privaten Gebrauch. Die Entwicklung seitdem war und ist explosiv.
Die Situation heute ist so, dass der Mensch mit seinem realen Körper zwar noch weiterhin in einer realen Körperwelt verankert ist, dass er aber über die vielen elektronischen Geräte, speziell durch Smartphones, Wearables, Tabletts, Notebooks, Laptops und PCs mit immer größeren Zeitanteilen seine Tages über Datennetze mit einer globalen Datenwelt verbunden ist, die rund um die Uhr Raum und Zeit vergessen lässt. Definierte sich ein Mensch früher über seine realen Aktivitäten, wird dies zunehmend ergänzt durch digitale Aktivitäten und Ereignisse. Das Selbstbild, der ganze persönliche Erlebnisraum wird zunehmend durch solche nicht-realweltlichen Strukturen ersetzt. Empirische Realität und digitale Realität beginnen im virtuellen Raum des individuellen Bewusstseins zu verschwimmen. Müsste der Mensch nicht noch seine elementaren körperlichen Bedürfnisse befriedigen, er könnte subjektiv ausschließlich im digitalen Raum arbeiten, kommunizieren, soziale Erfüllung finden, Spielen und . . . . die Grenzen dieser neuen digital erweiterten Lebensform sind bislang noch schwer zu fassen.
Während der professionelle Planungsalltag der Kommunen und Regionen Computer noch sehr verhalten einsetzt, zeigen uns die vielen Mio. Computerspieler weltweit, dass die Menschen sehr wohl Gefallen daran finden können, mit den Mitteln der Computersimulation die Gegenwart hinter sich zu lassen. Allein für Online-Computerspiele hat sich der Markt von 2011 bis 2016 von 21 Mrd. auf 31 Mrd. US-Dollar vergrößert. (11) Für das Jahr 2017 notieren die sechs Länder mit dem höchsten Umsatz bei Onlinespielen (China, USA, Japan, Deutschland, England, Südkorea) zusammen 84.7 Mrd.US-Dollar. (12) Dazu kommen nochmals 8 Mrd. US-Dollar für PC- und Spielkonsolenspiele. (13)
Computerspiele sind komplexe Simulationen in denen eine Ausgangslage mit Hilfe von Regeln in beliebig viele Nachfolgesituationen transformiert werden können. Dies geschieht mittlerweile in 3D, berücksichtigt realistische Geländeformationen mit Vegetation, komplexe Gebäude, viele Tausend Mitspieler, erlaubt gemeinsame Aktionen und macht so eine dynamische digitale Welt virtuell erlebbar.
Diese theoretische Beschreibung lässt das gewaltige Potential erahnen, das Computerspiele prinzipiell für Lernprozesse und für gemeinsame Zukunftsforschung haben könnten. In der Realität bleiben diese aber weit hinter ihren Möglichkeiten zurück, da die Betreiber bislang wenig Interesse zeigen, das Lern- und Forschungspotential dieser neuen ’Technologie ernsthaft zu nutzen. Die Computerspiele sind bislang eher Erlebnis-, nicht Wissens- getrieben.
An dieser Stelle kann man sich die Frage stellen, warum man das Komplexitätsproblem am Beispiel von Ballungsräumen nicht mit diesen neuen Simulationstechniken angehen sollte?
Verteilte Simulationen würden beliebigen Bürgern die reale Möglichkeit bieten, sich zu beteiligen. Das unterschiedliche Wissen in den unterschiedlichen Köpfen könnte man schrittweise aufsammeln und als Regelwissen in den Simulationen zur Verfügung stellen. Im Unterschied zu kommerziellen Spielen könnte man diese Regeln offenlegen für alle und sie zum Gegenstand von Fachgesprächen machen. In realen Simulationsabläufen könnte man jeweils austesten, wie sich bestimmte Regeln auswirken: sind sie realistisch? Wo führen sie uns hin? Welche Wechselwirkungen mit anderen Regeln tun sich auf? Dieses Werkzeug könnten den Fachabteilungen in den Behörden genauso offen stehen wie den Schulen und Universitäten; Firmen könnten ihre eigenen Szenarien ausprobieren. Alle könnten sich immer wieder auch zu gemeinsamen Experimenten verabreden; man könnte gar Wettbewerbe starten, eine Art kommunales eGaming. In diesem Fall würde es dann wirklich um etwas gehen, nämlich um die eigene Welt und ihre mögliche Zukunft. Mit einem solchen verteilten dynamischen Planungswerkzeug könnte man den Ballungsraum 2117 schon ziemlich gut erforschen, zumindest soweit es uns heute, im Jahr 2018 überhaupt möglich ist. (14)
(Anmk: 14: Im Rahmen der abschließenden Podiumsdiskussion zur Tagung stieß die Idee des Einsatzes von mehr Computersimulationen im Gewand von Computerspielen für die Stadtplanung auf unterschiedliche Reaktionen. Der meiste Widerstand ging aus von der Vorstellung, dass Computerprogramme abgeschlossene Einheiten sind, die aus sich heraus niemals die Vielfalt und Dynamik der Wirklichkeit abbilden könnten. Dem hielt der Autor entgegen, dass man primär vom Kommunikationsprozess zwischen Menschen her denken müsse, dem Austausch von Weltbildern, verbunden mit einem möglichen ’Um-Lernen’ dieser Weltbilder. Innerhalb dieser Kommunikationsprozesse kann eine Computerspielumgebung sehr wohl helfen, komplexe Sachverhalte besser zu nutzen. Außerdem können die Regeln, nach denen hier die Welt gesteuert wird, von allen Teilnehmern eingesehen und auf Wunsch geändert werden.)
IX. TECHNISCHE SUPERINTELLIGENZ
An dieser Stelle könnte dieser Vortrag unter normalen Umständen enden. Schon jetzt enthält er eine Reihe von Anregungen, die über den aktuellen Status Quo weit hinausgehen. Aber wir leben in einer Zeit, in der die Welt – spätestens seit der Cebit 2016 – zu fast allen passenden und auch unpassenden Gelegenheiten mit dem Begriff ’Künstliche Intelligenz’ beschallt wird. Kaum noch ein Produkt oder eine Dienstleistung, die nicht irgendwie den Anspruch erhebt, entweder schon über ’künstliche Intelligenz’ zu verfügen oder demnächst mit so etwas ausgestattet zu werden. Und neben den Evangelisten der künstlichen Intelligenz treten auch die Propheten des Untergangs der Menschheit auf, für die die aktuelle ’Künstliche Intelligenz’ nur der Vorläufer einer ganz neuen, noch mächtigeren ’Künstlichen Intelligenz’ sei, die als ’Singularity’ alles übertreffen wird, was der Mensch als künstliche Intelligenz kennt und beherrscht. (15) Diese neue Super-Intelligenz soll dem Menschen in Geschwindigkeit, Datenvolumen und Denkfähigkeit so weit voraus und darin überlegen sein, dass diese technische Superintelligenz vom Menschen nicht mehr ernsthaft kontrolliert werden kann. Sie ist gegenüber dem Menschen so überlegen, dass sie den Menschen locker als überflüssiges Etwas abschaffen kann. Wie immer, gehen die Schätzungen, wann dies der Fall sein wird, deutlich auseinander, aber das Jahr 2117 ist ein guter Kandidat, wann es soweit sein könnte. (16) Was soll man von dieser nicht gerade beruhigenden Vision halten?
Dass Menschen alles, was ihnen neu und unbekannt ist, und ihnen Angst macht, in Form von überirdische Fabelwesen packen, ist so alt, wie die Aufzeichnungen der Menschheit reichen. In den vielen Sagen gibt es dann irgendwann einen Menschen, einen besonderen Menschen, einen Helden, der dann irgendwann eine Schwachstelle findet, durch deren Ausnutzung der Held dann das Fabelwesen zur Strecke bringen kann. Im Fall des neuen Mythos von der technischen Superintelligenz muss man allerdings nicht sehr weit suchen, um zu sehen, dass die Dinge vielleicht doch ganz anders liegen, als die Marketingmaschinerien uns glauben lassen wollen. Und ja, doch, es könnte sogar sein, dass sich hinter dem abschreckenden Mythos von der menschenfeindlichen technischen Superintelligenz eine sehr konkrete Technologie verbirgt, die uns Menschen bei unserem Komplexitätsproblem ernsthaft helfen könnte. Gehen wir zurück zu dem Mann, mit dem das seriöse Reden über die Computer-Maschine angefangen hat.
(Anmk: 15: Ein wichtiger Text zu Beginn der Diskussion um die ’technische Singularität’ ist ein Beitrag von Vinge 1993 zu einer Nasa-Konferenz [Vin93]. Ein sehr guter Einstieg in die Thematik der technischen Singularität findet sich in dem Wikipedia-Artikel zur ’Technological Singularity’, URL: https://en.wikipedia.org/wiki/Technological singularity)
(Anmk: 16: Für eine Diskussion, wann man mit welcher Art von ’Super-Human-Level’ maschineller Intelligenz rechnen sollte, finden sich im Kap.1 von Bostrom 2014 [Bos14]:SS.18-21 einige Argumente. Klar ist, dass es nicht ganz klar ist; es gibt zu viele Unbekannte und wichtige Begriffe sind unscharf. So gesehen ist die Zahl ’2117’ (geschrieben im Jahr 2017) eine fast ’satirische’ Schätzung unter Berücksichtigung der Argumente bei Bostrum.)
X. WAS KANN EIN COMPUTER?
Während die modernen Naturwissenschaften ihren Untersuchungsgegenstand, die reale Natur, von vornherein nicht kennen, sondern sich mühsam, über viele kleine Schritte, ein Bild erarbeiten müssen, wie es vielleicht sein könnte, hat die Computerwissenschaft es einfacher. Sie beginnt dort, wo es überhaupt noch keine Computer gab, sondern nur ein mathematisches Konzept über eine ideale Maschine, deren einzige Fähigkeit darin besteht, in völlig transparenter Weise eine endliche Liste von primitiven Befehlen auszuführen. (17) Im Unterschied zu einer normalen Maschine, die keine Befehle ausführt, kann eine Computer-Maschine Befehle ausführen. Dies erscheint noch nicht besonders aufregend. Ein klein wenig aufregender wird es dadurch, dass die Computermaschine mit einem Schreib-Lese-Band verknüpft ist, auf dem beliebige Zeichen stehen können. Man kann die Computer-Maschine so auslegen, dass sie diese Zeichen auf dem Schreib-Lese-Band als ihre neuen Anweisungen interpretiert. Dies klingt auch noch nicht aufregend. Aufregend wird es, wenn man sich klar macht, dass die Computer-Maschine diese Anweisungen auf dem Schreib-Lese-Band in eigener Regie verändern kann. Sie kann sozusagen das Programm, das sie steuert, selber abändern und damit die Kontrolle über ihre eigene Steuerung übernehmen. Damit verfügt die Computer-Maschine über eine wichtige Voraussetzung, um im Prinzip voll lernfähig zu sein.
Der soeben erwähnte Turing (18) war auch einer der ersten, der in drei Artikeln 1948, 1950 sowie 1953 ganz offen die Frage diskutierte, ob Computer-Maschinen, falls es diese irgendwann einmal als reale Maschinen geben würde, auch eine Intelligenz haben könnten, wie wir sie von Menschen kennen. (19) Turing selbst sah die Möglichkeit eher positiv. Er machte allerdings schon damals darauf aufmerksam, dass Computer-Maschinen aus seiner Sicht nur dann eine reelle Chance haben würden, mit dem Menschen im Lernen gleich zu ziehen, wenn sie ähnlich wie Kindern selbständig durch die Welt streifen könnten und – ausgestattet mit Kameras, Mikrophonen und weiteren Sensoren – die Welt wie sie ist wahrnehmen könnten.
Mittlerweile schreiben wir das Jahr 2018, das sind mehr als 65 Jahre nach Turings Spekulationen zu intelligenten, lernfähigen Computern. Wie viele Computer streifen durch die Welt wie Kinder? Nicht all zu viele, muss man feststellen; eigentlich kein einziger. Die bisherigen Roboter, die bekannt sind, haben eine sehr eingeschränkte Bewegungsfähigkeit und keiner von diesen lernt bislang in einer unbeschränkten Weise, wie Kinder es tun.
Der Bereich, in dem über lebenslang frei lernende Roboter geforscht wird, nennt sich ’Developmental Robotics’ oder – noch radikaler – ’Evolutionary Developmental Robotics’. (20) In einer Forschungsübersicht aus dem Jahr 2017 (21) gibt es eine zentrale Einsicht, die uns an dieser Stelle helfen kann. (22) Zwar weiß man eigentlich schon von den Anfängen in der Künstlichen Intelligenzforschung in den 1960iger Jahren, dass jegliche Art von Lernen minimale Formen von Rückmeldung benötigt, aber die Tragweite dieses Momentes wurde vielen Forschern erst in den letzten Jahren, und speziell in der ’Erforschung des offenen‘ Lernens so richtig klar. Wenn eine Computer-Maschinen selbständig offen lernen können soll, dann braucht sie minimale Präferenzen, um im allgemeinen Rauschen der Ereignisse Ansätze möglicher Muster zu finden. Im Fall von biologischen Systemen gibt es eine Mischung von sogenannten angeborenen Präferenzen, die sich letztlich von der Überlebenserfahrung herleiten, und eben das schlichte Überleben selbst. Nur wer überlebt besitzt offenbar brauchbare Informationen. Im Fall von Computer- Maschinen gibt es keine Überlebenserfahrungen. Eine Computer-Maschine beginnt am absoluten Nullpunkt. Bis vor wenigen Jahren haben Ingenieure das Problem dadurch gelöst, dass sie ihre eigenen Präferenzen in die Computer-Maschinen eingebaut haben. Dies hat so lange funktioniert, wie die Computer-Maschinen nur sehr spezielle Aufgaben lösen mussten, z.B. als Industrieroboter. In dem Maße aber, wie Computer-Maschinen beliebige Aufgaben lernen können sollen, funktioniert diese Strategie nicht mehr. Was nun? Woher sollen solche allgemeinen Präferenzen kommen?(23)
Die Frage mit den Präferenzen (andere sprechen von Werten) hat eine zusätzliche pikante Note, da der Homo sapiens das erste Lebewesen auf der Erde ist, das nicht mehr ausschließlich durch die nackte Überlebensnotwendigkeit getrieben ist. Der Homo sapiens, also wir Menschen, haben es durch unsere geistigen und kommunikativen Möglichkeiten geschafft, das nackte Überleben z.T. sehr weit in den Hintergrund zu drängen. Damit stellt sich für die Lebensform des Homo sapiens erstmals seit 4 Milliarden Jahren biologischen Lebens die Frage, welche möglichen Präferenzen es möglicherweise neben oder sogar vor dem nackten Überleben geben könnte. Dummerweise enthält der genetische Code keine direkte Antwort auf die Frage nach zusätzlichen Präferenzen.
(Anmk: 17: Der Text, in dem diese Art der Beschreibung eines idealen Computers erstmals vorkommt, ist ein Text, in dem Alan Matthew Turing einen metamathematischen Beweis geführt hat, in dem es um eine andere Version des Unentscheidbarkeitsbeweises von Kurt Gödel 1931 ging. Siehe [Tur 7]. Zu Ehren von Turing wurde diese Version der Definition eines Computers ’Turingmaschine’ genannt. )
(Anmk: 18: Eine sehr gute Biographie zu Turing ist Hodges (1983) [Hod83])
(Anmk: 19: Siehe Turing 1948 [M.87], 1950 [Tur50], sowie 1953 [Tur63] 20 Erste gute Überblicke bieten die beiden Wikipediaeinträge zu ’developmental robotics’ https://en.wikipedia.org/wiki/Developmental robotics sowie zu ’evolutionary developmental robotics’ https://en.wikipedia.org/wiki/Evolutionary developmental robotics)
(Anmk: 21: Siehe Merrick (2017) [Mer17])
(Anmk: 22: Ergänzend auch Singh et.al. (2010) [SLBS10] und Ryan/Deci (2000) [RD00] )
(Anmk: 23: Eine der verbreitetsten Lernformen im Bereich Künstliche Intelligenz ist das sogenannte ’Reinforcement Learning (RL)’. Dieses setzt explizit ’Belohnungssignale’ (’reward’) aus der Umgebung voraus. Siehe zur Einführung Russell/ Norvig 2010 [RN10]:Kap.21 und Sutton/Barto 1998 [SB98])
XI. DAS EI DES COLUMBUS
Das Ei des Columbus gilt als Metapher für Probleme, die als unlösbar gelten, für die es dann aber doch eine Lösung gibt.
In unserem Fall ist das Problem die begrenzte kognitive Ausstattung des Menschen für komplexe Situationen sowie die Präferenzfreiheit technischer Systeme. Die bisherigen Lösungsansätze einer cloud-basierten allgemeinen Intelligenz führt letztlich zu einer Entmachtung des einzelnen ohne dass eine cloud-basierte Intelligenz eine wirklich Überlebensfähigkeit besitzt. Sie gleicht eher einem Vampir, der so lange lebt, als viele einzelne sie mit Details aus ihrem Alltag füttern. Ohne diese Details ist solch eine cloud-basierte Intelligenz ziemlich dumm und kann einem einzelnen kein wirklicher persönlicher Assistent sein.
Die Lösung könnte tatsächlich ein reales Ei sein, ein Ei gefüllt mit einer Computer-Maschine, deren Rechenkraft vor Ort genau einem Menschen zur Verfügung steht und genau diesem einem Menschen rund um die Uhr hilft, seine kognitiven Begrenzungen auszugleichen und zu überwinden. Dieses Computer-Maschinen Ei (natürlich könnte es auch jede andere Form haben, z.B. als Ohrring, Halskette, Armband usw.) kann mit dem Internet Verbindung aufnehmen, mit jeder denkbaren Cloud, aber nur dann, wann und wie dieses Ei es selber will, und es würde keinerlei privates Wissen einfach so preisgeben. So, wie die Gehirne der Menschen anatomisch alle ähnlich sind und doch sehr individuelle Persönlichkeiten ermöglichen, so kann ein Computer-Maschinen Ei die individuellen Erfahrungen und das individuelle Wissen eines Menschen passgenau erkennen und fördern. Es entsteht eine Symbiose von Mensch und Maschine, die deutlich mehr sein kann als jede Komponenten für sich alleine.
XII. EINE NEUE MENSCH-MASCHINE SUPER-INTELLIGENZ FÜR DEN BALLUNGSRAUM?
Greift man an dieser Stelle nochmals die Vision einer verteilten, flexiblen Simulationsumgebung für die Bürger in einer Region auf, dann kann eine zusätzliche Ausstattung aller Bürger mit ihren persönlichen intelligenten Assistenten dem ganzen Projekt einen zusätzlichen messbaren Schub geben. Die persönlichen Assistenten können auch dann arbeiten, wenn der einzelne mal müde ist, sich entspannen will oder mal mit familiären Aufgaben beschäftigt ist. Und der persönliche Assistent kann auch viele Tausend oder Millionen Faktoren gleichzeitig in Rechnung stellen und in ihren Auswirkungen verfolgen. Im Zusammenwirken dieser vielen natürlichen und technischen Intelligenzen könnte eine Mensch-Maschine Superintelligenz entstehen, die den einzelnen voll mit nimmt, und als Gesamtphänomen erheblich leistungsfähiger sein wird, als alles, was wir heute kennen.
Allerdings, wir sollten uns nicht der Illusion hingeben, dass damit dann alle Probleme gelöst wären. Das Problem der geeigneten Präferenzen, sprich der Werte, wird bleiben; es wird sich vermutlich eher verschärfen. Auch die Verantwortung für uns Menschen wird weiter wachsen, auch wenn sich diese Verantwortung qualitativ neu immer auf ganz viele verteilen wird.
IX QUELLEN
[Bad03] Alan Baddeley. Working memory and language: an overwiew. Journal of Communication Disorders, 36:236–242190–208, 2003.
[BL99] A. Baddeley and R.H. Logie. Working memory: The multiple-component model. In A. Myake and P. Shah, editors, Models of working memory, chapter 2, pages 28–61. Cambridge University Press, New York, 1999.
[Bos14] Nick Bostrom. Superintelligence. Paths, Dangers, Strategies. Oxford University Press, Oxford (UK), 1 edition, 2014.
[BP16] Thorsten Bürklin and Michael Peterek. Thecycloregion. city-regional development in frankfurt rhine-main – die zykloregion. stadtentwicklung in frankfurtrheinmain. Journal of Comparative ’Cultural Studies in Architecture, 9:41–51, 2016.
[For71] Jay W. Forrester. World Dynamics. Wright-Allen Press, Inc., Cambridge (MA) 02142, 2 edition, 1971.
[Hod83] Andrew Hodges. Alan Turing, Enigma. Springer Verlag, Wien – New York, 1 edition, 1983.
[Hol73] C.S. Holling. Resilience and stability of ecological systems. Annual Review of Ecology and Systematics, 4(1):1–23, 1973.
[Jak13] Peter Jakubowski. Resilienz – eine zusätzliche denkfigur für gute stadtentwicklung. Informationen zur Raumentwicklung, 4:371–378, 2013.
[M.87] Turing Alan M. Intelligente maschinen. In Bernhard Dotzler and Friedrich Kittler, editors, Alan M. Turing. Intelligence Service, pages 81 – 113. Brinkmann & Bose, Berlin, 1987.
[Mer17] Kathryn Merrick. Value systems for developmental cognitive robotics: A survey. Cognitive Systems Research, 41:38 – 55, 2017.
[Mil56] Geroge A. Miller. The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological review, 63:81–97, 1956.
[MLRBI72] Donella H. Meadows, Meadows Dennis L., Jørgen Randers, and William W. Behrens III. The Limits to Growth. A Report for the Club of Rome’s Project on the Predicament of Mankind. Universe Books, New York, 1 edition, 1972.
[PB13] Michael Peterek and Thorsten Bürklin. Potentials and challenges of polycentric city-regions: A case-study of frankfurt rhine-main. Technical Transactions Architecture – Czasopismo Techniczne Architektura, 1-A:179–189, 2013.
[RB06] G. Repovs and A. Baddeley. The multi-component model of working memory: Explorations in experimental cognitive psychology. Neuroscience, 139:5–21, 2006.
[RD00] Richard M. Ryan and Edward L. Deci. Intrinsic and extrinsic motivations: Classic definitions and new directions. Contemporary Educational Psychology, 25(1):54 – 67, 2000.
[RN10] Stuart Russel and Peter Norvig. Artificial Intelligence. A Modern Approach. Universe Books, 3 edition, 2010.
[SB98] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning. An Introduction. The MIT Press, Ambridge (MA) – London, 1 edition, 1998.
[SLBS10] S. Singh, R. L. Lewis, A. G. Barto, and J. Sorg. Intrinsically motivated reinforcement learning: An evolutionary perspective. IEEE Transactions on Autonomous Mental Development, 2(2):70–82, June 2010.
[Tur50] Alan Turing. Computing machinery and intelligence. Mind, 59:433–460, 1950.
[Tur63] Alan Matthew Turing. Digital computers applied to games. In B.V. Bowden, editor, Faster Than Thought. Pitman Publishing, London, 1963.
[Tur 7] Alan M. Turing. On computable numbers, with an application to the entscheidungsproblem. Proceedings of the London Mathematical Society, 42(2):230–265, 1936-7.
[Vin93] Vernor Vinge. The coming technological singularity: How to survive in the post-human era. In G.A. Landis, editor, Vision-21: Interdisciplinary Science and Engineering in the Era of Cyberspace, pages 11–22. 1993.
PROJEKTGRÜNDUNG
Im Anschluss an dieses Konferenz kam es zur Gründung eines Projektes, das versucht, den ‚Spirit des Kongresses‘ aufzugreifen und konkret umzusetzen. Siehe dazu HIER.
KONTEXT BLOG
Einen Überblick über alle Blogeinträge von Autor cagent nach Titeln findet sich HIER.
Einen Überblick über alle Themenbereiche des Blogs findet sich HIER.
Das aktuelle Publikationsinteresse des Blogs findet sich HIER
I Einleitung 2
II (Intelligente) Maschine 2
III Mensch 2
IV Informelle Kosmologie 3
V Philosophischer Ausklang 4
THEMA
Die Frage nach der Zukunft von Menschen in einer Welt voller intelligenter Maschinen tritt immer mehr in das Zentrum der globalen Aufmerksamkeit. Während lange Zeit positive Visionen einer besseren Zukunft des Menschen mittels (intelligenter) Maschinen die Aufmerksamkeit auf sich zogen, kommen aktuell aber auch eher negative Aspekt zum Vorschein: werden die intelligenten Maschinen die Menschen ersetzen? Was wird aus einer Menschheit, deren primärer gesellschaftlicher Wert sich bislang über die erbrachte Arbeit definiert hat? Hängt der Wert eines Menschen
nur ab von der Form seiner entlohnten Arbeit? Ist der Mensch als Mensch nicht letztlich ’minderwertiger’ als eine intelligente Maschine als Teil des Produktionsprozesses? Was ist überhaupt der Mensch? Der Text hier geht ein paar neue Wege…
I. EINLEITUNG
Die Frage nach der Zukunft von Menschen in
einer Welt voller intelligenter Maschinen tritt immer
mehr in das Zentrum der globalen Aufmerksamkeit.
Während lange Zeit positive Visionen einer besseren
Zukunft des Menschen mittels (intelligenter) Maschinen
die Schlagzeilen beherrscht haben, kommen aktuell
immer mehr auch negative Aspekt zum Vorschein:
werden die intelligenten Maschinen die Menschen
ersetzen? Was wird aus einer Menschheit, deren
primärer gesellschaftlicher Wert sich bislang über die
erbrachte Arbeit definiert hat? Hängt der Wert eines
Menschen nur ab von der Form seiner entlohnten
Arbeit? Ist der Mensch als Mensch nicht letztlich
’minderwertiger’ als eine intelligente Maschine als Teil
des Produktionsprozesses? Was ist überhaupt der
Mensch?
Die Perspektiven der Diskussion um den Wert
des Menschen, um das rechte Menschenbild, sind
vielfältig und einiges davon wurde in vorausgehenden
Blogeinträgen schon angesprochen. Ein letzter Beitrag
nahm sich das Menschenbild der Psychoanalyse als
Aufhänger, um die Frage nach dem Menschenbild mal
von dieser Seite aus zu diskutieren.
Wie immer man aber die Diskussion beginnen will,
von welchem Standpunkt aus man auf das Problem
drauf schauen möchte, man kommt nicht umhin sich
Klarheit darüber zu verschaffen, was einerseits mit dem
Begriff ’Mensch’ gemeint ist und andererseits mit dem
Begriff ’intelligente Maschine’.
II. (INTELLIGENTE ) MASCHINE
Während es im Fall von ’intelligenten Maschinen’
zumindest für die ’potentiell intelligenten Maschinen’
fertige mathematische Definitionen gibt, dazu
viele theoretische Abhandlungen mit ausführlichen
mathematischen Beweisen, welche Eigenschaften denn
eine so mathematisch definierte Maschine grundsätzlich
haben kann bzw. nicht haben kann, wird es bei der
’Realisierung’ der mathematischen Konzepte als ’reale
Maschinen’ schon schwieriger. Die ’reale (empirische)
Welt’ ist keine Formel sondern ein Konglomerat von mehr
oder weniger verstanden Eigenschaften und Dynamiken,
deren Beschreibung in den empirischen Wissenschaften
– allen voran die Physik – bislang nur teilweise gelungen
ist. Aber selbst das, was bislang beschrieben wurde
repräsentiert keine ’absoluten’ Wahrheiten sondern
eine Menge von mehr oder weniger gut begründeten
’Hypothesen’, wie die beobachtbare und messbare Welt
vielleicht ’zu sehen ist’.
III. MENSCH
Im Falle des Menschen ist die Ausgangslage eine
andere. Hier steht am Anfang keine klare mathematischeDefinition, sondern wir stoßen beim Menschen zunächst auf eine Fülle empirischer Phänomene,
deren Komplexität – das beginnt die Wissenschaft
langsam zu ahnen – alles übersteigt, was bislang im
beobachtbaren Universum entdeckt werden konnte.
Es ist daher nicht verwunderlich, dass die Menschen
in der bisherigen Geschichte – soweit sie rekonstruiert
werden konnte – mit Bildern von ’sich selbst’ hantiert
haben, die schlicht und einfach zu primitiv waren
(und sind), viel zu einfach, irreführend, und in diesem
Sinne möglicherweise lebensbedrohend sind für die
Menschheit als Ganzes. Denn, solange die Menschen in
ihrer Gesamtheit sich selbst nicht verstehen und von
sich in einer Weise denken, die wichtige Eigenschaften
verdeckt, überdeckt, entstellt, so lange kann der Mensch
seine eigene Zukunft kaum sinnvoll in die Hand nehmen.
Solange klare Leitbilder fehlen, solange ist die Gefahr
real und groß, sich selbst von einer in die nächste
Katastrophe zu steuern. Wie lange die Menschheit
als Ganze diesen Schlingerkurs des selbst gewählten
Wahnsinns überlebt, weiß keiner. Eine starke Hoffnung,
dass die Menschheit es irgendwie schaffen kann,
gründet darin, dass das gesamte biologische Leben
in seiner bis heute nicht verstandenen Komplexität
ja nicht stattfindet, weil irgendwelche Menschen sich
dies ausgedacht haben, sondern weil das biologische
Leben Teil eines komplexen dynamischen Prozesses
ist, der seinen ’eigenen Regeln’ folgt, Regeln, die dem
menschlichen Wahrnehmen, Fühlen und Denken ’voraus
liegen’!
Unsere Hoffnung ruht also darin, dass wir als
Menschen – bevor wir überhaupt irgendetwas selbst tun,
schon weitgehend ’getan wurden und werden’.
Allerdings – und darin liegt eine eigentümliche
Paradoxie – der bisherige Prozess der biologischen
Lebenswerdung ist so gestaltet, dass der Prozess
des gesamten bekannten Universums mehr und
mehr über das ’Erkennen der Welt’ und im darin
gründenden ’Gestalten der Welt’ in eine immer größere
Abhängigkeit von genau diesem biologischen Leben
gerät. Der gesamte Prozess der Entstehung des
biologischen Lebens – so kann man es sehen, wenn
man entsprechend hinschaut – zeichnet sich dadurch
aus, dass die materiellen Strukturen und die damit
verknüpften Dynamiken immer mehr in der Lage
sind, die Gegenwart von Ereignissen im künstlich
geschaffenen ’Inneren’ zu ’erinnern’, zu ’denken’, damit
’gedanklich (= virtuell) zu spielen’ und auf diese Weise
Schritt für Schritt den Ablauf des gesamten Universums
nicht nur zu ’rekonstruieren’, sondern auch zunehmend
’aktiv zu verändern’.
IV. INFORMELLE KOSMOLOGIE
Will man die Rolle des Menschen als Teil des
biologischen Lebens, dieses wiederum als Teil der
gesamten Erdgeschichte, der Geschichte unseres
Sonnensystems, und letztlich des gesamten bekannten
Universums verstehen, stößt man ziemlich schnell auf
das Problem einer zerklüfteten Wissenslandschaft, in der
sich täglich ’Datengebirge’ in immer größerem Ausmaßes
auftürmen, gesammelt aus einer unüberschaubaren
Menge von Blickwinkeln (bisweilen organisiert als
wissenschaftliche Disziplinen). Und da es keine
einheitliche Sprache für alle diese Sichten gibt, ist man
schon im Ansatz buchstäblich ’sprachlos’. Ohne Sprache
aber funktioniert unser Denken kaum bis gar nicht,
zumindest nicht, wenn es um klare kommunizierbare
Einsichten gehen soll.
Grundsätzlich ist dieses Phänomen der ’Sprachlosigkeit’ in den Wissenschaften nicht neu, im Gegenteil. Die Geschichte der Wissenschaften ist
auch eine Geschichte des permanenten Erfindens
neuer Sprache, um neue Phänomene angemessen
beschreiben zu können. Dieses ’Erfinden’ und
’Umsetzen’ ist meist ein langwieriger Prozess von
ersten Ideen, Sprechversuchen, vielen Diskursen,
Missverständnissen, Ablehnungen, Verteufelungen, und
mehr.
Bei meinem eigenen Versuch, mir einen ’Reim’ auf alle
die bekannten Phänomene im Umfeld des Menschen
(und der aufkommenden intelligenten Maschinen) zu
machen, habe ich schon viele Darstellungsweisen
versucht. Und auch jetzt bin ich aus diesem Zustand
des ’Suchens’ und ’Probierens’ noch nicht wirklich
heraus (wobei die Wissenschaft, wie oben angedeutet,
ja niemals ganz aus dem Suchen und Probieren heraus
kommen kann).
Mein letzter Verstehensversuch ist in dem beigefügten
Schaubild angedeutet (siehe das Bild 1).
So ’komplex’ das Schaubild aussieht, so extrem
vereinfachend ist es mit Blick auf die Komplexität der
realen Welt ’dahinter’.
Was in diesem Schaubild nicht direkt abgebildet
ist, das ist die ’zeitliche Abfolge’ der Ereignisse im
Universum. Sie ist nur indirekt erschließbar über die
Verschachtelung der angezeigten Größen.
So gibt es eine Entsprechung zwischen der ’Energie’
einerseits und dem ’Raum’ und der darin auftretenden
’Materie’ andererseits.
Von der Materie wiederum wissen wir, dass sie
Komplexitätsebenen umfasst wie z.B. dass die ’Atome’
selbst sich wiederum aus ’sub-atomaren Teilchen’
konstituieren, die ’Moleküle’ aus Atomen, ’einfache’ und
’komplexe Zellen’ wiederum aus Molekülen, usw..
Parallel zur Struktur der Materie als sub-atomare
Teilchen, Atome, Moleküle usw. gibt es aber auch
immer ’Makrostrukturen’, die sich im allgegenwärtigen
’Raum’ ausbilden. Diese Makrostrukturen bilden sich
aus Ansammlungen von Atomen und Molekülen,
bilden ’Gaswolken/ Nebel’, darin wiederum kommt
es zur Bildung von ’Sternen’ und ’Planeten’, darüber
hinaus bilden viele Sterne zusammen ’Galaxien’, diese
wiederum ’Cluster’, und mehr.
Zwischen einer Makrostruktur und ihren materiellen
Sub-Strukture gibt es vielfältige spezifische Wechselwirkungen.
Vom ’biologischen Leben’ auf der Erde wissen wir,
dass es durch Formation von zunächst ’einfachen’,
später dann auch ’komplexen’ Zellen auf der Basis
von Molekülen immer neue, komplexe Eigenschaften
ausgebildet hat. Dies allerdings nicht isoliert, sondern
im Verbund von vielen Atomen und Molekülen in
spezifischen Makrostrukturen wie einem ’Ozean’, der
sich auf der Erde neben der ’Lithosphäre’ und der
’Atmosphäre’ herausgebildet hatte.
Biologische ’Zellen’ zeigen neben vielen Detailprozessen vornehmlich drei große Eigenschaften: (i) sie können mittels Atom- und Molekül basierter
Prozesse ’Freie Energie’ aus der ’Umgebung’ aufnehmen
und für Prozesse in der Zelle nutzen. Sie können (ii)
mittels dieser energiegetriebenen Prozesse molekulare
Strukturen ’generieren’ oder ’umformen’. Sie verfügen (iii)
über die nur sehr schwer zu erklärenden Eigenschaft, Prozesse
mittels molekularer Strukturen so zu ’kodieren’, dass
strukturbildende Prozesse die kodierten Strukturen als
’Informationen’ für solche Strukturbildende Prozesse
benutzen können. Dies ist ein einmaliger Prozess im
gesamten Universum. Die gebündelten Eigenschaften
(i) – (iii) ermöglichen es einer Zelle, sich selbst in eine
neue Zelle zu ’kopieren’, wobei dieses Kopieren keine ’1-zu-1’ Kopie ist, sondern eine ’Wiederholung mit einem gewissen Maß an Variation’. Dieser variable Anteil
basiert auf etwas, was man als ’Zufall’ bezeichnen
kann oder als eine Grundform von ’Kreativität’. Ohne
diese minimale Kreativität würde es kein biologisches
Leben geben! Es ist also nicht die ’Ordnung’ nach
vorgegebenen Regeln (= Informationen) alleine, die
’Leben’ möglich macht, sondern ’Ordnung + Kreativität’.
Eines von beiden alleine reicht nicht, aber beide
zusammen haben eine ’Chance’.
Von den komplexen Zellen zu komplexen
’Lebensformen’ wie ’Pflanzen’ (’Flora’) und Tieren
(’Fauna’) war es ein weiter und beschwerlicher Weg.
Die einzelnen Zellen mussten irgendwie lernen, durch
’Kommunikation’ miteinander zu ’Kooperieren’. Die
bislang praktizierten Kommunikations- und dann auch
Kooperationsformen sind unfassbar vielfältig.
Wenn man bedenkt, dass nach den neuesten
Erkenntnissen der Mikrobiologie ein Mensch nur
stattfinden kann, weil ca. 30 Billionen (10^12 ) Körperzellen
und ca. 220 Billionen (10^12 ) bakterielle Zellen in
jedem Moment kooperieren, dann kann man vielleicht
ganz dunkel erahnen, welche Kommunikations- und
Kooperationsleistungen im Bereich des biologischen
Lebens bislang realisiert wurden (Anmerkung: Wenn man zusätzlich bedenkt, dass unsere Heimatgalaxie, die Milchstraße, geschätzt ca. 200 – 300 Milliarden (10^9 ) Sterne umfasst, dann entspräche die Anzahl der Zellen eines menschlichen Körpers
etwa 830 Galaxien im Format der Milchstraße.)
Biologische Lebensformen treten niemals alleine,
isoliert auf, immer nur als ’Verbund von Vielen’ (=
’Population’). Nicht nur bildet also jeder einzelne Körper
eine Kommunikations- und Kooperationsgemeinschaft,
sondern alle Lebensformen folgen diesem Prinzip.
Je nach Komplexitätsgrad einer Lebensform nehmen
solche ’Verhaltensmuster’ zu, die wechselseitig die
Lebensprozesse jedes einzelnen und der Population
unterstützen können.
Bisher ist es nur einer von vielen Milliarden Lebensformen
gelungen, das eigene Verhalten durch immer komplexere
’Werkzeuge’ anzureichern, zu differenzieren, den
Wirkungsgrad zu erhöhen. Dies ist soweit gegangen,
dass mittlerweile ’Maschinen’ erfunden wurden, dann
gebaut und nun benutzt werden, die die grundlegenden
Eigenschaften jeder Zelle ’technisch kopieren’ können:
(i) Energie so zu nutzen, das (ii) Strukturänderungen
möglich werden, die durch (iii) Informationen ’gesteuert’
werden. Man nennt diese Maschinen ’Computer’
und stellt langsam fest, dass man mit diesen
Maschinen immer mehr der so genannten ’intelligenten’
Eigenschaften des Menschen ’kopieren’ kann. Was auf
den ersten Blick ’wundersam’ erscheinen mag, ist auf den
zweiten Blick aber klar: die Besonderheit des Menschen
liegt zu einem großen Teil in der Besonderheit seiner Zellen. Wenn ich die fundamentalen Eigenschaften
dieser Zellen in eine Technologie transformiere, dann
übertrage ich grundsätzlich auch diese Eigenschaften
auf diese Maschinen.
V. PHILOSOPHISCHER AUSKLANG
Aufgrund der aktuell gegebenen strukturellen
Begrenzungen des Menschen aufgrund seines aktuellen
Körperbauplans (der auf eine abwechslungsreiche
Entwicklungsgeschichte von vielen Milliarden Jahren
zurückschauen kann) beobachten wir heute, dass
die rasante Entwicklung der Gesellschaft (mit ihrer
Technologie) die Informationsverarbeitungskapazitäten
des Menschen wie auch sein emotionales Profil mehr
und mehr überfordern. Computer basierte Maschinen
können hier bis zu einem gewissen Grad helfen,
aber auch nur insoweit, als der Mensch diese Hilfe
’verarbeiten’ kann. Das Thema ’Mensch-Maschine
Interaktion’ bekommt in diesem Kontext eine ganz neue,
fundamentale Bedeutung.
Auf lange Sicht muss der Mensch es aber schaffen,
die Veränderung seines Körperbauplans schneller
und gezielter als durch die bisherige biologische
Evolution voran zu treiben. Die Visionen unter dem
Schlagwort ’Cyborgs’ sind keine Spinnerei, die man
ethisch verurteilen muss, sondern im Gegenteil absolut
notwendig, um das biologische Leben ’im Spiel zu
halten’. (Anmerkung: Möglicherweise muss all das, was bislang unter der Bezeichnung
’Ethik’ gehandelt wird, einer grundlegenden Revision unterzogen wer-
den.)
Neben vielem, was Computer basierte Maschinen
zur Ermöglichung von Leben beitragen können, muss
man klar sehen, dass eine fundamentale Frage aller
Menschen, vielleicht ’die’ fundamentale Frage, von den
Computer basierten Maschinen – auch wenn sie im
vollen Sinne lernfähig wären – bislang grundsätzlich auch
nicht beantwortet werden, und zwar aus prinzipiellen
Gründen. Gemeint ist das ’Werteproblem’ in der
Form, dass ein gezielt es Lernen und sich Entwickeln
voraussetzt, dass es geeignete Präferenzsysteme gibt
anhand dessen man irgendwie beurteilen kann, was
’besser’ oder was ’schlechter’ ist.
Vor dem Auftreten des Menschen (als ’homo sapiens’)
gab es nur das Präferenzsystem der ’gesetzten Welt’:
’Gut’ war letztlich nur das, was ein ’Weiterleben’ der
Population unter den gegebenen Bedingungen der
Erde (die sich im Laufe der Zeit mehrfach dramatisch
verändert hatte!) ermöglichte. Für große Diskussionen
war da kein Platz. Außerdem war ja auch niemand in
der Lage, hier zu ’diskutieren’.
Mit dem Auftreten des Menschen veränderte sich
die Situation grundlegend. Zwar galt es auch weiterhin,
sich unter den Bedingungen der aktuellen Erde (und
Sonnensystems und …) ’im Spiel’ zu halten, aber mit dem
Menschen entstand die Möglichkeit, sämtliche Abläufe
transparent zu machen, sie denkbar zu machen und
damit ganz neue Handlungsalternativen zu erschließen.
Damit stellt sich die Frage nach den ’Präferenzen’ aber
ganz neu. Das direkte, nackte Überleben ist durch die
modernen Gesellschaften im Prinzip so weit abgemildert,
dass man sich ’neue Ziele’ suchen kann. Menschen
können sich zwar weiterhin gegenseitig abschlachten, es
besteht dazu aber keine Notwendigkeit (allerdings kann
der Druck durch hohe Bevölkerungszahlen und endliche
Ressourcen die Bereitschaft zu einem konstruktiven
Miteinander beeinflussen). Nur, selbst wenn man will,
wo sollen die neuen Präferenzen herkommen? Bislang
kenne ich keinen einzigen Ansatz, der auch nur vage
den Eindruck erwecken würde, dass er eine interessante
Hypothese bilden könnte. Dies gilt sowohl für die
klassischen ethisch-religiösen Diskurskontexte wie auch
für das ganze Gerede um intelligente Maschinen und
Superintelligenz. Das ’Super’ im Begriff ’Superintelligenz’
bezieht sich bestenfalls auf Geschwindigkeiten und
Quantitäten von Rechenprozessen, nicht aber auf das
inhärente Werteproblem eines Lernprozesses.
Eingeleitet durch wissenschaftsphilosophische
Überlegungen wird versucht, die Entwicklung der
Säugetiere bis hin zum homo sapiens anhand der aktuellen
Forschungsdaten abzubilden. Das Hauptaugenmerk liegt
auf der allgemeinen Struktur. Für die vielen Details sei auf
die Literatur verwiesen, die angegeben wird.
I. KONTEXT
Eine der Leitfragen dieses Blogs ist die Frage nach
dem neuen Menschenbild, speziell auch im Kontext
der Diskussion um die Zukunft von Menschen und
intelligenten Maschine.
Wer nach der Zukunft des Menschen fragt,
braucht ein gutes Bild vom aktuellen Menschen und
seiner Entstehungsgeschichte, um auf dieser Basis
Überlegungen zu einer möglichen Zukunft anstellen zu
können.
Während zur biologischen Evolution allgemein schon
einige Blogbeiträge geschrieben wurden, fehlt es im Blog
an konkreten Daten zur Entwicklung unmittelbar vor dem
Auftreten des homo sapiens, etwa in dem Zeitfenster -10
Mio Jahren bis ca. -30.000 Jahren vor dem Jahr 0. Dies
soll hier in einem ersten Beitrag nachgeholt werden.
II. WISSENSCHAFTLICHE SICHTWEISEN
Bei der Frage nach der Entwicklung des homo
sapiens spielen mehrere wissenschaftliche Disziplinen
ineinander. Einmal ist es die Geologie (Siehe: [WD17g]),
die den Kontext Erde untersucht; dann die Klimatologie
(Siehe: [WD17n]), die sich mit den klimatischen
Verhältnissen im Kontext Erde beschäftigt. Für das
Phänomen des Lebens selbst ist die Biologie zuständig,
speziell die Evolutionsbiologie (Siehe: [SWW13],
[WD17e]). Als Teil der Evolutionsbiologie sind noch
zu nennen die Molekularbiologie (Siehe: [WD17s]) mit
der Genetik (Siehe: [WD17f]). Ferner könnte man als
Teil der Evolutionsbiologie auch noch die Paläontologie
(Siehe: [WD17u], [Par15]) nennen und auch die
Archäologie (Siehe: [WD17a]). Wobei das Wechselspiel
von Evolutionsbiologie und Archäologie nicht ganz
so klar erscheint. Viele weitere wissenschaftliche
Disziplinen tauchen innerhalb der genannten Disziplinen
in unterschiedlichsten Kontexten auf.
Diese Vielfalt spiegelt ein wenig die Komplexität der
Phänomene wieder, um die es hier geht. Der Autor
cagent selbst betrachtet die hier zu verhandelnden
empirischen Phänomene aus Sicht der Philosophie
mit den Schwerpunkten Erkenntnisphilosophie, die
Überschneidungen hat mit Phänomenen wie z.B.
‚Lernen’ und ’Intelligenz’. Dies sind Themen, die
feste Orte auch in der Psychologie haben, heute
oft parallelisiert mit der Gehirnforschung (letztere
methodisch gesehen ein Teil der Biologie).
Angesichts dieser Komplexität ist es praktisch
unmöglich, ein völlig konsistentes, einheitliches Bild der
Phänomene zu zeichnen. An dieser Stelle ist es das
Anliegen von cagent, einen ’hinreichenden’ Überblick
über die ’unmittelbare’ Vorgeschichte des homo sapiens
zu bekommen.
Der homo sapiens ist jene biologische Art (Spezies),
die zur Gattung homo gerechnet wird, die sich aus
dem biologischen Formenstrom über Jahrmillionen
herausgeschält hat. Es zeigt sich, dass die zeitliche
Abgrenzung, wann genau ’das Menschliche’ anfängt,
und wann das ’Tierische’ aufhört, irgendwie beliebig
erscheint. Der homo sapiens ab ca. -30.000 besitzt
natürlich Eigenschaften, die wir beschreiben können
wie Körperbau, genetisch bestimmte Erbanlagen,
typische Verhaltensweisen, aber diese Eigenschaften
tauchen nicht abrupt in der Geschichte auf, sind nicht
irgendwann einfach so da, sondern man findet in
der vorausgehenden Zeit eine große Formenvielfalt
in den Artefakten, mit unterschiedlichen genetischen
Distanzen zum heutigen homo sapiens. Daraus muss
man schließen, dass es einen viele Millionen dauernden
Prozess des Formenwandels gab, innerlich genetisch
und äußerlich durch die jeweiligen geologischen und
klimatologischen Verhältnisse beeinflusst, die sich
zudem noch verknüpfen mit der jeweiligen Pflanzen- und
Tierwelt. Alle diese genannten Faktoren waren selbst
einem kontinuierlichen Wandel unterworfen.
Wenn die Grenzziehung zwischen dem ’Tierischen’
und dem ’Menschlichen’ von daher nicht ganz scharf
gezogen werden kann, ist auch eine Zeitangabe dazu,
wie weit zurück in der Zeit man gehen soll, um die
Vorgeschichte’ zu beschreiben, relativ, d.h. abhängig
von den Kriterien, die man bei der Analyse anlegen
will.
In diesem Beitrag wurde der Startpunkt für die
Beschreibung bei den Lebensformen gewählt, die die
Biologen ’Primaten’ nennen, und zwar spezieller den
Punkt der Aufspaltung in die Strepsirrhini und Haplorhini
(Siehe: [WE17l] und [WD17r]), die sich um etwa -80
Mio Jahren ereignet haben soll. Aus Sicht der heutigen
menschlichen Geschichte, wo 100 Jahre oder gar 1000
Jahre eine lange Zeit sind, wirken diese 80 Millionen
Jahre sehr, sehr lang. Innerhalb der Geschichte des
Lebens mit ca. 3.5 Milliarden Jahre fallen die 0.08 Mrd
Jahre seit dieser Aufspaltung nahezu kaum ins Gewicht,
es sind gerade mal 2.2% der gesamten Entwicklungszeit
des biologischen Lebens. Betrachtet man dagegen nur
die Zeit seit dem Auftreten der Lebensform homo, die
dem heute bekannten Menschlichem schon nahe kommt
(etwa ab -2.5 Mio), dann schrumpft der Zeitanteil auf
0.071 % der Entwicklungszeit des biologischen Lebens
zusammen. Umgerechnet auf das 12-Stunden Ziffernblatt
einer Uhr mit 720 Minuten würde die Entstehung der
Lebensform homo die letzte halbe Minute auf dem
Ziffernblatt ausmachen. Die Lebensform homo sapiens,
zu der wir uns zählen, tauchte frühestens um -190.000 in
Afrika auf. Das wären auf dem Ziffernblatt dann (bei ca.
81.000 Jahren pro Sekunde) die letzten 2.3 Sekunden.
Im Spiel des Lebens erscheint dies nicht viel. Betrachtet
man aber, was sich allein in den letzten ca. 10.000
Jahren ereignet hat, und hier speziell nochmals in den
letzten 100 Jahren, dann legt sich der Schluss nahe,
dass die Lebensform homo sapiens offensichtlich über
Fähigkeiten verfügt, die gegenüber der Vorgeschichte
von ca. 3.5 Mrd Jahren etwas qualitativ ganz Neues
sichtbar macht. Autor cagent ist sich nicht sicher,
ob der homo sapiens selbst bislang wirklich begreift,
was hier passiert, welche Rolle er in diesem Prozess
spielt. Auf der einen Seite zeichnet sich eine immer
größere Zerstörungskraft ab (die auch stattfindet), auf
der anderen Seite deuten sich konstruktive Potentiale
an, die alles übersteigen, was bislang vorstellbar war.
III. DEUTUNGEN: MATERIAL, MUSTER, FUNKTION, KONTEXTE
Die Tätigkeit der eingangs erwähnten Wissenschaft
kann man verstehen als eine Deutung, ausgeführt in
einem Deutungsprozess. Diese Deutung beginnt bei der
Bestimmung der Substanzen/ Materialien, die Forscher
vorfinden. Ist das eine Gesteinsart, sind das Knochen,
sind das pflanzliche Bestandteile …. ? Ein anderer
Aspekt ist die Frage nach ’Formen’ und ’Mustern’:
kann man an dem Material auffällige Formen oder
Muster erkennen, dann auch im Vergleich zu anderen
Materialien? Schließlich auch die Frage nach möglichen funktionalen Zusammenhängen’: wenn es ein Knochen
ist, in welchem Zusammenhang eines Knochengerüsts
kommt er vor? Wenn etwas ein Zahn sein soll, wie sah
das zugehörige Gebiss aus? Oder ist dieser Knochen Teil
eines Werkzeugs, einer zu unterstellenden Handlung,
die das Stück benutzt hat? Schließlich, in welchem
Kontext kommt ein Material vor? Ist es zufälliger Kontext,
ein Kontext durch einen geologischen Prozess, ein
Kontext erzeugt durch Verhalten von Lebewesen?
Schon bei diesen Fragen bieten sich eine Vielzahl von
Deutungsmöglichkeiten, bestehen viele Ungewissheiten.
IV. DEUTUNGEN 2: ZEITLICHE ABFOLGE
Was Forscher zur Evolutionsbiologie besonders
interessiert, ist das Erfassen von zeitlichen Abfolgen:
unter Voraussetzung eines bestimmten Zeitmaßes
möchte die Evolutionsbiologie wissen, ob ein
Gegenstand/ Artefakt A im Sinne des Zeitmaßes ‚vor’ oder ’nach’ einem anderen Gegenstand/ Artefakt B ‚anzuordnen’ ist.
Diese Frage macht nur Sinn, wenn man neben
einem definierten Zeitmaß auch annehmen darf
(muss), dass sich die Erde als Generalumgebung aller
vorfindbaren Materialien/ Artefakte grundsätzlich in
einem Veränderungsmodus befindet, dass also die
Erde zu zwei verschiedenen Zeitpunkten grundsätzlich
verschieden sein kann.
Dass sich am Kontext Erde Veränderungen feststellen
lassen, dies haben Menschen schon sehr früh erleben
können: Temperatur, Regen oder nicht Regen, Tag und
Nacht, Wachstum der Pflanzen, Geboren werden und
Sterben, usw. Es passierte aber erst im 17.Jahrhundert,
dass die Fragestellung nach dem Vorher und Nachher in
der Entwicklung der Gesteine mit Nils Stensen (nicolaus
steno) eine systematische Form fand, aus der sich nach
und nach die moderne Geologie entwickelte (Siehe:
[WD17h]).
Erst durch die wissenschaftliche Geologie wissen
wir zunehmend, dass die Erde selbst ein dynamisches
System ist, das sich beständig verändert, wo sich
ganze Kontinente bilden, verschieben, verformen; wo
Vulkanismus stattfindet, Erosion, Klimaänderungen, und
vieles mehr. Erst durch die geologische Sehweise konnte
man nicht nur verschiedene Zustände der Erde entlang
einem definierten Zeitmaß identifizieren, sondern damit
dann auch Veränderungen in der Zeit’ sichtbar machen.
Dieses geologische Wissen vorausgesetzt, besteht
plötzlich die Möglichkeit, ein Material/ Artefakt einer
erdgeschichtlichen Phase, einem Zeitpunkt in einem
Veränderungsprozess, zuzuordnen. Die Geologie hat – mittlerweile unterstützt durch viele Spezialgebiete, wie z.B. auch die Klimatologie (Siehe:
[WD17n]) – unter anderem eine zeitliche Abfolge von
Vulkanausbrüchen in den verschiedenen Regionen
der Erde identifizieren können und auch das sich
verändernde Klima.
So spricht man in der Klimatologie von sogenannten
Eiszeitaltern’ (Siehe: [WD17d]). In der schwachen
Version einer Definition von Eiszeitalter geht man davon
aus, dass mindestens eine Polkappe vereist ist. Die
letzte Eiszeit dieser Art fand statt um -33.5 Mio Jahren.
In der starken Version geht man davon aus, dass beide
Polkappen vereist sind. Die letzte Eiszeit dieser Art
begann um ca. -2.7 Mio Jahren und hält bis heute
an. In dieser Zeit gab es unterschiedliche Kalt- und
Warm-Phasen. Seit ca. -1 Mio Jahren haben sich 6
mal Kaltzeiten wiederholt: ca. -0.9 Mio, -0.77 Mio, -0.6
Mio, -0.48 Mio, -0.35 Mio, -12.000 (siehe: [WD17o],
[Rot00]:SS.173ff ).
Ein anderer starker Faktor, der das Klima
beeinflussen kann, sind Supervulkanausbrüche
(Siehe: [WD17w]). Hier eine Zusammenstellung
von Eiszeitaltern mit Kaltphasen in Kombination mit
den Supervulkanausbrüchen sofern sie das frühe
Ausbreitungsgebiet von homo und homo sapiens berührt
haben (wobei auch andere große Ausbrüche sich
weltweit auswirken konnten)(man beachte, dass die
Zeitangaben mit großen Unschärfen versehen sind):
Eiszeit: ab ca. -2.7 Mio Jahren
Vulkan:-1 Mio Äthiopien
Vulkan: -788.000 Indonesien
Kaltzeit: ca. -0.77 Mio Jahren
Kaltzeit: ca. -0.6 Mio Jahren
Vulkan: -500.000 (+/- 60.000) Äthiopien
Kaltzeit: ca. -0.48 Mio Jahren
Vulkan: -374.000 Italien
Kaltzeit: ca. -0.35 Mio Jahren
Vulkan:-161.000 Griechenland
Vulkan: -74.000 Indonesien
Vulkan:-50.000 Italien
Vulkan:-39.000 Italien
Kaltzeit: ca. -12.000
Bei der Entstehung von Eiszeiten spielen eine Vielzahl
von Faktoren eine Rolle, die ineinandergreifen. Sofern
es sich um periodische Faktoren handelt, kann sich dies
auf den Periodencharakter von Kalt- und Warmzeiten
auswirken (siehe: [WD17o], [Rot00]:SS.173ff ). Die globale Erwärmung, die
aktuell beklagt wird, ist ein Ereignis innerhalb eines noch
existierenden Eiszeitalters. Insofern ist die Erwärmung
eigentlich keine Anomalie, sondern eher die Rückkehr
zum ’Normalzustand’ ohne Eiszeitalter. Wobei sich
natürlich die Frage stellt, welcher Zustand der Erde ist
eigentlich ’normal’? Kosmologisch betrachtet – und darin
eingebettet die Wissenschaften von der Erde – wird
die Erde in einem Zustand enden, der nach heutigem
Wissen absolut lebensfeindlich sein wird (siehe: [WD17p],
[WE17b], [WE17c]). Für die Erde ist dieser Zustand
normal’, weil es dem physikalischen Gang der Dinge
entspricht, aus Sicht der biologischen Lebensformen
ist dies natürlich überhaupt nicht ’normal’, es ist ganz
und gar ’fatal’.
Insofern wird hier schon deutlich, dass
die innere Logik des Phänomens ‚biologisches Leben‘
nicht automatisch kongruent ist mit einem aktuellen
Lebensraum. Das Phänomen des biologischen Lebens
manifestiert einen Anspruch auf Geltung, für den
es im Licht der physikalischen Kosmologie keinen
natürlichen’ Ort gibt. Das biologische Leben erscheint
von daher als eine Art ’Widerspruch’ zum bekannten
physikalischen Universum, obgleich es das physikalische
Universum ist, das das biologische Leben mit ermöglicht.
V. DEUTUNGEN 3: ENTWICKLUNG VON KOMPLEXITÄT
Wenn man so weit vorgestoßen ist, dass man
Materialien/ Artefakte auf einer Zeitachse anordnen kann,
dann kann man auch der Frage nachgehen, welche
möglichen Veränderungen sich entlang solch einer
Zeitachse beobachten lassen: Bleibt alles Gleich? Gibt
es Änderungen? Wie lassen sich diese Veränderungen
klassifizieren: werden die beobachtbaren Phänomene
einfacher’ oder ’komplexer’?
Um solche eine Klassifikation in ’einfach’ oder
komplex’ vorzunehmen, braucht man klare Kriterien für
diese Begriffe. Aktuell gibt es aber keine einheitliche, in
allen Disziplinen akzeptierte Definition von ’Komplexität’.
In der Informatik wird ein Phänomen relativ zu
einem vorausgesetzten Begriff eines ’Automaten’ als
komplex’ charakterisiert: je nachdem wie viel Zeit
solch ein Automat zur Berechnung eines Phänomens
benötigt oder wie viel Speicherplatz, wird ein Phänomen
als mehr oder weniger ’komplex’ eingestuft (Siehe
dazu: [GJ79]). Dieser vorausgesetzte Automat ist eine
sogenannte ’Turingmaschine’. Dieses Konzept entstand
in der Grundlagendiskussion der modernen Mathematik
um die Wende vom 19. zum 20.Jahrhundert, als sich
die Mathematiker (und Logiker) darüber stritten, unter
welchen Bedingungen ein mathematischer Beweis
für einen Menschen (!) als ’nachvollziehbar’ gelten
kann. Nach gut 30 Jahren heftigster Diskussionen fand
man mehrere mathematische Konzepte, die sich als
äquivalent erwiesen. Eines davon ist das Konzept der
Turingmaschine, und dieses gilt als das ’einfachste’
Konzept von allen, das sich seit 1936/7 bisher in
allen Widerlegungsversuchen als stabil erwiesen hat.
Dies ist zwar selbst kein unwiderleglicher logischer
Beweis, aber ein empirisches Faktum, was alle Experten
bislang glauben lässt, dass mit diesem Konzept eine
zentrale Eigenschaft des menschlichen Denkens
eine konzeptuelle Entsprechung gefunden hat, die
sich formal und empirische experimentell überprüfen
lässt. So, wie die Physiker zum Messen Standards
entwickelt haben wie das ’Kilogramm’, das ’Meter’
oder die ’Sekunde’, so haben die Informatiker zum
Messen der ’Komplexität’ eines Phänomens relativ zur
(menschlichen) Erkenntnisfähigkeit die ’Turingmaschine’
(samt all ihren äquivalenten Konzepten) gefunden. Der
Vorteil dieser Definition von Komplexität ist, dass man
über das zu klassifizierende Phänomen vorab nahezu
nichts wissen muss. Darüber hinaus macht es Sinn, das
menschliche Erkennen als Bezugspunkt zu wählen, da
die Frage der Komplexität jenseits des menschlichen
Erkennens keinen wirklichen Ort hat.
Zurück zum Ausgangspunkt, ob sich im ’Gang der
Dinge’ auf der Erde Phänomene erkennen lassen,
die ’im Lauf der Zeit’ an Komplexität zunehmen,
deutet sich Folgendes an: es scheint unbestritten,
dass die Beschreibung einer biologischen ’Zelle’
(siehe: [AJL+15]) einen erheblich größeren Aufwand
bedeutet als die Beschreibung eines einzelnen Moleküls.
Zellen bestehen aus Milliarden von Molekülen, die
in vielfältigsten funktionellen Zusammenhängen
miteinander wechselwirken. Der Übergang von einzelnen
Molekülen zu biologischen Zellen erscheint von daher
gewaltig, und es ist sicher kein Zufall, dass es bis heute
kein allgemein akzeptiertes Modell gibt, das diesen
Übergang vollständig und befriedigend beschreiben
kann.
Für den weiteren Verlauf der biologischen Evolution
gibt es zahllose Phänomene, bei denen eine Vielzahl
von Faktoren darauf hindeuten, dass es sich um eine
Zunahme von Komplexität’ im Vergleich zu einer
einzelnen Zelle handelt, wenngleich manche dieser
Komplexitäts-Zunahmen’ Milliarden oder hunderte von
Millionen Jahre gebraucht haben. Im Fall der Entwicklung
zum homo sapiens ab ca. -80 Millionen Jahre gibt es
auch solche Phänomene, die sich aber immer weniger
nur alleine im Substrat selbst, also im Körperbau
und im Gehirnbau, festmachen lassen, sondern wo
das ’Verhalten’ der Lebewesen ein Indikator ist für
immer komplexere Wechselwirkungen zwischen den
Lebewesen und ihrer Umwelt.
Der Körper des homo sapiens selbst umfasst ca.
37 Billionen (10^12) Körperzellen, dazu im Innern des
Körpers geschätzte ca. 100 Billionen Bakterien, und
zusätzlich auf der Körperoberfläche ca. 224 Milliarden
Bakterien (siehe dazu [Keg15]). Diese ca. 137 Billionen
Zellen entsprechen etwa 437 Galaxien im Format
der Milchstraße. Während Menschen beim Anblick
des Sternenhimmels zum Staunen neigen, bis hin
zu einer gewissen Ergriffenheit über die Größe (und
Schönheit) dieses Phänomens, nehmen wir einen
anderen menschlichen Körper kaum noch wahr (falls
er sich nicht irgendwie auffällig ’inszeniert’). Dabei
ist der menschliche Körper nicht nur 437 mal größer in seiner Komplexität
als die Milchstraße, sondern jede einzelne Zelle ist
ein autonomes Individuum, das mit den anderen auf
vielfältigste Weise interagiert und kommuniziert. So kann
eine einzelne Gehirnzelle bis zu 100.000 Verbindungen
zu anderen Zellen haben. Körperzellen können über
elektrische oder chemische Signale mit vielen Milliarden
anderer Zellen kommunizieren und sie beeinflussen.
Bakterien im Darm können über chemische Prozesse
Teile des Gehirns beeinflussen, das wiederum aufgrund dieser Signale Teile des
Körpers beeinflusst. Und vieles mehr. Obgleich
die Erfolge der modernen Wissenschaften in den letzten
20 Jahren geradezu atemberaubend waren, stehen wir
in der Erkenntnis der Komplexität des menschlichen
Körpers noch weitgehend am Anfang. Niemand hat
bislang eine umfassende, zusammenhängende Theorie.
Dazu kommen noch die vielen immer komplexer
werden Muster, die sich aus dem Verhalten von
Menschen (und der Natur) ergeben. Zusätzlich wird das Ganze
stark beeinflusst von modernen Technologi wie z.B. der
Digitalisierung.
VI. DEUTUNGEN4: SELBSTREFERENZ: CHANCE UND
RISIKO
Ist man also zur Erkenntnis einer Zunahme an
Komplexität vorgestoßen, gerät das Erkennen vermehrt
in einen gefährlichen Zustand. Das Erkennen von
Zunahmen an Komplexität setzt – nach heutigem
Wissensstand – symbolisch repräsentierte ’Modelle’
voraus, ’Theorien’, mittels deren das menschliche
(und auch das maschinelle) Denken Eigenschaften
und deren Anordnung samt möglichen Veränderungen
repräsentieren’. Sobald ein solches Modell vorliegt, kann
man damit die beobachteten Phänomene ’klassifizieren’
und in ’Abfolgen’ einordnen. Die ’Übereinstimmung’
von Modell und Phänomen erzeugt psychologisch ein
befriedigendes’ Gefühl. Und praktisch ergibt sich daraus
meist die Möglichkeit, zu ’planen’ und Zustände ’voraus
zu sagen’.
Je komplexer solche Modelle werden, um so größer
ist aber auch die Gefahr, dass man nicht mehr so leicht
erkennen kann, wann diese Modelle ’falsch’ sind. Solche
Modelle stellen Zusammenhänge (im Kopf oder in der
Maschine) her, die dann vom Kopf in die Wirklichkeit
außerhalb des Körpers ’hinein gesehen’ werden, und
mögliche Alternativen oder kleine Abweichungen können
nicht mehr so ohne weiteres wahrgenommen werden.
Dann hat sich in den Köpfen der Menschen ein bestimmtes
Bild der Wirklichkeit ’festgesetzt’, das auf Dauer
fatale Folgen haben kann. In der Geschichte der empirischen
Wissenschaften kann man diese Prozesse mit
zahlreichen Beispielen nachvollziehen (siehe den Klassiker:
[Kuh62]). Dies bedeutet, je umfassender Modelle
des Erkennens werden, um so schwieriger wird es auf
Dauer – zumindest für das aktuelle menschliche Gehirn
das ’Zutreffen’ oder ’Nicht-Zutreffen’ dieser Modelle
zu kontrollieren.
Nachdem mit dem Gödelschen ’Unentscheidbarkeitstheorem’
schon Grenzen des mathematischen Beweisens sichtbar wurden (Siehe: [WD17q]),
was dann mit der Heisenbergschen ’Unschärferelation’
(Siehe: [WD17j]) auf das empirischen Messen erweitert
wurde, kann es sein, dass das aktuelle menschliche
Gehirn eine natürliche Schranke für die Komplexität
möglicher Erklärungsmodelle bereit hält, die unserem
aktuellen Erkennen Grenzen setzt (Grenzen des Erkennens
werden im Alltag in der Regel schon weit vorher
durch psychologische und andere Besonderheiten des
Menschen geschaffen).
VII. PERIODISIERUNGEN: BIS HOMO SAPIENS
Wie schon angedeutet, ist das Vornehmen einer
Periodisierung ein Stück willkürlich. Autor cagent hat
den Zeitpunkt der Aufspaltung der Primaten um etwa
-80 Mio Jahren vor dem Jahr 0 gewählt. Dabei gilt
generell, dass solche Zeitangaben nur Näherungen sind,
da die zugehörigen Wandlungsprozesse sich immer als
Prozess über viele Millionen Jahre erstrecken (später
dann allerdings immer schneller).
Bei der Datierung von Artefakten (primär
Knochenfunden, dazu dann alle weiteren Faktoren,
die helfen können, den zeitlichen Kontext zu fixieren),
gibt es einmal den Ansatzpunkt über die äußere und
materielle Beschaffenheit der Artefakte, dann aber
auch – im Falle biologischer Lebensformen – den
Ansatzpunkt über die genetischen Strukturen und
deren Umformungslogik. Über die Genetik kann man
Ähnlichkeiten (Distanzen in einem Merkmalsraum)
zwischen Erbanlagen feststellen sowie eine ungefähre
Zeit berechnen, wie lange es gebraucht hat, um von
einer Erbanlage über genetische Umformungen zu
einer anderen Erbanlage zu kommen. Diese genetisch
basierten Modellrechnungen zu angenommenen Zeiten
sind noch nicht sehr genau, können aber helfen,
die Materie- und Formen-basierten Zeitangaben zu
ergänzen.
Ordnung: Primates (Siehe: [SWW13]:Kap.5.2)
(Aufteilung ab ca. -80 Mio) –->Strepsirrhini (Lorisi-,
Chiromyi-, Lemuriformes) und Haplorhini (Tarsier,
Neu- und Altweltaffen (einschließlich Menschen))
(Siehe: [SWW13]:S.428,S.432, S.435 [WE17l],
[WD17r])
Unterordnung: Haplorrhini (Aufteilung ab ca. -60
Mio) (Siehe: [WE17l]) –->Tarsiiformes und Simiiformes
Nebenordnung: Simiiformes (Aufteilung ab ca. –
42.6 Mio) -–>Platyrrhini (Neuwelt- oder Breitnasenaffen)
und Catarrhini (Altwelt- oder Schmalnasenaffen)
(Siehe: Siehe: [SWW13]:S.428, [WE17l])
Teilordnung: Catarrhini (Altwelt- oder Schmalnasenaffen)
(Aufteilung ab ca. -29/-25 Mio) -–>Cercopithecoidea
(Geschwänzte Altweltaffen) und Hominoidea
(Menschenartige) (Siehe: Siehe: [WE17l] und
[WD17r])
Überfamilie: Hominoidea (Menschenartige)
(Aufteilung ab ca. -20 Mio/ -15 Mio) –>Hylobatidae
(Gibbons)und Hominidae (Große Menschenaffen
und Menschen) (Siehe: [WD17r])
Aufspaltung der Menschenaffen (Hominidae) in die
asiatische und afrikanische Linie (ca. -11 Mio)
(Siehe: [WD17r])
Familie: Hominidae (Menschenaffen)(Aufteilung ab
ca. -15Mio/-13 Mio in Afrika) –>Ponginae (Orang-
Utans) und Homininae (Siehe: [WD17r])
Unterfamilie: Homininae
Aufteilung der Homininae (ab ca. -9 Mio/ -8 Mio) –>
Tribus: Gorillini und Hominini (Siehe: [WE17d])
Aufteilung der Hominini (ab ca. -6.6/-4.2 Mio)
(Siehe: [SWW13]:S.435, [WE17d]) -–>Pan
(Schimpansen) und Homo (Die Lebensform
Panina bildet einen Unterstamm zum
Stamm ’homini’. Für die Trennung zwischen
Schimpansen (Pan) und Menschen (Homo) wird
ein komplexer Trennungsprozess angenommen,
der viele Millionen Jahre gedauert hat. Aktuelle
Schätzungen variieren zwischen ca. -12 Mio und
-6-8 Mio Jahren (Siehe: [WE17a])
Gattung: Orrorin tugenensis (ab ca. -6.2 bis
ca. -5.65 Mio) (Siehe: [WD17t])
Gattung: Ardipithecus (ab ca. -5.7 Mio bis ca.
-4.4 Mio) (Siehe: [WD17b])
Gattung: Australopithecus anamensis (ab
ca. -4.2 Mio bis ca. -3.9 Mio) (Siehe:
[SWW13]:S.475f)
Gattung: Australopithecus (ab ca. -4 Mio bis
ca. -2/-1.4 Mio) (Siehe: [SWW13]:S.475f)
Gattung: Australopithecus afarensis (ab
ca. -3.5 Mio bis ca. -3 Mio) (Siehe:
[SWW13]:S.476)
Gattung: Kenyanthropus platyops (ab ca. –
3.5/ -3.3 Mio) (Siehe: [WD17m]) Kann
möglicherweise auch dem Australopithecus
zugerechnet werden (Siehe: [SWW13]:S.475,
479).
Gattung: Australopithecus africanus (ab
ca. -3.2 Mio bis ca. -2.5 Mio) (Siehe:
[SWW13]:S.477)
Gattung: Paranthropus (Australopithecus)
(ab ca. -2.7 Mio) (Siehe: [WE17j]).
Kann möglicherweise auch dem
Australopithecus zugerechnet werden (Siehe:
[SWW13]:S.475).
Spezies/ Art: Paranthropus (Australopithecus)
aethiopicus (ab ca. -2.6 Mio bis ca. -2.3
Mio) (Siehe: [SWW13]:S.478)
Spezies/ Art: Paranthropus (Australopithecus)
boisei (ab ca. -2.3 Mio bis ca. -1.4 Mio)
(Siehe: [SWW13]:S.478). Mit dem Australopithecus
boisei starb der Australopithecus
vermutlich aus.
Spezies/ Art: Paranthropus (Australopithecus)
robustus (ab ca. -1.8 Mio bis ca. -1.5
Mio) (Siehe: [SWW13]:S.478)
Gattung: Homo (ab ca. -2.5/ -2.0 Mio).
Im allgemeinen ist es schwierig, sehr klare
Einteilungen bei den vielfältigen Funden
vorzunehmen. Deswegen gibt es bei der
Zuordnung der Funde zu bestimmten Mustern
unterschiedliche Hypothesen verschiedener
Forscher. Drei dieser Hypothesen seien hier
explizit genannt:
Kontinuitäts-Hypothese: In dieser Hypothese
wird angenommen, dass es vom
homo ergaster aus viele unterschiedliche
Entwicklungszweige gegeben hat, die
aber letztlich alle zum homo sapiens
geführt haben. Die Vielfalt der Formen
in den Funden reflektiert also so eine
genetische Variabilität.
Multiregionen-Hypothese: In dieser Hypothese
wird angenommen, dass sich –
ausgehend vom homo ergaster – regional
ganz unterschiedliche Formen ausgebildet
haben, die dann – bis auf den homo sapiens
mit der Zeit ausgestorben sind
Out-of-Africa Hypothese: Neben
früheren Auswanderungen aus Afrika
geht es in dieser Hypothese darum, dass
sich nach allen neuesten Untersuchungen
sagen lässt, dass alle heute lebenden
Menschen genetisch zurückgehen auf
den homo sapiens, der ca. um -100.000
Jahren von Afrika aus kommend nach und
nach alle Erdteile besiedelt hat (Siehe:
[SWW13]:S.488ff, 499).
Natürlich ist auch eine Kombination der ersten
beiden Hypothesen möglich (und wahrscheinlich),
da es zwischen den verschiedenen Formen
immer wieder Vermischungen geben
konnte.
Spezies/ Art: Homo rudolfensis (von
ca. -2.4 bis ca. -1.8 Mio) (Siehe:
[SWW13]:S.481)
Spezies/ Art: Homo habilis (von ca. -2.4 Mio bis ca. 1.65 Mio). Erste Art der Gattung Homo. Benutzte Steinwerkzeuge (Oldowan Kultur). Diese Artefakte sind
nachweisbar für -2.5 bis -700.000 (Siehe: [SWW13]:S.480)
Gattung: Australopithecus sediba (um ca.
-2 Mio) (Siehe: [SWW13]:S.477)
Spezies/ Art: Homo gautengensis (von ca.
-1.9 Mio bis ca. -0.6 Mio)(Südafrika) (Siehe:
[WE17h])
Spezies/ Art: Homo ergaster (von ca. -1.9
Mio bis ca. -1.0 Mio) Werkzeuggebrauch
wahrscheinlich, ebenso die Nutzung von
Feuer (Lagerplätze mit Hinweisen um ca.
-1.6 Mio). Stellung zu homo erectus unklar.
(Siehe: [SWW13]:S.482f) Funde in
Nordafrika (ca. -1.8 Mio), Südspanien (ca. –
1.7-1.6 Mio und -1 Mio), Italien (ca. -1 Mio),
Israel (ca. -2 Mio), Georgien (ca. -1.8 bis –
1.7 Mio) und China (ca. -1.0 Mio) zeigen,
dass homo ergaster sich schon sehr früh
aus Afrika heraus bewegt hat.
Spezies/ Art: Homo erectus (Siehe:
[WE17f]) (ab ca. -1.9 Mio bis ca. -85.000/
-56.000); entwickelte sich vor allem in
Asien (China, Java…), möglicherweise
hervorgegangen aus dem homo ergaster.
Ist fas zeitgleich zu homo ergaster in Afrika
nachweisbar. Würde voraussetzen, dass
homo ergaster in ca. 15.000 Jahren den
Weg von Afrika nach Asien gefunden hat.
(Siehe: [SWW13]:S.484-487)
Spezies/ Art: Homo antecessor (Siehe:
[WE17e]) (von ca. -1.2 Mio bis –
800.000). Hauptsächlich Funde in
Nordafrika und Südspanien. Wird zur
ersten Auswanderungswelle ’Out of Africa’
gerechnet, die nach Europa und Asien kam.
Letzte Klarheit fehlt noch. Es scheint viele
Wechselwirkungen zwischen h.ergaster,
h.erectus, h.antecessor, h.heidelbergensis,
h.rhodesiensis, h.neanderthalensis sowie
h.sapiens gegeben zu haben. (Siehe:
[SWW13]:S.489)
Spezies/ Art ?: Homo cepranensis
(Datierung zwischen ca. -880.000 bis
ca.-440.000); (Siehe: [WD17k]) noch keine
klare Einordnung (siehe Anmerkungen zu
h.antecessor.)
Spezies/ Art: Homo heidelbergensis
(Siehe: [WD17l]) (von ca. -600.000 bis
-200.000). Überwiegend in Europa; es
gibt viele Ähnlichkeiten mit Funden
außerhalb von Europa in Afrika, Indien,
China und Indonesien, z.B. Ähnlichkeiten
zu homo rhodesiensis. Steinwerkzeuge,
weit entwickelte Speere, Rundbauten,
Feuerstellen, evtl. auch Kultstätten. (Siehe:
[SWW13]:SS.490-493).
Spezies/ Art: Homo rhodesiensis (Siehe:
[WE17i]) (von ca.-300.000 bis ca. –
125.000)(Ost- und Nord-Afrika, speziell
Zambia)
Spezies/ Art: Homo neanderthalensis
(ab ca. -250.000 bis ca. -33.000). Frühe
Formen und späte Formen. Genetische
Eigenentwicklung seit ca. -350.000/ -400.000. Schwerpunkt Europa, aber Ausdehnung von Portugal, Spanien, bis
Wales, Frankreich, England, Deutschland,
Kroatien, schwarzes Meer, Nordirak,
Zentralasien, Syrien, Israel . Meist nie
mehr als insgesamt einige 10.000 in ganz
Europa. In der Schlussphase parallel
mit homo sapiens für ca. 50.000 Jahre.
Es kam zu geringfügigen genetischen
Beeinflussungen. Eine eigenständige
hohe Werkzeugkultur, die aus der
Steinwerkzeugkultur der Acheul´een ca.
-200.000 hervorging und bis -40.000
nachweisbar ist. Neben Steinwerkzeugen
auch Schmuck. Sie pflegten Kranke,
bestatteten ihre Toten. Die differenzierte
Sozialstruktur, das gemeinsames Jagen,die
Werkzeugkultur, das großes Gehirn
sowie die Genbeschaffenheit lassen es
wahrscheinlich erscheinen, dass der
Neandertalerüber Sprache verfügte. Ein
besonders kalter Klimaschub um -50.000
verursachte einen starken Rückzug aus
West- und Mitteleuropa, der dann wieder
mit Einwanderer aus dem Osten gefüllt
wurde. Im Bereich Israels/ Palästina gab
es zwischen ca. -120.000 und -50.000
eine Koexistenz von Neandertaler und
homo sapiens. Was auch darauf hindeutet,
dass eine erste Auswanderungswelle von
h.sapiens schon um ca. -120.000/ -100.000
stattgefunden hatte, aber nur bis Israel
gekommen ist. Warum die Neandertaler
ausstarben ist unbekannt. homo sapiens
hat seine Population in Europa im Zeitraum
-55.000 und -35.000 etwa verzehnfacht.
(Siehe: [SWW13]:SS.493-498)
Spezies/ Art: Homo sapiens (ab ca. -190.000 bis heute); Wanderungsbewegungen aus Afrika heraus ab ca. -125.000
erster Vorstoß bis Arabien. Parallel gab
es eine kleine Auswanderung um -120.000
über das Niltal bis Palästina/Israel, die
aber keine weitere Expansion zeigte. Um
-70.000 von Arabien aus in den Süden des mittleren Ostens, um ca. -60.000/ -50.000 nach Neuguinea und
Australien. Vor ca. -50.000 bis -45.000 über
Kleinasien nach Südost-, Süd- und Westeuropa.
Um ca. -40.000 über Zentralasien
bis Nordchina. Von Asien aus um -19.000/ -15.000 Einwanderung in Nordamerika über
die Beringstraße, bis nach Südamerika um
ca. -13.000. Es gibt aber auch die Hypothese,
dass Südamerika schon früher
(ca. -35.000 ?)über den Pazifik besiedelt
wurde. Die Gene der Indianer in Nord- und
Südamerika stimmen mit Menschen aus
Sibirien, Nordasien und Südasien überein.
Ab der Zeit -60.000/ -40.000 wird ein deutlicher
kultureller Entwicklungssprung beim
homo sapiens diagnostiziert, dessen Entwicklung
seitdem anhält und sich heute
noch erheblich beschleunigt. Felszeichnungen
ab ca. -40.000, Werkzeuge, Wohnungen,
Kleidung, Sprache.
Spezies/ Art: Homo floresiensis
(Siehe: [WE17g])(ca. um -38.000 bis -12.000)(Insel Flores, Indonesien). Benutze Steinwerkzeuge, beherrschte das Feuer, Kleinwüchsig, entwickeltes Gehirn. Insel
war seit mindestens -800.000 besiedelt.
Vorfahren könnten seit -1 Mio dort gewesen
sein. (Siehe: [SWW13]:S.487f)
Spezies/ Art: Denisovaner (noch kein
wissenschaftlicher Name vereinbart)(um
-40.000) (Siehe: [WD17c]), Funde im
Altai Gebirge (Süd-Sibierien); es gibt
Funde auf den Pilippinen, in Indonesien,
Neuguinea, Australien, auf einigen Inseln
des südlichen Pazifik, mit den Genen der
Denisovaner. Herkunft möglicherweise von
h.heidelbergensis. Es gab genetischen
Austausch mit h.sapiens. (Siehe:
[SWW13]:S.498)
VIII. WAS FOLGT AUS ALLEDEM?
Jeder, der diesen Text bis hierher gelesen haben
sollte, wird sich unwillkürlich fragen: Ja und, was heißt
das jetzt? Was folgt aus Alledem?
In der Tat ist dieser Text noch nicht abgeschlossen.
Der Text stellt allerdings eine notwendige
Vorüberlegung dar zu der – hoffentlich – weiter führenden
Frage nach der Besonderheit des homo sapiens als
Erfinder und Nutzer von intelligenten Maschinen.
Während die abschließende Definition von potentiell
intelligenten Maschinen mit dem mathematischen
Konzept der Turingmaschine im Prinzip vollständig
vorliegt, erscheint die Frage, wer oder was denn der
homo sapiens ist, je länger umso weniger klar. Mit
jedem Jahr empirischer Forschung (in allen Bereichen)
enthüllt sich scheibchenweise eine immer unfassbarere
Komplexität vor unseren Augen, die ein Verständnis
des homo sapiens samt seinem gesamten biologischen
Kontext eher in immer weitere Ferne zu rücken scheint.
Konnten die großen Offenbarungsreligionen über
viele Jahrhunderte irgendwie glauben, dass sie
eigentlich wissen, wer der Mensch ist (obwohl sie
nahezu nichts wussten), ist uns dies heute – wenn wir
die Wissenschaften ernst nehmen – immer weniger
möglich. Wenn im jüdisch-christlichen Glauben der
Mensch bildhaft als ’Ebenbild Gottes’ bezeichnet werden
konnte und damit – zumindest indirekt – angesichts
dieser unfassbaren Erhabenheit eine Art Schauer über
den Rücken jagen konnte (ohne dass zu dieser Zeit
verstehbar war, worin denn die Besonderheit genau
besteht), so werden wir in den letzten Jahren durch
immer tiefere Einblicke in die Abgründe der Komplexität
von Leben und Lebensprozessen in einem scheinbar
lebensfremden physikalischen Universum provoziert,
herausgefordert, und Gelegenheit zum Staunen gäbe es
allerdings genug.
In diesem anwachsenden Wissen um
unser Nichtwissen begegnen wir einer schwer fassbaren
Größe, die wir salopp ’biologisches Leben’ nennen, die
aber alles übersteigt, dessen wir denkerisch fähig sind.
Eine der vielen Paradoxien des Universums ist
genau dieses Faktum: in einem scheinbar ’leblosen’
physikalischen Universum ’zeigen sich’ materielle
Strukturen, die Eigenschaften besitzen, die es strikt
physikalisch eigentlich nicht geben dürfte, und die sich
in einer Weise verhalten, die das ganze Universum
prinzipiell zu einem ’Un-Ort’ machen: das bekannte
physikalische Universum ist lebensfeindlich, das
biologische Leben will aber genau das Gegenteil:
es will leben. Wie kann das zusammen gehen? Warum
kann ein scheinbar lebloses physikalisches Universum
Überhaupt der Ort sein, wo Leben entsteht, Leben
stattfinden will, Leben sich schrittweise dem inneren
Code des ganzen Universums bemächtigt?
In weiteren Beiträgen wird es darum gehen, dieses
Phänomen ’biologisches Leben’ weiter zu erhellen,
und zu zeigen, wie das biologische Leben sich mit
Hilfe intelligenter Maschinen nicht nur generell weiter
entwickeln wird, sondern diesen Prozess noch erheblich
beschleunigen kann. Es gilt hier die Arbeitshypothese,
dass die intelligenten Maschinen ein konsequentes
Produkt der biologischen Evolution sind und dass es
gerade dieser Kontext ist, der dieser Technologie ihre
eigentliche Zukunftsfähigkeit verleiht.
Die heutigen Tendenzen, die Technologie vom biologischen Leben
zu isolieren, sie in dieser Isolation zugleich in geradezu
religiöser Manier zu Überhöhen, wird die evolutionär
induzierte Entwicklung dieser Technologie eher
behindern, und damit auch das vitale Element der
biologischen Evolution, den homo sapiens.
Der homo sapiens ist kein Individuum, er wird
repräsentiert durch eine Population, die wiederum nur
Teil einer umfassenderen Population von Lebensformen
ist, die sich gegenseitig am und im Leben halten. Es wird
wichtig sein, dass der homo sapiens diese Arbeitsteilung
versteht, bevor er mit seiner wachsenden Aufbau- und
Zerstörungskraft das biologische Universum zu stark
beschädigt hat.
Zum aktuellen Zeitpunkt kann niemand mit Gewissheit
sagen, ob das alles irgendeinen ’Sinn’ besitzt, d.h. ob es
in all den Abläufen in der Zukunft eine Menge möglicher
Zielzustände gibt, die in irgendeinem Sinne als ’gut’/
’schön’/ ’erfüllend’ oder dergleichen bezeichnet werden
können. Genauso wenig kann aber irgend jemand zum
aktuellen Zeitpunkt mit Gewissheit einen solchen Sinn
ausschließen. Rein empirisch kann man schon heute
eine solche Menge an atemberaubenden Strukturen und
Zusammenhänge erfassen, die ’aus sich heraus’ ein
Exemplar der Gattung homo sapiens in ’Erstaunen’ und
’Begeisterung’ versetzen können; aber weder gibt es für
solch ein Erstaunen einen Zwang, eine Regel, ein Muss,
noch ist all dies ’zwingend’. Noch immer können wir
nicht ausschließen, dass dies alles nur ein Spiel ist,
eine gigantische kosmologische Gaukelei, oder – wie
es die physikalischen kosmologischen Theorien nahelegen
– in einem gigantischen Kollaps endet, aus der
möglicherweise wieder ein Universum entsteht, aber ein
anderes.
REFERENCES
[AJL+15] B. Alberts, A. Johnson, J. Lewis, D. Morgan, M. Raff,
K. Roberts, and P. Walter.Molecular Biology of the Cell.
Garland Science, Taylor & Francis Group, LLC, Abington
(UK) – New York, 6 edition, 2015.
[GJ79] Michael R. Garey and David S. Johnson.Computers and
Intractibility. A Guide to the Theory of NP.Completeness.
W.H. Freeman an Company, San Francisco (US), 1 edition,
1979.
[Keg15] Bernhard Kegel.Die Herrscher der Welt. DuMont, Köln (DE),
1 edition, 2015.
[Kuh62] Thonas S. Kuhn.The Structure of Scientific Revolutions.
University of Chicago Press, Chicago (US), 1 edition, 1962.
[Par15] Hermann Parzinger.DIE KINDER DES PROMETHEUS.
Geschichte der Menschheit vor der Erfindung der Schrift.
Wissenschaftliche Buchgesellschaft, Darmstadt (DE), 2 edition,
2015.
[Rot00] Peter Rothe.Erdgeschichte. Spurensuche im Gestein. Wissenschaftliche
Buchgesellschaft, Darmstaadt (DE), 1 edition, 2000.
[SWW13] Volker Storch, Ulrich Welsch, and Michael Wink, editors.
Evolutionsbiologie. Springer-Verlag, Berlin – Heidelberg, 3 edition, 2013.
[WD17a] Wikipedia-DE. Archäologie. 2017.
[WD17b] Wikipedia-DE. Ardipithecus. 2017.
[WD17c] Wikipedia-DE. Denisova-mensch. 2017.
[WD17d] Wikipedia-DE. Eiszeitalter. 2017.
[WD17e] Wikipedia-DE. Evolutionsbiologie. 2017.
[WD17f] Wikipedia-DE. Genetik. 2017.
[WD17g] Wikipedia-DE. Geologie. 2017.
[WD17h] Wikipedia-DE. Geschichte der geologie. 2017.
Im Spannungsfeld zwischen intelligenten Maschinen und dem Menschenentwickelt sich das Bild vom Menschen in jede Richtung als atemberaubend. Hier eine kurze Werkstattnotiz beim Versuch, dies alles weiter zu denken. Hier der Punkt ’Wahrheit und Neues’.
II. KONTEXT
Seit einiger Zeit fokussieren sich die Themen bei cagent ja auf die beiden Pole intelligente Maschinen einerseits und Menschenbild andererseits. Beides beeinflusst sich im täglichen Leben gegenseitig.
Während die Position der ’intelligenten Maschinen’ – trotz aller methodischen Probleme der aktuellen Künstlichen Intelligenz Forschung – letztlich leicht abgrenzbar und überschaubar ist [(1) Anmerkung: Im Grundsätzlichen, nicht was die schier unübersehbare Fülle der Publikationen betrifft, einschließlich der Software.], erweist sich dasThema Menschenbild als umso differenzierter und komplexer, je mehr man hinschaut.
Das eine Segment des Menschenbildes repräsentieren die neuen empirischen Erkenntnisse innerhalb der Disziplinen Psychologie, Biologie (inklusive Gehirnforschung), Molekularbiologie, und Astrobiologie. Ein anderes Segment repräsentieren die Wissenschaften zum Verhalten des Menschen in historisch-kultureller Sicht. Zur Kultur rechne ich hier auch Formen des Wirtschaftens (Ökonomie), Formen der Technologie, Formen politischer Strukturen, Formen des Rechts, usw.
Sowohl die empirischen Disziplinen haben unser Wissen um den Menschen als Teil des biologischen Lebens explodieren lassen, aber auch die historisch-kulturellen Erkenntnisse. Das Eigenschaftswort ’atemberaubend’ ist eigentlich noch eine Untertreibung für das Gesamtbild, das sich hier andeutet.
Was bislang aber nicht – noch nicht – stattfindet, das ist eine Verknüpfung der empirischen Erkenntnisse mit den historisch-kulturellen Einsichten. Für diese Trennung gibt es sicher viele Gründe, aber letztlich kann es keine wirkliche Rechtfertigung für diese anhaltende Spaltung des Denkens geben. Das historisch-kulturelle Phänomen mit dem homo sapiens als Kernakteur ist letztlich nur möglich und verstehbar unter Voraussetzung der empirisch erkannten Strukturen und – das wird mit dem Wort von der ’Koevolution’ bislang nur sehr schwach thematisiert – die im Historisch-Kulturellen auftretenden Phänomene sind nicht nur irgendwie ’Teile der biologischen Evolution’, sondern sie sind wesentliches Moment an dieser. Von daher erscheint jeder Versuch, von biologischer Evolution zu sprechen, ohne das Historisch-Kulturelle einzubeziehen, im Ansatz als ein methodischer Fehler.
In einem längeren Artikel für ein deutschlandweites Presseorgan hatte cagent versuchsweise das Verhältnis zwischen dem Konzept der ’Künstlichen Intelligenz’ und dem ’Glauben an Gott’ ausgelotet [(2) Anmerkung: Demnächst auch hier im Blog in einer erweiterten Fassung.] Der Begriff ’Glaube an Gott’ ist natürlich vom Ansatz her vieldeutig, vielschichtig, abhängig vom jeweiligen Betrachter, seinem Ort, seiner Zeit. In dem Beitrag hat cagent das Thema ’Glauben an Gott’ am Beispiel der jüdisch-christlichen Überlieferungsbasis, der Bibel, diskutiert [(3) Anmerkung: Beispiele für Übersetzungen sind einmal die deutsche ökumenische Einheitsübersetzung [BB81], die griechische Version des Alten Testamentes bekannt als Septuaginta (LXX) [Rah35], sowie eine Ausgabe in hebräischer Sprache [KKAE66]. Es gibt auch noch die berühmte lateinische Ausgabe bekannt als ’Vulgata’ [Tvv05] (Als online-Ausgabe hier http://www.wilbourhall.org/pdfs/vulgate.pdf).]
Da die Bibel selbst eine Art ’Überlieferungsmonster’ darstellt, das sich aus einer viele Jahrhunderte andauernden mündlichen Überlieferungsphase speist, die dann ca. zwischen -700 und +200 verschriftlicht wurde, um dann weitere Jahrhunderte zu brauchen, um zu fixierten Textsammlungen zu führen [(4) Anmerkung: Siehe dazu z.B. [ZO98].] konnte die Diskussion natürlich nur exemplarisch geführt werden. Dazu bot sich das erste Buch des alten Testaments an, das als Buch ’Genesis’ bekannt ist. In den ersten 11 Kapiteln trifft der Leser auf eine Textfolge, die offensichtlich vorschriftliche Traditionsquellen verarbeitet haben. Das Besondere an den Stoffen ist ihre globale Sicht: es geht um die Welt als ganze, um die Menschheit, um ein sehr ursprüngliches Verhältnis der Menschen zu einem X genannt ’Gott’, und diese Stoffe finden sich in ganz vielen Kulturen des mittleren Ostens, Afrikas, und Indiens. Mit großer Wahrscheinlichkeit wird weitere Forschung noch mehr Parallelen in noch vielen anderen Kulturen finden (oder hat sie bereits gefunden; cagent ist kein Spezialist für vergleichende Kulturgeschichte).
Was sich unter dem Strich in all diesen wunderbaren Zeugnissen menschlichen Handelns, Verstehens und Schreibens zeigt, das ist das Ringen des Menschen, seine jeweils aktuelle Sichten der Welt mit all der aufbrechenden Vielfalt des Lebens irgendwie zu ’versöhnen’. Dies führt zu der angekündigten Zwischenbemerkung.
II. WAHRHEIT UND NEUES
Im Zeitalter der Fake-News kann man den Eindruck gewinnen, dass ein Begriff wie Wahrheitsehr ausgehöhlt wirkt und von daher weder die Rolle von Wahrheit noch die mit der Wahrheit einhergehende Dramatik überhaupt wahrgenommen, geschweige denn erkannt wird.
Es gibt viele Gründe in der Gegenwart, warum selbst angestammte Bereiche der Wahrheit wie die empirischen Wissenschaften Erosionserscheinungen aufweisen; von anderen Bereichen ganz zu schweigen. Dennoch können all diese Verformungen und Entartungen nicht gänzlich darüber hinwegtäuschen, dass – selbst wenn traditionelle Wahrheits-Begriffe möglicherweise korrigiert, adjustiert werden müssen (im öffentlichen Bewusstsein) – die grundlegenden Sachverhalte der Übereinstimmung unseres virtuellen Denkens mit einer jenseits dieses Denkens unterstellten objektiven Wirklichkeit weiterhin von grundlegender Bedeutung und lebenswichtig sind.
Jenseits aller allgemein philosophischen und speziell wissenschaftsphilosophischen Überlegungen zu ’Wahrheit’ weiß jeder einzelne, dass er in seinem Alltag nicht weit kommt, wenn das, was er persönlich von der Welt zu wissen glaubt, nicht zutrifft. Nach dem Aufwachen folgen viele, viele Stunden von Verhaltensweisen, die sich beständig dadurch speisen, dass man Wissen über eine Welt hat, die sich in den konkreten Handlungen dann auch bestätigen. Das ist unser primärer, alltäglicher Wahrheitsbegriff: Es verhält sich im Handeln so, wie wir in unserem Denken annehmen.
Zu dieser Alltagserfahrung gehört auch, dass wir uns manchmal irren: wir haben im Kopf einen Termin, der aber z.B. Tage, Zeiten, Orte verwechselt. Wir wollen einen Gegenstand mitnehmen, und er ist nicht dort, wo wir ihn erinnern. Wir fahren einen Weg, und stellen plötzlich fest, wir sind an einem Ort, der nicht wirklich zu unserer Zielvorstellung passt; usw.
Alle diese Irrtumserfahrungen lassen uns aber nicht grundsätzlich an unserer Fähigkeit zweifeln, dass wir ein handlungstaugliches Bild von der Welt haben können. Dieses Bild, sofern es funktioniert, nennen wir wahr.
Von anderen Menschen erfahren wir gelegentlich, dass sie die Orientierung im Alltag verloren haben. Ärzte sagen uns, dass diese Menschen ’krank’ seien, dass ihre Psyche oder/ und ihr Gehirn beschädigt sei. Das haken wir dann ab als mögliche Störungen, die vorkommen können; das tangiert dann aber nicht unbedingt unsere eigene Überzeugung, dass wir Wahrheitsfähig sind.
Hier gibt es nun einen (natürlich gäbe es sehr viele) interessanten Punkt: wenn wir die Wahrheit über die Handlungstauglichkeitdefinieren, die eine Art von Übereinstimmung zwischen Wissen/ Denken und der erfahrbaren Welt (einschließlich des eigenen Körpers)beinhaltet, wie gehen wir dann mit Neuem um?
’Neues’ definiert sich ja gerade dadurch, dass es mit dem bisher Bekannten nichts oder nur wenig zu tun hat. Wirklich ’Neues’ lässt ein Stück Wirklichkeit aufbrechen, das wir so bislang nicht kennen.
Historisch und psychologisch können wir bei uns Menschen eine gewisse Tendenz erkennen, uns eher im Bekannten einzurichten, da dies überschaubar und berechenbar ist. Je mehr Vorteile ein Mensch aus einer bestimmten gegebenen Situation zieht, je mehr Sicherheit er mit ihr verbindet, umso weniger ist der Mensch geneigt, die Situation zu verändern oder sie zu verlassen. Je schlechter es Menschen geht, umso eher sind sie bereit, das Bekannte zu verlassen, denn es kann möglicherweise nur noch besser werden. Aber auch die Wissenschaft kennt solche Beharrungstendenzen. In allen Bereichen findet man eine große Zähigkeit, erworbene Anschauungen über Jahrhunderte zu tradieren, auch wenn schon längst klar ist, dass diese Anschauungen ’vorne und hinten’ nicht so wirklich passen. Im Grunde genommen ist die gesamte Geschichte eine Geschichte des Kampfeszwischen den beharrenden Anschauungen und den ’Abweichlern’ (politisch, moralisch, religiös, künstlerisch, …)
Wenn man sich dann klar macht, dass das biologische Leben (soweit wir es heute verstehen können) im innersten Kern einen Generator für Neues fest eingebaut hat, wenn wir wissen, wie jedes einzelne Lebewesen über Zeugung, Geburt, älter werden, Sterben kontinuierlichen Wandlungsprozessen unterworfen ist; wenn wir wissen, dass die Erde, auf der wir leben, beständig massiven Veränderungen unterliegt, dazu das Sonnensystem, unsere Heimatgalaxie, die Milchstraße, das ganze bekannte Universum, … dann müsste eigentlich klar sein, dass das Neue eigentlich der wichtigste Rohstoff des Wissens und des Handelns und aller kulturellen Systeme sein müsste. Genau das Gegenteil scheint aber bislang der Fall zu sein. Firmen kennen zwar das Problem der Innovation, um am Markt überleben zu können; im militärischen Bereich gibt es einen Innovationsdruck aufgrund unterstellter (oder auch realer) Konkurrenz um die Macht; die Unterhaltungsindustrie kommt nicht ohne Innovationen aus; und dennoch, die offizielle Kultur, die offiziellen Erziehungsprozesse sind nicht auf eine Kultur des Neuen ausgerichtet. Offizielle Literatur verdaut Vergangenheit, Gegenwart und Unmengen an subjektiven Gefühlen, nur in den kulturell eher immer noch geächteten Science- Fiction Werken blitzt Neues auf, Verarbeitung möglicher Zukunft, Auseinandersetzung zwischen Heute und Morgen, Auseinandersetzung zwischen Natur, Technik und Geist.
In einem vorausgehenden Eintrag hatte cagent über Offenbarung geschrieben, nicht als Kategorie der Religionen, sondern vorab zu allen Religionen als Grundkategorie des menschlichen In-Der-Welt-Seins. Das hier angesprochene Neue ist ein Aspekt dieser grundlegenden Kategorie der Offenbarung als Weise, wie wir Menschen uns in dieser Welt vorfinden. Wir sind in jedem Moment vollständig in jeder Hinsicht einer Wirklichkeit ausgesetzt, die uns in jeder Hinsicht übersteigt in ihren Möglichkeiten. Unser Körper ist Teil dieser vorfindlichen Wirklichkeit und wer kann behaupten, dass wir die 5-10 Billionen (10^12) Zellen eines einzelnen homo-sapiens-Körpers wirklich verstehen? Unser Gehirn ist Teil davon und wer kann schon behaupten, er verstehe sein eigenes Gehirn, geschweige denn sein eigenes Denken? Und dies ist ja nur ein winziger Bruchteil jener Wirklichkeit, in der wir uns vorfinden.
Wer das Neue scheut, ist im realen Leben noch nicht angekommen. Was aus all dem folgt, ist natürlich entsprechend offen. Das mag niemand, es sei denn …
QUELLEN
[BB81] Katholisches Bibelwerk and Deutsche Bibelgesellschaft. Die Heilige Schrift. Einheitsübersetzung. Verlag Katholisches Bibelwerk & Deutsche Bibelgesellschaft, Stuttgart, 1981.
[KKAE66] Rudolg Kittel, P. Kahle, A. Alt, and O. Eissfeldt. Biblia Hebraica. Würthembergische Bibelanstalt, Stuttgart, 7.Aufl., 1966.
[Rah35] Alfred Rahlfs. Septuaginta. Würthembergische Bibelanstalt, Stuttgart, 9.Aufl., 1935.
[Tvv05] Michaele Tvveedale, editor. BIBLIA SACRA JUXTA VULGATAM CLEMENTINAM. Bishops’ Conference of England and Wales, London (UK), Elektronische Ausgabe, 2005.
[ZO98] Erich Zenger et.al.. Einleitung in das Alte Testament. W.Kohlhammer, Stuttgart, 3.Aufl., 1998.
Einen Überblick über alle Blogeinträge von Autor cagent nach Titeln findet sich HIER.
Einen Überblick über alle Themenbereiche des Blogs findet sich HIER.
Das aktuelle Publikationsinteresse des Blogs findet sich HIER.
1. Aus Anlass eines neuen Autors, der sich aus eigener Initiative in den Diskurs in diesem Blog eingebracht hat, hier einige Bemerkungen, wie sich der Blog aus redaktioneller Hinsicht sieht.
BLICKRICHTUNG DES BLOGS
2. Die Blickrichtung des Blogs ist die der Philosophie auf das Spannungsfeld zwischen dem homo sapiens und der vom Menschen initiierten Kultur und Technik, speziell der Technologie der intelligenten Maschinen. Welche Zukunft hat der homo sapiens auf der Erde, im bekannten Universum, und speziell im Wechselspiel mit den intelligenten Maschinen? Wie müssen wir, die wir Exemplare der Lebensform homo sapiens sind, uns selbst sehen? Welche Bilder beschreiben uns angemessen, welche nicht?
EMPIRISCHE ERKENNTNISQUELLEN
3. Antworten auf diese Fragen bieten nahezu alle wissenschaftlichen Disziplinen, die es zur Zeit gibt. Allerdings ist eine wissenschaftliche Disziplin – wenn sie sich denn wirklich als empirische Wissenschaft versteht – rein methodisch an eine eingeschränkte Sicht auf die Wirklichkeit unter Anwendung ganz bestimmter Methoden gebunden. Dies hat viele Vorteile, aber auch Nachteile. Die Nachteile bestehen darin, dass die erfahrbare Welt als solche eine Einheit bildet, die in sich unfassbar verwoben ist. Die einzelnen Disziplinen können aber nur Fragmente liefern. Dies reicht heute immer weniger. Mit dem immer weiteren Voranschreiten der einzelnen Disziplinen brauchen wir immer dringender auch Blicke auf Zusammenhänge.
INTERDISZIPLINARITÄT IST EIN FAKE
4. Hier gibt es das Zauberwort von der Interdisziplinarität: verschiedene Disziplinen arbeiten gemeinsam an einer Problemstellung. Aus der Nähe betrachtet ist dies aber nur eine Scheinlösung. Wenn Vertreter aus mehreren Einzeldisziplinen A, B, C aufeinandertreffen, entsteht nicht automatisch eine integrierte Sicht V(A,B,C), in der von einem höheren Reflexionsniveau auf diese Einzeldisziplinen geschaut wird. In der Praxis gibt es erst einmal drei Sichten A, B, C, jeder redet auf den anderen ein und hofft, der andere versteht, was man sagt. Das funktioniert aber im Normalfall nicht. Es gibt viel Verwirrung und Frustration und man ist froh, wenn man wieder für sich alleine weiter arbeiten kann. Wenn es dann doch irgendwo leidlich funktioniert, dann nur deswegen, weil die Beteiligten über besonders gute empathische Fähigkeiten verfügen, sich besonders viel Zeit nehmen, die anderen Positionen zu verstehen, und wenigstens eine(r) dabei ist, der irgendwie übergeordnete Gesichtspunkte formulieren kann, ad hoc.
NORMIERTE VORGEHENSMODELLE
5. In der Industrie funktioniert dies nur dann, wenn sich alle auf ein gemeinsames Vorgehensmodell geeinigt haben, das auf allen Ebenen Vorgehensweisen und Ausdrucksmittel normiert hat. Diese Vorgehensmodelle (z.B. in der Art des Systems Engineerings im englischsprachigen Raum) funktionieren aber nur, wenn es Menschen gibt, die 20 – 30 Jahre Berufserfahrung haben, um die Methoden und Begrifflichkeiten zu verstehen, und selbst dann ist das gemeinsame Verständnis sehr fragil: die Verrechnung der komplexen Wirklichkeit in begrifflich normierte Modelle kann aus verschiedenen Gründen nicht funktionieren. Aber die Industrie hat hier in der Regel keine Wahl: sie muss liefern und kann sich nicht auf philosophische Dispute einlassen.
ALTERNATIVE BLOG
6. In diesem Blog ist das anders: der Blog muss nicht liefern. Wir leisten uns hier den Luxus, Fragen als Fragen zuzulassen, und wir erlauben uns, eine Suche zu starten, wenn gesucht werden muss. Die Erfahrung des Scheiterns ist mindestens so wertvoll wie scheinbare Lösungen. Hier muss keine herrschende Meinung bedient werden.
7. Hier geht es nicht um dumpfe Interdisziplinarität, sondern um eine offene philosophische Reflexion auf die Unterschiede der einzelnen Disziplinen und die Frage, wie man die verschiedenen Sichten zusammen bringen könnte. Zeitschriften für einzelwissenschaftliche Höchstleistungen gibt es genug. Hier geht es um die Reflexion auf die einzelwissenschaftliche Leistung und die Frage, wie stehen z.B. biologische, psychologische und soziologische Ergebnisse in einem Zusammenhang? Wie soll man den homo sapiens verstehen, der molekularbiologisch aus kleinen chemischen Maschinen, den Zellen besteht, die sich aber aus Molekülen erst entwickeln mussten, und dann eine wahnwitzige Entwicklungsgeschichte von 3.8 Mrd Jahren bis zu einer Lebensform, die u.a. über die Fähigkeit verfügt, Zeit wahrnehmen zu können, abstrakte Strukturen denken kann, das sich mittels banaler physikalischer Ereignisse (Schall) koordinieren kann, Kultur hervorbringt, Technik? Wie soll man die Fähigkeit des Denkens beschreiben, die neuronale Korrelate zu haben scheint, zugleich aber nur introspektiv direkt erfahrbar ist? Usw.
EUROPÄISCHES SCHISMA
8. Leider gab es in der Kulturgeschichte Europas eine folgenschwere Trennung der Art, dass sich die neu aufkommenden empirischen Wissenschaften in hunderten von Jahren von der Philosophie getrennt haben und auch umgekehrt, die Philosophie diese Trennung mit kultiviert hat, anstatt in den aufkommenden empirischen Wissenschaften die großartige Chance zu sehen, die ihre oft faktenleeren aber methodisch umfassenden Reflexionen unter Einbeziehung der empirischen Wissenschaften anzureichern. Leider gehört es bei vielen sogenannten Philosophen immer noch zum guten Ton, auf die empirischen Disziplinen als geistloses Treiben herab zu schauen; dabei übersehen die Philosophen, dass es genau ihr Job wäre, die fantastischen Ergebnisse der Einzeldisziplinen aufzugreifen, ‚beim Wort zu nehmen‘, und sie in leistungsfähige begriffliche Systeme einzuordnen, die in der Lage wären, diese Vielfalt in einer begründeten Einheit zum Leuchten zu bringen.
9. Die sogenannte Interdisziplinarität ist vor diesem Hintergrund ein andauerndes Ärgernis: es wird so getan, als ob das Zusammensperren von verschiedenen Experten in einen Raum automatisch eine begründete Zusammenschau liefern würde. Eine Unzahl von Forschungsprojekten mit EU-Geldern, in denen Interdisziplinarität erzwungen wird ohne dass man den methodischen und diskursiven Raum mit liefert, ohne dass die Beteiligten eine entsprechende Ausbildung haben, kann davon milliardenschwer künden.
ANDERE UNIVERSITÄTEN
10. Was wir bräuchten wären Universitäten, in denen jeder Studierende einer Einzelwissenschaft grundsätzlich auch lernt, wie man im Rahmen einer Wissenschaftsphilosophie das Vorgehen und das Reden einzelner Disziplinen in einen denkerisch begründeten Zusammenhang einordnen und bewerten kann. Dies würde voraussetzen, dass es Professoren gibt, die über diese Fähigkeiten verfügen und über Lehrpläne, in denen dies vorgesehen ist. Beides gibt es nicht. Der normale Professor an deutschen Universitäten hat von wissenschaftsphilosophischen Konzepten noch nie etwas gehört und aufgrund eines sehr eingeschränkten Effiziensdenkens (und einer leider immer schlimmer werden Konkurrenz um finanzielle Mittel) im universitären Bereich sind solche Lernprozesse nicht vorgesehen. Es ist auch nicht absehbar, dass sich dies in den nächsten 10-20 Jahren grundlegend ändern würde. Dazu müsste es Professoren geben, die das selbst lernen, aber wer soll sie ausbilden?
DER BLOG
11. Dieser Blog steht angesichts der allgemeinen universitären Situation mit seinem Anliegen daher eher alleine dar. Autoren, die einzelwissenschaftliche Erkenntnisse (z.B. in der eigenen Disziplin) in einem größeren Zusammenhang reflektieren, sind wunderbare Ausnahmen. Solche Autoren sind hier willkommen.
12. Mit dem Autor hardbern hat ein weiterer Autor den Mut, den dringend notwendigen Diskurs über den homo sapiens und seine Zukunft auf zu nehmen. Es wäre schön, wenn es weitere solche Autoren geben würde. Natürlich wird sich damit auch der Diskurs außerhalb des Blogs in Form von direkten Gesprächen, Vortragsdiskussionen, Workshops und ähnlichen weiter ausbilden.
13. Der Initiator dieses Blogs, cagent, ist seit 1.April 2017 emeritiert. Dies bietet die Möglichkeit, den Blog nicht nur neben einem vollen Arbeitsprogramm zu betreiben, sondern sich den Inhalten und potentiellen Autoren intensiver zu widmen. Z.B. denkt er darüber nach, künftig gezielt verschiedene ausgewiesene Experten zu den Fragen des Blogs direkt anzusprechen. Philosopisch-wissenschaftliches Denken lebt von der den Menschen eigenen Neugierde, zu verstehen, weil man verstehen will. Es geht nicht um Geld oder Ehre, es geht wirklich um die wahren Bilder der Welt, nicht als einzelwissenschaftliche Splitter, sondern als durch Denken vermittelter Zusammenhang von allem. Wenn das Wissen stirbt, versinken wir im Dunkel.