Archiv der Kategorie: Physikalische Gesetze

MATHEMATIK UND WIRKLICHKEIT – DISKUTIERT AM BEISPIEL DES BUCHES VON TEGMARK: Our Mathematical Universe (2014)

Max Tegmark (2014), Our Mathematical Universe. My Quest of the Ultimate Nature of Reality, New York: Alfred A.Knopf

KONTEXT

  1. Das Interesse an dem Buch resultiert aus der Einsicht der letzten Jahre, dass eine Beschäftigung mit den entwickelteren empirischen Theorien, hier insbesondere mit der Physik, ohne ein angemessenes Verständnis der benutzten mathematischen Strukturen und Modellen nur von begrenzter Reichweite ist. Ohne die mathematischen Ausdrücke geht heute nichts mehr in der Physik.
  2. Wie sich aber in vielen philosophischen Analysen zur Funktion von Sprache im Kontext von Wissens gezeigt hat, ist das benutzte Mittel, die jeweilige Sprache, nicht neutral: jede Sprache hat ihre eigene Struktur (Logik, Syntax, Semantik,…), die darüber entscheidet, was man wie mit einer Sprache ausdrücken kann. Dazu kommt unser Gehirn, das sowohl die erfassbaren Ereignisse wie auch die Sprache selbst (die auch eine bestimmte Ereignismenge darstellt) auch in einer sehr spezifischen Weise verarbeitet.
  3. [Anmerkung: ein Beispiel im Block zur Reflexion über die Funktion von logischer Sprache sind die Blogeinträge zur Logik von Avicenna. ]
  4. Es kann also von Interesse sein, sich die Funktionsweise der mathematischen Sprache im Kontext moderner physikalischer Theorien anzuschauen.

BUCH VON TEGMARK

Konzepte aus dem Kap.1 von Tegmark (2014) herausgezogen und neu zusammen gestellt
Konzepte aus dem Kap.1 von Tegmark (2014) herausgezogen und neu zusammen gestellt
  1. Als Einstieg zu dieser Frage bietet sich das Buch von Tegmark (2014) an. Denn hier beschreibt ein Vollblutphysiker seine Suche nach den richtigen Antworten auf Grundsatzfragen wie „Woher kam Alles? Wie wir alles enden? Wie groß ist alles?“ (S.7) oder „Was ist wirklich?“ (S.8) aus der Perspektive der modernen Physik, die sich der Sprache der Mathematik bedient.

PHYSIK PLUS

  1. Dabei lässt er mehrfach durchblicken, dass seine Art die Fragen zu stellen und zu beantworten ein wenig abweicht von dem Stil, der in den offiziellen physikalischen Publikationen üblich ist, und dass dies auch der Grund ist, warum er viele Jahre (mehr als 25) quasi ein Doppelleben führen musst: einerseits als Physiker, der in der üblichen Weise publiziert und denkt, und andererseits als philosophierender Physiker, der sich auch Gedanken über die Methode selbst und deren Auswirkungen macht.
  2. In Kapitel 1 deutet er den allgemeinen Rahmen an, in dem er sich in seinem Buch bewegt. (Siehe dazu das Schaubild)

FRAGEN UND METHODEN ZU ANTWORTEN

  1. Ausgehend von der verbreiteten zweifelnden Frage ob das, was wir real erleben, nicht vielleicht doch nur ein Traum oder eine Simulation sei, deutet er an, mit welchen Mitteln die Physik sich diesen Fragen stellt.
  2. Nach Tegmark geht die Physik von der Annahme der externen Realität eines Universums aus, in dem auch die biologische Evolution stattgefunden hat. Unser Körper mit dem Gehirn ist ein Ergebnis davon.
  3. Zu früheren Zeiten (vor der modernen Physik) haben Menschen auch schon die Fragen nach dem Ganzen, dem Woher, dem Wohin gehabt und auf ihre Weise zu beantworten versucht, in Form von Mythen, Legenden oder religiösen Lehren.
  4. Mit der modernen Physik wurde dies anders. In Wechselwirkung zwischen immer differenzierteren Messgeräten und immer komplexeren mathematischen Ausdrücken konnte die atomare Struktur des Universums enthüllt werden, man entdeckte die Unendlichkeit des Universums, schwarze Löcher und vieles mehr.
  5. Parallel zu den Makrostrukturen enthüllte man schrittweise auch die Mikrostrukturen der biologischen Systeme: Atome, die Synapsen einer Gehirnzelle beeinflussen können, diese wiederum können Prozesse im präfrontalen Cortex stimulieren, von dem aus es dann zu bestimmten Entscheidungen kommen kann, die zu konkreten Aktionen führen können.
  6. Das Gehirn im Körper hat seine eigene Wirklichkeit, die er interne Realität bezeichnet im Gegensatz zur äußeren Realität außerhalb des Gehirns.

DISKURS

  1. Neben Tegmark gab (und gibt) es auch viele andere Physiker, die über das physikalische Denken im engeren Sinne hinausgegangen sind. Zu nennen sind hier beispielsweise Erwin Schrödinger (1887 – 1961) (Diskussion zu Schrödingers ‚What is Life?), Werner Karl Heisenberg (1901 – 1976), Pascual Jordan (1902 – 1980), Carl Friedrich Freiherr von Weizsäcker (1912 – 2007), oder Paul Charles William
  2. Davies (1946 – …), (Diskussion zu Davies im Blog), um nur einige zu nennen.
  3. Was Tegmark von den anderen unterscheidet, ist vielleicht seine Fokussierung auf die Rolle der mathematischen Sprache und die – in den folgenden Kapiteln – erläuterte These, dass die Natur als Objekt der mathematischen Sprache selbst ein mathematisches Objekt sei.
  4. Ob sich diese These durchhalten lässt, wird sich zeigen.
  5. Von diesem Diskurs darf man eine weitere Klärung der Rolle der Mathematik im physikalischen Denken erhoffen.

Eine Fortsetzung zu Teil 1 findet sich HIER.

Einen Überblick über alle Beiträge des Autors cagent nach Titeln findet sich HIER.

Einen Überblick über alle Themen des Blogs findet sich HIER.

WO IST DER STANDPUNKT VON JEDEM EINZELNEN? Eine Notiz

ANGEREGT VON

  1. Angeregt von dem Buch von Matt Ridley Ehe Evolution of Everything. How small Changes Transform our World (2015) ergaben sich viele interessante Fragen. Eine ausführlichere Diskussion des Buches wird im Blog noch erfolgen. Vorab aber erste Impressionen zu der speziellen Frage, die sich mir stellte, ob sich für jeden Menschen skizzieren lässt, was eigentlich der individuelle Ausgangspunkt für den gesamten Weltbezug ist (eine Abstimmung dieser Überlegungen mit den vielen vorausgehenden Beiträgen im Blog könnte zusätzlich hilfreich sein).

ALLGEMEINE BEDEINGUNGEN FÜR LEBEN

Verhältnis der Zeitdauer zwischen Alter des Universums (physikalische Natur) mit ca. 13.8 Mrd. Jahren, dem Auftreten biologschen Lebens seit ca. 3.8 Mrd, dem Auftreten von menschlichen Gesellschaften (homo sapiens sapiens) mit ca. 200.000 Jahren sowie der Lebenszeit eines einzelnen Menschen (hier optimistisch auf 100 Jahre gesetzt)
Verhältnis der Zeitdauer zwischen Alter des Universums (physikalische Natur) mit ca. 13.8 Mrd. Jahren, dem Auftreten biologschen Lebens seit ca. 3.8 Mrd, dem Auftreten von menschlichen Gesellschaften (homo sapiens sapiens) mit ca. 200.000 Jahren sowie der Lebenszeit eines einzelnen Menschen (hier optimistisch auf 100 Jahre gesetzt)
  1. Im Lichte des verfügbaren empirischen Wissens könnte man versucht sein, vier Dimensionen aufzuspannen:
  2. Den allgemeinsten Rahmen gibt die Naturgeschichte des Universums mit ca. 13.8 Mrd Jahren bislang, durch die die allgemeinsten Rahmenbedingungen festgelegt werden. Ohne diese zu verstehen kann man eigentlich gar nichts verstehen (Übergang von Energie in den Zustand von Materie mit Bewegung und Raum, Bildung von Atomen, Molekülen im Kontext von Gas- und Sonnenbildungen, Galaxien, usw.).
  3. Innerhalb dieses Rahmens haben sich seit ca. 3.8 Mrd Jahren biologische Strukturen herausgebildet, die unter Beachtung der allgemeinen physikalischen Gesetze eine Eigendynamik entwickelt haben, die sich deutlich von den allgemeinen physikalischen Gesetzen abheben.
  4. Sehr spät – also ca. ab 200.000 Jahren vor unserer Zeit – kann man innerhalb der biologischen Strukturen ein Phänomen beobachten, das mit Populationen des homo sapiens sapiens nur sehr unzulänglich beschrieben ist. Populationen des homo sapiens sapiens (hier abgekürzt hss-Populationen) zeigen eine Dynamik, die sich von der allgemein biologischen Dynamik nochmals deutlich abhebt.
  5. Dies neue Art von hss-Dynamik wird initiiert von jedem einzelnen Mitglied einer hss-Population, also von jedem einzelnen Exemplar eines homo sapiens sapiens; diese hss-Exemplare sollen hier Menschen genannt werden.
  6. Jeder einzelne Mensch (kurz für hss-Exemplar) zeigt spezifische Dynamiken im Vergleich zu allen anderen biologischen Individuen, setzt aber alle allgemeinen biologischen und physikalischen Gesetze voraus. Ohne diese kann man ihn nicht verstehen. Zusätzlich zeigt der Mensch aber besondere Dynamiken, die im Wechselspiel mit anderen Menschen im Rahmen von jeweiligen Gesellschaftssystemen zu immer wieder neuen Konstellationen führen können.
  7. Soweit eine erste Sichtweise aus der Sicht der empirischen Wissenschaften. Bei dieser Sichtweise wird vorausgesetzt, dass es eine Menge von wissenschaftlichen Beobachtern OBS gibt, die alle in gleicher Weise diese empirischen Phänomene sehen und beurteilen können.

EMPIRISCHER BEOBACHTER UNVOLLSTÄNDIG

  1. Wie wir aber heute wissen (können) (Anmerkung: siehe z.B. die 9 Blogeinträge HIER; es gab dazu noch viele weitere Blogeinträge), ist der von den empirischen Wissenschaften unterstellte homogene Beobachter eine starke Idealisierung. Diese Idealisierung ermöglicht zwar die Erklärung vieler Begriffe im Kontext der empirischen Wissenschaften, verdeckt aber die ganze komplexe Maschinerie, die notwendig ist, dass der idealisierte empirische Beobachter überhaupt funktionieren kann.
  2. Bezieht man diese komplexe Maschinerie ein, dann betritt man das aufregende unbekannte Land der aktuellen Forschungen, in denen von der einen Seite aus die empirischen Wissenschaften versuchen, das faszinierende Phänomen des Menschen mit empirischen Mitteln aufzuhellen, auf der anderen Seit die sogenannten Geisteswissenschaften, mit zusätzlichen, nicht-empirischen Methoden. Leider herrscht in diesem Forschungsgebiet des Phänomens Mensch eine große Unübersichtlichkeit, wechselseitig viel Unverständnis und unnötige Verteufelungen, natürlich auch schlichte Abgrenzungskämpfe um selbst möglich viel von den knappen Forschungsgeldern zu bekommen. Das interessanteste Phänomen des bekannten Universums, der Mensch, wird also vielfach zerrieben zwischen den Kämpfen der beteiligten Disziplinen.
  3. Ein beliebter Konfliktpunkt im Wechselspiel der vielen beteiligten Disziplinen ist die grobe Unterscheidung zwischen dem empirischen Standpunkt des Beobachters aus der sogenannten 3.Person-Perspektive und und dem subjektiven, introspektiven Standpunkt des Beobachters (als Selbstbeobachter) aus der sogenannten 1.Person-Perspektive.
  4. Die Kritik der empirischen Disziplinen an Untersuchungen im introspektiven Modus ist natürlich berechtigt, da introspektive Untersuchungen sich interaktiv nur sehr schwer (bis gar nicht) zweifelsfrei kommunizieren und überprüfen lassen.
  5. Auf der anderen Seite kulminiert das Besondere des Phänomens Mensch gerade in der Fähigkeit, auf der Basis seines Körpers mit dem Gehirn eine Art Innensicht des Systems genannt Bewusstsein auszubilden, das den Menschen in die Lage versetzt, genau diese Besonderheit an Dynamik zu entwickeln, die Populationen von Menschen deutlich abhebt von anderen biologischen Populationen. Außerdem besteht zwischen der 3.Person-Perspektive und der 1.Person-Perspektive kein absoluter Gegensatz. Die sogenannte 3.Person-Perspektive ist genuiner Teil des Bewusstseins, also der 1.Person-Perspektive. Mathematisch kann man davon sprechen, dass die Perspektive des empirischen Beobachters eine echte Teilmenge der Perspektive der 1.Person ist. Zum vollen Verständnis des empirischen Beobachters muss man letztlich sogar von dieser Teilmengeneigenschaft Gebrauch machen, sonst kann man das Funktionieren des empirischen Beobachters gar nicht erklären.
  6. Dieses spezifische Abhängigkeitsverhältnis des empirischen Beobachters von dem introspektiven Beobachter wurde bislang in den Wissenschaften kaum (oder gar nicht?) tiefer gehender diskutiert und untersucht. Man belässt es gerne bei der Abgrenzung.

SPEZIFISCHE DYNAMIK DES BIOLOGISCHEN

  1. Kommen wir nochmals zurück zur Behauptung, dass sich die biologischen Strukturen von den allgemeinen physikalischen Strukturen durch eine spezifische Dynamik auszeichnen und innerhalb der biologischen Strukturen sich die menschliche Population auch nochmals durch eine spezifische Dynamik auszeichnet. Viele (die meisten?) Wissenschaftler würden solche Feststellungen eher ablehnen. Die Grundtendenz ist (nachvollziehbar und bis zu einem gewissen Grad angemessen), die Vielfalt der Phänomene auf möglichst wenig Grundprinzipien zurück zu führen. Das ist das Erfolgsprinzip der empirischen Wissenschaften bis heute. Allerdings zeigt die Geschichte der Wissenschaften, dass gerade aufgrund dieses Prinzips nicht alles zu einem Einheitsbrei zusammen gedampft wurde, sondern dass gerade im Versuch der Vereinfachung sich auch Besonderheiten gezeigt haben. Die Vielfalt der heute bekannten Materieteilchen (subatomar, atomar, molekular…) kann man zwar auf allgemeine Prinzipien zurückführen, die schließlich alle im Superbegriff der Energie versinken, aber die Vielfalt der Phänomene im Universum allgemein wie speziell auch auf der Erde mit den biologischen Strukturen kann man nicht erklären, indem man im abstraktesten Allgemeinen verweilt.
  2. Ein Charles Darwin hat (im Kontext vieler anderer Denker, die damals ähnliche Phänomene untersuchten) zwar einerseits die Vielfalt biologischer Phänomene auf einige wenige Prinzipien der möglichen Entstehung zurückgeführt, aber diese Rückführung führte nicht zur Aufhebung der Vielfalt selbst. Nein, die Vielfalt blieb erhalten und es kamen Ideen auf, wie nicht nur diese Vielfalt sondern noch ganze andere Vielfalte entstehen könnten. In gewisser Weise erschien die beobachtbare Vielfalt als Manifestation eines Prinzips, das offensichtlich wirkte und genau durch die wechselnden Vielfalte sichtbar wurde. Dass dieses Prinzip dann den Namen Evolution bekam ist fast nebensächlich, Wichtig ist nur, dass überhaupt ein Prinzip entdeckt werden konnte, das mathematisch als Funktion, Abbildung interpretierbar ist:
  3. evol: BIOL x ENV —> ENV x BIOL
  4. Etwa umschreibar mit: gegebene biologische Systeme (BIOL) in bestimmten Umgebungen (ENV) können neue biologische Systeme hervorbringen und dabei zugleich verändernd auf die Umgebung einwirken. Die spezifischen Aktivitäten, Veränderungen dieser vielfältigen Formen werden hier allgemein als Dynamik bezeichnet.
  5. In dieser Allgemeinheit lässt das Evolutionskonzept noch nahezu nichts Konkretes erkennen, fokussiert aber den Blick darauf, dass der kontinuierliche Strom der Formen nicht rein zufällig stattfindet, sondern von Bedingungen abhängt, die nach einem bestimmten Muster neue Formen hervorbringt. Diese Dynamik deutet damit auf eine bestimmte Prozessstruktur hin, auf eine bestimmte mathematisch beschreibbare Logik des Geschehens, die sich nicht in der Beschreibung der einzelnen Teile erschöpft, sondern nur und gerade in der Beschreibung von Abfolgen und Zusammenhängen, durch die sich diese unterstellte Logik manifestiert.
  6. Der Begriff der Emergenz, der in diesem Zusammenhang oft und gerne benutzt wird, erscheint dem Autor dieser Zeilen zu schwach, um der Konkretheit dieser Logik und ihrer massiven Wirkung gerecht zu werden.
  7. Nach Darwin konnte das postulierte Prinzip der Evolution schrittweise immer weiter konkretisiert werden. Mit der Entdeckung von Zellstrukturen, von Molekülen, speziell dem DNA-Molekül, dem Reproduktionsmechanismus der Zellen mit Hilfe von DNA- und anderen Molekülen, dem epizyklischen Geschehen und vielem mehr konnte man die postulierte Logik des Geschehens an immer konkreteren Strukturen festmachen und damit die unterstellte Prozessstruktur verfeinern. Mittlerweile gibt es sogar weitreichende Modelle, die sogar die Entstehung der komplexen Zellen selbst aus einfacheren Bestandteilen unter bestimmten Umgebungsbedingungen plausibel machen können. Auch hier handelt es sich letztlich mathematisch um Abbildungsprozesse, die die Genese/ Konstruktion von komplexen Strukturen aus einfacheren Elementen unter Beteiligung von Wirkprinzipien andeuten. Die Wirkprinzipien selbst jenseits der beteiligten materiellen Komponenten sind nicht direkt beschreibbar, nur in ihren Wirkungen (so wie auch z.B. die Gravitation sich nur indirekt durch das Verhalten der beobachtbaren Materiekonstellationen erschließen lässt).
  8. Die entscheidend Botschaft ist hier also, dass sich in der Dynamik biologischer Strukturen Wirkprinzipien manifestieren, die charakteristisch für das Biologische sind, die auf implizite Eigenschaften der beteiligten Komponenten hinweisen, die sich nur in bestimmten Konstellationen zeigen. Letztlich sind es Eigenschaften der Materie, die sich überall im Universum zeigen können, wenn entsprechende Bedingungen gegeben sind.

ENDLICHE UNENDLICHKEIT

  1. Während ein einzelner Mensch am Beispiel seines Körpers mit dem klaren Beginn (Geburt) und dem klaren Ende (Tod) das Modell eines endlichen Prozesses am eigenen Leib erleben kann (und natürlich vielfältig im Laufe seines Lebens mit anderen Phänomenen), gibt es aus Sicht eines Menschen aber Phänomene, die sein Leben überdauern, die länger als 100 Jahre andauern. Die Endlichkeit wird damit immer ungreifbarer, erscheint immer mehr wie eine quasi Unendlichkeit. Und im Denken kann ein Mensch den Begriff der Unendlichkeit formen als Gegensatz zur Endlichkeit. Es bleibt zwar offen, ob und wieweit dem der gedanklichen Unendlichkeit irgendeine Realität entspricht, aber zumindest gibt es ein Etwas, ein Gedachtes, als Gegensatz zur konkreten Endlichkeit.

UNTERBRECHUNG

  1. Mit diesem angedeuteten Koordinatensystem kann man nun viele bekannte Phänomene diskutieren und zueinander in Beziehung setzen. Vielleicht geschieht dies mit weiteren Blogeinträgen.

Einen Überblick über alle Blog-Beiträge des Autors cagent nach Titeln findet sich HIER.