Archiv der Kategorie: Partikulär

AVICENNAS ABHANDLUNG ZUR LOGIK – Teil 9

(Mit Nachtrag vom 1.Sept.2014)

VORGESCHICHTE

Für einen Überblick zu allen vorausgehenden Beiträgen dieser rekonstruierenden Lektüre von Avicennas Beitrag zur Logik siehe AVICENNAS ABHANDLUNG ZUR LOGIK – BLITZÜBERSICHT.

Nach der üblichen Darstellung der Position von Avicenna folgt dann der Teil ‚DISKUSSION‘, in der seine Position kritisch hinterfragt und die Rekonstruktion einer möglichen Theorie der Alltagslogik fortgesetzt wird.

KATEGORISCH – AFFIRMATIV/ NEGATION – UNIVERSAL/ PARTIKULÄR

1. Im folgenden Abschnitt treten Begriffe auf, die z.T. schon zuvor auftraten (‚Kategorisch‘, ‚Negation‘, ‚Universal‘, ‚Partikulär‘), die aber jetzt mit neuen Randbedingungen nochmals diskutiert werden.

KATEGORISCH ALS AFFIRMATIV/ NEGATIV

2. Der Abschnitt beginnt mit einer Diskussion von ‚kategorischen‘ (‚kategorisierenden‘) Aussagen und der Frage, wann sie ‚affirmativ‘ und wann sie ’negativ‘ sind.

SUBJEKT – PRÄDIKAT, EINFACH – ZUSAMMENGESETZT

3. Zusätzlich zu den Unterscheidungen ‚affirmativ‘ – ’negativ‘ im Kontext einer ‚kategorisierenden‘ Aussage berücksichtigt Avicenna auch hier wieder Teilausdrücke. Während er zuvor die semantisch motivierten Begriffe ‚Name‘, ‚Verb‘ (auch ‚Term‘ genannt), sowie ‚Präposition‘ erwähnt hatte, benutzt er nun auch das Begriffspaar ‚Subjekt‘ und ‚Prädikat‘. Beide sind – wie sich aus dem Verwendungskontext nahelegt – ’semantisch‘ motiviert, d.h. nur durch Rückgriff auf die Bedeutung kann man zur Klassifikation ‚Subjekt‘ bzw. ‚Prädikat‘ kommen.
4. Versucht man die Begriffe ‚Name‘, ‚Verb‘ (‚Term‘), sowie ‚Präposition‘ mit den neuen Begriffen ‚Subjekt‘ und ‚Prädikat‘ in Beziehung zu setzen, dann gibt es eine gewisse Korrelation zwischen ‚Name‘ und ‚Subjekt‘ einerseits sowie ‚Verb‘ und ‚Prädikat‘ andererseits. Da Avicenna selbst keinerlei weitere Hinweise auf eine mögliche Beziehung liefert, bleibt an dieser Stelle einiges unklar.
5. Deutlich ist nur, dass Avicenna die Ausdrucksseite eines Ausdrucks e = <e1, e2, …> durch Rückgriff auf eine – nicht explizit beschriebene – Bedeutungsstruktur so analysiert, dass er sagen kann, welche ‚Teile‘ des Ausdrucks e als ‚Subjekt‘ zu nehmen sind, und welche Teile als ‚Prädikat‘.
6. So unterscheidet er im Bedeutungsraum zwischen ‚dem, über das‘ eine Feststellung getroffen wird, und ‚dem, was‘ in dieser Feststellung gesagt wird.
7. Im Beispielsatz N:(der Mensch)V:(ist)N:(ein Lebewesen) analysiert er den Teil [N:(der Mensch)] als ‚Subjekt‘ und den Teil [V:(ist)N:(ein Lebewesen)] als ‚Prädikat‘.
8. Ein anderer Beispielsatz (Wer immer)(sein)N:(Essen)OP:(nicht)V:(kaut)(der)V:(schädigt)(seinen)N:(Darm) enthält Aussageteile, für die Avicenna bislang keine semantisch motivierte grammatische Beschreibungskategorien eingeführt hat. Avicenna analysiert den Ausdruck wie folgt: Subjekt = [(Wer immer)(sein)N:(Essen)OP:(nicht)V:(kaut)] und Prädikat = [(der)V:(schädigt)(seinen)N:(Darm)].
9. Den Unterschied zwischen Subjekt = [N:(der Mensch)] und Subjekt = [(Wer immer)(sein)N:(Essen)OP:(nicht)V:(kaut)] charakterisiert Avicenna als Unterschied zwischen einem ‚einfachen‘ und einem ‚zusammengesetzten‘ Subjekt. Entsprechend auch für das Prädikat: Prädikat = [V:(ist)N:(ein Lebewesen)] und Prädikat = [(der)V:(schädigt)(seinen)N:(Darm)].
10. Sowohl für die Verwendung der Begriffe ‚Subjekt/ Prädikat‘ wie auch ‚einfach/ zusammengesetzt‘ liefert Avicenna keine explizite Kriterien. Er zitiert nur einige Ausdrücke als Beispiele und appelliert an die sprachliche Intuition des Lesers, die implizit verwendeten Analysekriterien zu verstehen.

AFFIRMATIV – NEGATIV

11. In den soeben erwähnten Kontexten wie auch in nachfolgenden Beispielen diskutiert er auch die Begriffe ‚affirmativ‘ und ’negativ‘.
12. Sein Hauptkriterium zur Verwendung der Begriffe ‚affirmativ‘ und ’negativ‘ ist der (semantische, bedeutungsgeleitete!) Aspekt, ob das, was in einer Aussage in einem Prädikat von einem Subjekt behauptet wird, ‚zutrifft’/ ‚der Fall ist‘ oder ’nicht zutrifft’/ ’nicht der Fall ist‘. Trifft das im Prädikat behauptete zu, dann will er es ‚affirmativ‘ nennen, ansonsten ’negativ‘.
13. Im vorausgehenden Abschnitt waren diese Verwendungskriterien auch benutzt worden, um zu sagen, wann eine Aussage ‚wahr‘ bzw. ‚falsch‘ ist. Nach den bisherigen Kriterien müsste man dann sagen, dass ‚wahr‘ und ‚affirmativ‘ einerseits und ‚falsch‘ und ’negativ‘ dann bedeutungsgleich wären.
14. In einem weiteren Beispiel benutzt Avicenna die Aussage SUBJ[N:(Zid)] PRÄD[V:(ist)(ohne)N:(Sicht)] – engl.: ‚Zid is without sight‘ – als ein Beispiel für eine ‚affirmative‘ Aussage, da das Prädikat PRÄD[V:(ist)(ohne)N:(Sicht)] eine Eigenschaft beschreibt, die auf das Subjekt (Zid) zutrifft.
15. Andererseits wird der Teilausdruck ‚ist ohne Sicht‘ bedeutungsmäßig als eine ‚Negation‘ verstanden im Sinne von ‚hat keine Sicht‘ im Gegensatz zu ‚hat Sicht‘. D.h. eine bedeutungsmäßige ‚Verneinung‘ kann durch verschiedene Ausdruckselemente realisiert werden, auch ohne den Ausdruck ’nicht‘. Dies würde bedeuten, dass eine ‚ausdrucksmäßig realisierte Verneinung‘ das Fehlen einer bestimmten Eigenschaft aussagen kann. Nach den Worten Avicennas kann aber genau solche eine Feststellung, dass eine bestimmte Eigenschaft fehlt, eine ‚Affirmation‘ sein, eben das Festellen, dass es der Fall ist, dass eine bestimmte Eigenschaft fehlt.
16. Wenn also eine Affirmation das Absprechen einer Eigenschaft beinhalten kann, wie sieht dann eine Verneinung einer solchen Affirmation aus?
17. Avicenna bringt folgendes Beispiel: SUBJ[N:(Zid)] PRÄD[V:(ist)(nicht)(ohne)N:(Sicht)]. Für ihn ist dieses eine ‚Negation‘, da die Affirmation, eine bestimmte Eigenschaft sei nicht da, verneint wird.
18. Mann könnte das Beispiel auch umschreiben zu: (Es ist nicht der Fall, dass) SUBJ[N:(Zid)] PRÄD[V:(ist)(ohne)N:(Sicht)].
19. Ersetzt man die Teilausdrücke durch Buchstaben – was Avicenna im Text auch einmal demonstriert –, dann könnte man auch schreiben (Es ist nicht der Fall, dass) (A)(B), bzw. dann $latex (A)\neg(B)$.

EXISTENZ

20. Zwischendrin bemerkt Avicenna auch mal, dass das Treffen einer Feststellung, eigentlich nur Sinn mache, wenn dasjenige, von dem etwas ausgesagt wird, auch existiere. Doch wird dieser Punkt nicht weiter diskutiert.

UNIVERSELL – PARTIKULÄR – QUANTITÄT – QUANTOREN

21. Vom Subjekt einer Aussage sagt Avicenna, sie kann ‚partikulär‘ oder ‚universell‘ sein. Falls universell, dann kann man unterscheiden, ob sie ‚unbestimmt‘ (engl.: ‚indeterminate‘) ist – wie viele genau involviert sind — oder eben ‚bestimmt‘ (engl.: ‚determinate‘).
22. Im Beispielausdruck (Zid)(ist)(ein)(Lebewesen) ist (Zid) ‚partikulär‘.
23. Im Beispielausdruck (Menschen)(bewegen)(sich) ist nach Avicenna unklar, ob ‚alle‘ Menschen gemeint sind oder nur ‚einige‘.
24. Die ‚bestimmten universellen Aussagen‘ teilt Avicenna in vier Klassen ein:
25. Typ 1: Subjekt = Alle, Affirmativ (Bsp.: Q=[(Jeder)]S=[(Mensch)]P=[(ist)(ein)(Lebewesen)]
26. Typ 2: Subjekt = Alle, Negativ (Bsp.: Q=[(Kein)]S=[(Mensch)]P=[(ist)(sterblich)](?)
27. Typ 3: Subjekt = Einige, Affirmativ Q=[(Einige)]S=[(Mensch)]P=[(sind)(Schriftsteller)]
28. Typ 4: Subjekt = Einige, Negativ Q=[(Nicht alle)]S=[(Mensch)]P=[(sind)(Schriftsteller)] (?)
29. Hier sind nur einige von Avicennas Beispielsätzen angeführt. Einige Beispiele werfen Fragen auf (?).
30. Mehrfach formuliert Avicenna auch folgendes ‚Metaprinzip‘: Wenn eine Aussage über ‚Alle‘ spricht, dann sei es unsicher, ob wirklich alle gemeint sind; sicher sei es aber, dass wenigstens ‚einige‘ gemeint sind.
31. Aus all diesen Überlegungen leitet er dann folgende Fallunterscheidungen her (von mir abgekürzt ‚+‘ für ‚affirmativ‘, ‚-‚ für negativ‘, ‚1‘ für ‚partikulär‘, ‚0‘ für ‚unbestimmt‘ und ‚a‘ für universell‘:
32. (+,1)
33. (-,1)
34. (0,+)
35. (0,-)
36. (a,+)
37. (a,-)
38. (1,+)
39. (1,-)
40. Die Fälle (+,1) und (-,1) bezeichnet Avicenna als ’nutzlos für die Wissenschaft‘ und die Fälle (0,+) und (0,-) sollten vermieden werden, da sie ‚verwirrend‘ sind.

NOTWENDIG – KONTINGENT

41. Am Beispiel der kategorisierenden Aussagen illustriert Avicenna auch die Begriffe ’notwendig‘ und ‚kontingent‘. Die Verwendung dieser Begriffe stimmt überein mit den zuvor eingeführten Begriffe ‚wesentlich‘ und ‚akzidentell‘.

MÖGLICH

42. Auch erwähnt Avicenna hier den Begriff ‚möglich‘. Er sieht mindestens zwei Verwendungsweisen von ‚möglich‘: einmal als (i) ’nicht unmöglich‘ und (ii) im Sinne von ‚kann existieren‘ und ‚kann nicht existieren‘. Fall (ii) ist für ihn das ‚real mögliche‘ und stimmt nach Ihm mit dem normalsprachlichen Gebrauch überein.
43. Die Verwendungsweise in Fall (i) von ‚möglich := nicht unmöglich‘ widerspricht eigentlich den Regel einer expliziten Definition, wie er sie an früherer Stelle aufgestellt hatte. Dort hatte er verlangt, dass der neu zu definierende Ausdruck e_new nicht auf der rechten Seite bei den definierenden – als bekannt vorausgesetzten – Ausdrücken vorkommen darf, also e_neu := <e_alt1, …, e_altn>.
44. Der Ausdruck ‚möglich := nicht unmöglich‘ entspricht dem Ausdruck ‚möglich := nicht nicht möglich‘. Darin wird der neue Ausdruck über sich selbst definiert, was ‚zirkulär‘ ist.

DISKUSSION

45. Dieser neue Text verstärkt den Eindruck der vorausgehenden Seiten, dass Avicenna keine wirklich systematische Theorie hat. Er folgt den in der Literatur vorkommenden Begriffen nach keiner erkennbaren Regel, und seine Analyse benutzt Kriterien, die höchst selten explizit benannt werden. Vorzugsweise stellt er Beispielsätze vor, die er nach impliziten Kriterien diskutiert. Auch wiederholt er scheinbar ähnliche Bedeutungszusammenhänge mit jeweils neuen Begriffen. Dennoch besteht noch immer der Eindruck, dass sich der bislang gewählte Interpretationszusammenhang durchhalten lässt.

REKONSTRUIERENDE ECKWERTE BISHER

46. Als Eckwerte der rekonstruierenden Interpretation gilt bislang die Unterscheidung vom (i) ‚wissenden System‘ S in einer (ii) umgebenden realen Welt W und der Fähigkeit des wissenden Systems, (iii) bestimmte Ereignisse X der realen Welt W über einen Verarbeitungsprozess $latex \lambda$ in einen (iv) internen Bedeutungsraum M zu übersetzen. Parallel zum Bedeutungsraum M gibt es (v) eine Menge von Ausdrücken E, die (vi) auf unterschiedliche Weise mit dem Bedeutungsraum E innerhalb einer gewussten Beziehung $latex K \subseteq E \times M$ verknüpft werden können. Im Bereich des Bedeutungsraumes M kann (vii) unterschieden werden zwischen ‚aktuellen‘ Bedeutungsrepräsentationen M_now, die von aktuellen Ereignissen X der realen Welt verursacht sind, und ‚zeitlosen‘ Bedeutungsrepräsentationen M_0, mit $latex M_{now} \cap M_{0} = \emptyset, M_{now} \subseteq M, M_{0} \subseteq M$. Der Unterschied zwischen $latex M_{now}, M_{0}$ bezieht sich auf die zeitliche Komponente T in $latex M_{now}, M_{0}$. Würde man die zeitliche Komponente T aus $latex M_{now}$ ‚herausrechnen (also etwa $latex M_{now0} = M_{now} – T$), dann könnten die beiden Mengen $latex M_{now}, M_{0}$ gemeinsame Elemente enthalten ($latex M_{now0} \cap M_{0} \neq \emptyset$ ). Dies bedeutet, dass die charakterisierenden Eigenschaften der Objekte in $latex M_{now*}, M_{0}$ wissensmäßig ‚gleich‘ sein können. Durch (viii) Vergleich von Elementen aus M_now0 und M_0 kann dann entschieden werden, ob es der Fall ist, dass Elemente aus M_0 in M_now vorkommen oder nicht; falls sie vorkommen, dann ist eine feststellende (affirmative oder negative) Aussage ‚wahr‘, ansonsten ‚falsch‘.

REKONSTRUKTION: AFFIRMATIV – NEGATIV

47. Schon bei den von Avicenna angeführten Beispielen und deren Diskussion wird deutlich, dass eine gewisse Unklarheit darüber existiert, wie ’negative Ausdruckselemente‘ (wie z.B. ’nicht‘, ‚ohne‘) innerhalb des Begriffspaares ‚affirmativ/ negativ‘ zu bewerten sind. Zwar macht Avicenna darauf aufmerksam, dass das ‚Fehlen von etwas‘ eine Eigenschaft sein kann, die man ja gerade – affirmativ — aussagen möchte, aber es fehlt letztlich ein hartes Kriterium, wann das ‚Fehlen‘ von etwas nur ein ‚Ausdruckselement‘ ist oder ein ’semantischer Tatbestand‘, der ‚oberhalb‘ der Ausdruckselemente liegt, also wo es gerade das ‚Fehlen von etwas‘ ist, das man aussagen will.
48. In dieser Rekonstruktion wird davon ausgegangen, dass jede Aussage – entsprechend den Aussagen von Avicenna – entweder ‚wahr‘ oder ‚falsch‘ ist. Dies setzt voraus, dass jede Aussage als solche ‚grundsätzlich affirmativ‘ ist, sie will etwas über ein Subjekt aussagen. Für diese Aussage wird ein Ausdruck e generiert (in der Regel mit mehreren Teilausdrücken, mindestens Subjekt und Prädikat), der einen Sachverhalt m_p mittels des Prädikats über ein Subjekt m_s behauptet. Innerhalb der Aussage e kann der Sachverhalt m_p sowohl ‚zusprechend‘ (affirmativ) im Sinne von ‚ist ein…’/ ‚hat …‘ sein oder absprechend, negierend ‚ist nicht …‘, ‚hat nicht …‘ usw. Unabhängig davon ob die kombinierten Sachverhalte (m_s, m_p) ‚zusprechend‘ oder ‚absprechend‘ sind, können sie ‚wahr‘ (in der realen Welt W zutreffend) oder ‚falsch‘ (in der realen Welt W nicht zutreffend) sein.
49. Während die Frage von ‚wahr’/ ‚falsch‘ eine rein semantische Angelegenheit ist, die durch die simultane wissensmäßige Unterscheidung von ’nur gewusst/ gedacht/ vorgestellt/ erinnert/ im Sinne von $latex M_{0}$ einerseits und ‚als aktuell wahrgenommen gewusst‘ im Sinne von $latex M_{now}$ möglich ist, hängt die Unterscheidung von ‚affirmativ/ negativ‘ davon ab, ob es Ausdruckselemente gibt, die explizit so vereinbart sind, dass sie in einem S-P-Urteilszusammenhang als ‚zusprechend‘ oder ‚absprechend‘ identifiziert werden können. Wenn niemand weiß, dass ’nicht‘ in der Deutschen Sprache eine ‚Verneinung‘ darstellt, kann auch kein ‚Absprechen von etwas‘ erkennen. Wenn jemand aber weiß, dass mit dem Ausdruckselement ’nicht‘ etwas verneint wird, dann weiß er aufgrund der Aussagensemantik, dass der Ausdruck ‚ist nicht sterblich‘ eben die Verneinung von ‚ist sterblich‘ ist (unabhängig von ‚wahr‘ und ‚falsch‘). Und da die Bedeutung der Verneinung an den Ausdruck ’nicht‘ geknüpft ist, wird diese Bedeutung jedes mal aktiviert, wenn das Ausdruckselement ’nicht‘ auftritt: ‚ist nicht sterblich‘, ‚ist nicht nicht sterblich‘, ‚es gilt nicht, dass Zid nicht unsterblich ist‘, usw. Allerdings sind die Konventionen in jeder Sprache unterschiedlich, wie das Auftreten von negierenden Ausdruckselementen vorzunehmen ist (während im Deutschen eine Häufung wie ’nicht nicht‘ in Grenzfällen noch gehen mag, geht ’nicht nicht nicht‘ normalerweise nicht mehr. Darüber hinaus gibt es zahllose andere Ausdruckselemente (wie z.B. ‚kein(e), mit, ohne, haben, …), die auch negierende Funktionen übernehmen können.
50. Ein Ausdruck wie (Zid (ist ohne Sicht)), bedeutungsmäßig äquivalent etwa zu zu (Zid (hat keine Sicht)) oder (Zid (kann nicht sehen)), sagt affirmativ ein Fehlen aus. Ob dies während der Aussage in der realen Welt zutrifft (= wahr) oder nicht (=falsch), folgt aus der Aussage selbst nicht.
51. Eine Verneinung dieser Aussagen geschieht zunächst auf der Ausdrucksebene, und dann kann man den so konstruierten Sachverhalt bzgl. Wahrheit oder Falschheit bewerten.
52. Es hängt von geltenden Konventionen ab, wie man die Verneinung der Aussage (Zid (ist ohne Sicht)) auf der Ausdrucksebene realisiert. Eine Möglichkeit besteht darin, auf einer Metaebene zu sagen, ‚Die Aussage (Zid (ist ohne Sicht)) trifft nicht zu. Dies würde primär aber meinen, dass diese Aussage in der realen Welt W nicht zutrifft. Würde man die interne Struktur der Aussage (Zid (ist ohne Sicht)) ändern, dann würde man eine neue Aussage schaffen, von der man wiederum fragen kann, ob sie in der realen Welt W zutrifft oder nicht. Also man könnte natürlich formulieren (Zid (ist nicht ohne Sicht)); damit würde man verneinen, dass Zid ohne Sicht sei, also eine Verneinung der vorhergehenden Aussage. Aber auch diese neuerliche Verneinung wäre grundsätzlich eine Affirmation, nämlich etwas, was man über Zid Aussagen will.
53. Die rekonstruierende Hypothese lautet also: jeder Ausdruck e vom Typ Aussage PROP impliziert die Affirmation eines Sachverhaltes m_p über ein Subjekt m_s unabhängig davon, wie viele Negationen/ Verneinungen der Ausdruck e enthält. Eine so realisierte affirmative Aussage zu (m_s, m_p) kann wahr oder falsch sein.

EXISTENZ

54. Das von Avicenna nur kursorisch erwähnte Moment der Existenz ist in der aktuell rekonstruierenden Interpretation gegeben durch die Annahme der umgebenden realen Welt W, deren aktuelle induzierten Bedeutungsrepräsentationen M_now als Bezugspunkt für die Charakterisierungen wahr/ falsch genutzt werden kann. In diesem Rahmen können beliebige Aussagen gebildet werden ,unabhängig davon, ob sie aktuell wahr/ falsch sind.

MÖGLICH

55. Die Kategorie ‚möglich‘ ist durch die bloße Angabe ‚kann existieren und kann nicht existieren‘ kaum erklärt. Zu sagen, dass ein B über ein gegebenes/ bekanntes A ‚hinausgeht‘, setzt eigentlich voraus, dass man die Ereignisse X der realen Welt W zunächst mal überhaupt als ‚exstierend‘ erkennen kann $latex \lambda(X)$ , so dass dann relativ zu diesem Wissen $latex \lambda(X)$ ein anderes Element Y als ’neu‘ oder als ‚möglich‘ explizit gedacht werden könnte. Wir wissen vom menschlichen Denken, dass wir uns allerlei Dinge als M_0 ‚vorstellen‘, ‚denken‘, ‚träumen‘ … können, von denen zum Zeitpunkt des Vorstellens nicht bekannt ist, ob sie sich genauso auch ereignen werden. Bei einigen dieser Vorstellungen M_0* haben wir ein zusätzliches Wissen K*, aufgrund dessen wir aus der Vergangenheit wissen, dass sie mit einer gewissen Wahrscheinlichkeit eintreten können; von daher räumen wir diesen mittels K* als ‚eintretbar‘ klassifizierten Vorstellungen M_0* eine gewisse Möglichkeit ein. Bei anderen Vorstellungen $latex M_{X} = M_{0} – M_{0*}$ ist es uns weniger bis gar nicht klar, ob sie eintreten können, da das zugehörige Wissen K_X zu schwach ist.

QUNATITÄT – QUANTOREN

56. Im Kontext der schon zuvor erwähnten Begriffe ‚universell‘ und ‚partikulär‘ führt Avicenna nun den Gedanken der ‚Bestimmtheit’/ ‚Unbestimmtheit‘ ein und entwickelt daraus die Idee der Quantität in Gestalt von Quantoren.
57. Dies führt zu der grundsätzlichen Erweiterung (Q,S,P), d.h. das Zutreffen eines Sachverhaltes m_p wird nicht mehr nur für ein Subjekt S allgemein behauptet, sondern das Objekt m_s, das bedeutungsmäßig ein Subjekt fundiert, wird bezüglich seiner Quantität Q weiter spezifiziert als ‚Alle/ Jeder‘, ‚Nicht Alle/Einige‘, ‚Alle – nicht/ Keine(r)‘.
58. Bei der konkreten Angabe der sich daraus ergebenden möglichen Klassen kommt es aber dann bei Avicenna zu Unklarheiten, da er bei dieser Einteilung sein Begriffspaar ‚affirmativ/ negativ‘ benutzt, von dem wir zuvor gesehen haben, dass es möglicherweise ‚fehlerhaft‘ ist, da er den Begriff ‚affirmativ‘ und ’negativ‘ auf die gleiche semantische Stufe stellt. Wie zuvor aber schon festgestellt worden ist, muss man diese beiden Begriffe trennen. Wenn Avicenna z.B. die beiden ersten Typen seiner Aussagen klassifiziert als
59. Typ 1: Subjekt = Alle, Affirmativ (Bsp.: Q=[(Jeder)]S=[(Mensch)]P=[(ist)(ein)(Lebewesen)] oder Q=[(Jeder)]S=[(Mensch)]P=[(ist)(sterblich)]
60. Typ 2: Subjekt = Alle, Negativ (Bsp.: Q=[(Kein)]S=[(Mensch)]P=[(ist)(sterblich)](?)
61. dann ist die Charakterisierung von Typ 1 nachvollziehbar, von Typ 2 aber nicht. Von der Idee her soll in Typ 2 gezeigt werden, wie die Negation von Typ 1 beschaffen ist. In Typ 1 wird (affirmativ) behauptet, dass jeder Mensch ein Lebewesen ist bzw. sterblich ist. Im Typ 2 soll auch etwas (affirmativ) behauptet werden, nämlich dass ’nicht alle‘ Menschen Lebewesen sind bzw. sterblich sind. D.h. die Aussagen vom Typ 2 sind grundsätzlich weiterhin ‚affirmativ‘, es wird aber in ihrem Ausdruck ein zusätzliches verneinendes Ausdruckselement – hier ’nicht‘ – eingeführt, so dass der Sachverhalt, der affirmativ behauptet werden soll, ein zusätzliches verneinendes Element enthält. Daraus würde sich ergeben:
62. Typ 2b Q=[(Nicht alle)]S=[(Menschen)]P=[(sind)(sterblich)], was man umformen könnte zu Q=[(Einige)]S=[(Menschen)]P=[(sind)(nicht)(sterblich)].
63. Aus (nicht alle) folgt nicht (keine), wie bei Avicenna, sondern (einige).
64. Auch im Beispiel der Verneinung von ‚einige‘ kommt es bei Avicenna zu Unklarheiten:
65. Typ 3: Subjekt = Einige, Affirmativ Q=[(Einige)]S=[(Mensch)]P=[(sind)(Schriftsteller)]
66. Typ 4: Subjekt = Einige, Negativ Q=[(Nicht alle)]S=[(Mensch)]P=[(sind)(Schriftsteller)] (?)
67. Im Fall von Typ 4 geht es um die (affirmative) Behauptung, dass ’nicht einige‘ gemeint sind. Aus ’nicht einige‘ folgt aber nicht – wie bei Avicenna – ’nicht alle‘, sondern ‚(alle …. nicht…), d.h.
68. Typ 4b: Q=[(Nicht einige)]S=[(Mensch)]P=[(sind)(Schriftsteller)] kann umgeformt werden zu Q=[(Alle)]S=[(Mensch)]P=[(sind)(nicht)(Schriftsteller)]
69. Daraus folgt, dass eine Klassifikation nicht nach dem Muster (Q -affirmativ) und (Q – negativ) vorgenommen werden sollte, sondern nach dem Muster, alle Aussagen sind ‚affirmativ‘; innerhalb dieser Menge kann man verschiedene Quantoren unterscheiden (alle) bzw. (einige), und diese Quantoren sind entweder nicht verneint oder verneint. Das würde folgendes Schema ergeben:
70. Typ 1: Q=’alle‘
71. Typ 2b: Q='(nicht)(alle)‘ bzw. $latex (\neg)(Q)$ ist äquivalent zu Q=(einige),S,($latex \neg$),P).
72. Typ 3: Q=’einige‘
73. Typ 4b: Q='(nicht)(einige)‘ bzw. $latex (\neg)(Q)$ ist äquivalent zu Q=(alle),S,($latex \neg$),P).
74. Das von Avicenna formulierte ‚Metaprinzip‘: ‚Wenn eine Aussage über ‚Alle‘ spricht, dann ist es unsicher, ob wirklich alle gemeint sind; sicher ist es aber, dass wenigstens ‚einige‘ gemeint sind‘, muss auch hinterfragt werden. Würde sein Metaprinzip gelten, dann könnte man keine wirklichen ‚All-Aussagen‘ mehr machen, da grundsätzlich die intendierte Bedeutung von ‚alle‘ verneint würde. Dies macht keinen Sinn. Wenn jemand tatsächlich ‚alle‘ meint und dies ausdrücken will, dann muss der dazu vereinbarte Ausdruck ‚alle‘ auch entsprechend verwendet werden.
75. Die von Avicenna vorgenommene Fallunterscheidungen (von mir abgekürzt ‚+‘ für ‚affirmativ‘, ‚-‚ für negativ‘, ‚1‘ für ‚partikulär‘, ‚0‘ für ‚unbestimmt‘ und ‚a‘ für universell‘) der Art:
76. (+,1)
77. (-,1)
78. (0,+)
79. (0,-)
80. (a,+)
81. (a,-)
82. (1,+)
83. (1,-)
84. leidet an der gleichen Schwäche, wie schon zuvor bei der Diskussion seiner vier Quantorentypen, hier verstärkt um sein falsches Metaprinzip. Klammert man ‚affirmativ‘ als Einteilungskriterium aus, da dies auf alle Typen zutrifft, bleiben nur die beiden Quantoren und deren Verneinung:
85. Q=’alle‘,S,P
86. Q=(nicht)(alle),S,P $latex \leftrightarrow $ Q=(einige),S,(nicht),P
87. Q=’einige‘,S,P
88. Q=(nicht)(einige),S,P $latex \leftrightarrow $ Q=(alle),S,(nicht),P
89. Wollte man den umgangssprachlichen Quantor ‚keiner‘ benutzen, könnte man diesen über Typ 4b definieren: Q=’kein(er)‘,S,P $latex \leftrightarrow$ Q=(alle),S,($latex \neg$),P).

Fortsetzung folgt …

QUELLEN

  • Avicenna, ‚Avicennas Treatise on Logic‘. Part One of ‚Danesh-Name Alai‘ (A Concise Philosophical Encyclopedia) and Autobiography, edited and translated by Farang Zabeeh, The Hague (Netherlands): Martinus Nijhoff, 1971. Diese Übersetzung basiert auf dem Buch ‚Treatise of Logic‘, veröffentlicht von der Gesellschaft für Nationale Monumente, Serie12, Teheran, 1952, herausgegeben von M.Moien. Diese Ausgabe wiederum geht zurück auf eine frühere Ausgabe, herausgegeben von Khurasani.
  • Digital Averroes Research Environment
  • Stanford Encyclopedia of Philosophy, Aristotle’s Logic
  • Whitehead, Alfred North, and Bertrand Russell, Principia Mathematica, 3 vols, Cambridge University Press, 1910, 1912, and 1913; Second edition, 1925 (Vol. 1), 1927 (Vols 2, 3). Abridged as Principia Mathematica to *56, Cambridge University Press, 1962.
  • Alfred North Whitehead; Bertrand Russell (February 2009). Principia Mathematica. Volume One. Merchant Books. ISBN 978-1-60386-182-3.
  • Alfred North Whitehead; Bertrand Russell (February 2009). Principia Mathematica. Volume Two. Merchant Books. ISBN 978-1-60386-183-0.
  • Alfred North Whitehead; Bertrand Russell (February 2009). Principia Mathematica. Volume Three. Merchant Books. ISBN 978-1-60386-184-7

Eine Übersicht über alle bisherigen Blogeinträge nach Titeln findet sich HIER.