Archiv der Kategorie: Semiotik

DIE ZUKUNFT WARTET NICHT – 2117 – PHILOSOPHISCHE WELTFORMEL – Teil 4 – MIND-GEIST …

KONTEXT

  1. Diesem Beitrag ging ein Blogeintrag voraus mit einer einleitenden methodischen Reflexion sowie die Identifizierung einer ersten Periode im Phänomen des biologischen Lebens auf der Erde.Periodisierung der biologischen Evolution nach speziellen Kriterien. Siehe Text.

UR-GEDÄCHTNIS, ABSTRAKTES WISSEN

  1. Ein wichtiger Punkt der ersten Periode des biologischen Lebens ist jene Struktur, welche erstmalig im Universum die Überwindung der Gegenwart durch eine gedächtnishafte Kumulierung von Eigenschaften und Beziehungen (Speichermolekül, Bauplan, Genom…) erlaubt, wodurch die Erfolge der Vergangenheit in die aktuelle Gegenwart hinein wirken können.
  2. Die Herrschaft des Augenblicks wird damit ansatzweise überwunden. Nicht mehr das aktuell Faktische (‚Seiende‘) ist die eigentliche Wahrheit,  sondern erinnerte Eigenschaften und Beziehungen werden zu einer höheren Wahrheit, einer Wahrheit zweiter Ordnung; das Abstrakte und darin Virtuelle erweist sich als die bessere Aussage über die Gegenwart. Das gegenwärtig Stattfindende, aktuell in die Sinne Springende, ist nur ein Aspekt an einem dynamischen Geschehen, das als Geschehen mehr von der Wirklichkeit, vom Leben enthüllt, als das jeweils aktuell Seiende.
  3. Rückblickend gewinnt damit der Prozess, der zur Entstehung der ersten Zelle führte, ein eminent philosophische Bedeutung: wie konnte die sogenannte tote und dumme, schlichtweg die geistlose Materie, in der Lage sein, im Meer der Atome und Moleküle auf der frühen Erde eine Prozessumgebung bereit zu halten, in der sich chemische Prozesse so abspielten, dass nicht nur neue Energieumwandlungs- und -nutzungskonzepte entstehen konnten, sondern zugleich der Prozess sich selbst in Form eines Moleküls so kodiert, dass er sich bei der Selbstreproduktion auch wieder dekodieren konnte. Für die molekularbiologischen Details dieses komplexen Prozesses sei auf entsprechende Literatur verwiesen (Neben z.B. Christian de Duve sei noch vierwiesen auf The Origin and Nature of Life on Earth: The Emergence of the Fourth Geosphere. Cambridge University Press, 2016, Smith, Eric and Morowitz, Harold J.). Philosophisch entscheidend ist  letztlich, was durch diese komplexen Prozesse an wirkender Struktur und Funktionalität oberhalb der molekularen Ebene entstanden ist, welche die sich selbst reproduzierende Zelle mit einer ersten Form von Wissen ausgestattet haben.

UR-AUTOMAT, UR-ALGORITHMUS

  1. Die Besonderheit dieses ersten Wissens (‚Proto-Wissen‘, ‚Ur-Wissen‘…) liegt in seinem algorithmischen Charakter: im Wechselspiel mit den dekodierenden Elementen einer Zelle zeigen diese Strukturen eine strukturelle Ähnlichkeit mit dem Konzept der Turingmaschine, das 1936 von Alan M.Turing entdeckt wurde, um das Phänomen der Berechenbarkeit zu beschreiben. Wie sich herausstellte, lassen sich alle Computer, die zeitlich nach Turing als reale Maschinen entwickelt wurden, bislang mit dem abstrakten Konzept der Turingmaschine beschreiben. [ANMERKUNG: Dass die neu entwickelten Quantencomputer von diesem Konzept abweichen, müsste erste noch bewiesen werden. Denn dass Prozesse ‚sehr schnell‘ sind, ‚parallel‘ stattfinden, und mehr als nur ‚zwei Zustände‘ kennen, sprengt das mathematische Konzept der Turingmaschine nicht notwendigerweise.]
  2. Diese Strukturähnlichkeit des Automatenkonzepts mit den elementaren Wissensnutzungskonzepten der ersten biologischen Zellen (und dann natürlich aller NachfolgerInnen) ist philosophisch von Interesse. Es legt die Vermutung nahe, dass das moderne algorithmische Informationsverarbeitungskonzept möglicherweise eine elementare Eigenschaft des biologischen Lebens selbst anzeigt, das ja nicht in einzelnen isolierten Komponenten besteht, sondern als ein dynamischer Zusammenhang auftritt, der auf der Basis der Eigenschaften der Materie in der Lage ist, solche Prozesse zum Laufen zu bringen, in denen sich dynamische Eigenschaften des Universums in geeignete abstrakte Kodierungen übersetzen lassen, die wiederum zu Befehlsketten für neue Prozesse werden können.

UR-ZEICHEN, UR-SEMIOTISCHER AKTEUR

  1. Mit Blick auf den weiteren Fortgang der biologischen Evolution ist auch noch folgender Perspektivwechsel von Interesse. Die Kodierung von Realität in eine repräsentierende Struktur mittels eines Materials für die Codeelemente (hier: Atomverbindungen im Kontext eines Moleküls) und die Dekodierung der im Material angeordneten Codeelemente mittels einer Dekodierungsvorschrift, kann man auch als semiotischen Prozess verstehen: die zu kodierende (auch prozesshafte) Realität bildet dann die Bedeutung (‚meaning‘), die in einem Zeichenmaterial (die Codeelemente) repräsentiert wird, und der Zusammenhang zwischen Zeichenmaterial und Bedeutung wird über eine Bedeutungsbeziehung hergestellt, welche immer eine prozesshafte Instanz sein muss, die sowohl die Kodierung wie auch die Dekodierung leisten kann. Innerhalb einer realisierten Bedeutungsbeziehung erscheint das Zeichenmaterial dann als Zeichen für die Bedeutung und umgekehrt wird die bezeichnete Realität zur Bedeutung des Zeichens.
  2. Außerhalb der Bedeutungsbeziehung gibt es weder Bedeutung noch Zeichen. Zeichen und Bedeutung sind an eine prozesshafte Instanz gebunden, durch die diese Beziehung generiert und realisiert wird. Nennt man jene prozesshafte Instanz, die Zeichenbeziehungen ermöglicht, einen semiotischen Akteur, dann ist die erste biologische Zelle der erste semiotische Akteur des Universums. Das Prozessmodell, das hier zum Tragen kommt ist – jenseits der molekularbiologischen Perspektive – das eines Automaten, das einer Turingmaschine, und damit repräsentiert die biologische Zelle – in philosophisch formaler Sicht – den ersten algorithmischen semiotischen Akteur des Universums.
  3. Zum Zeichenkonzept gehört auch, dass es konventionell ist: es ist beliebig, welches Ausdrucksmaterial die Prozessinstanz welchen möglichen Realitäten zuordnet. Das Beschränkende daran ist, dass die Zeichenbeziehung, die dann faktisch eingerichtet wurden, spezifisch sind: alle semiotischen Akteure, die die gleiche Zeichenbeziehung benutzen wollen, müssen sich bezüglich der Zeichenbeziehung koordinieren. Das Entgrenzende an einer Zeichenbeziehung ist, dass sie im Prinzip die gesamte Realität in sich aufnehmen kann. Durch einen semiotischen Prozess kann man die empirische Realität in eine abstrakt-virtuelle Realität transformieren und dabei zugleich verändern. Die veränderte virtuelle Realität kann dann dazu benutzt werden, um die empirische Realität im Hinblick auf mögliche zukünftige empirische Zustände zu befragen und neue Varianten voraus zu denken.
  4. Die Verfügbarkeit einer Zeichenbeziehung gibt damit einem individuellen System eine potentiell unbegrenzte Macht zum Verändern. Andererseits funktioniert dies nur, wenn der semiotische Akteur nicht alleine agiert, sondern als Teil einer Kollektion von semiotischen Akteuren. Jeder kann zwar die Zeichenbeziehung für sich ändern, sie gehört aber niemandem alleine. Es ist ein kollektives Wissen, das sich den einzelnen schafft und durch die Aktivität des einzelnen partiell, graduell modifizierbar ist.
  5. In der Phase der ersten semiotischen Revolution des Lebens wurde die Einheit der Zeichenbeziehung gewahrt durch die gemeinsame Nutzung der RNA- und DNA-Moleküle samt deren molekularen Kodierungs- und Dekodierungsstrukturen, die allen Zellen gleich sind. Und diese gesamte Zeichenstruktur war realisiert als eine universelle Turingmaschine.

 

REPRÄSENTATIONSPROBLEME

 

  1. Man kann sich fragen, in welcher Weise sich diese biologisch vorfindbaren Strukturen und Dynamiken im bisherigen Komplexitätskonzept identifizieren lassen? Wie lässt sich eine algorithmische semiotische Prozessstruktur mit Gedächtnis systemtheoretisch fassen? Was sagen schon Input-Output Mengen, interne Level, mit Blick auf solch komplexe Eigenschaften?
  2. Zeitlich punktuelle und beziehungsmäßig isolierte repräsentierende Strukturen können offensichtlich Phänomene, die sich in der Zeit erstrecken und in Wechselwirkungen stattfinden, nicht angemessen repräsentieren. Dazu kommen semiotische Eigenschaften und auch Erfolgskriterien der empirischen Systeme, die sich neben der Zeit auch in übergeordneten Strukturen repräsentieren (wenn überhaupt).
  3. Zusätzlich gibt es das Phänomen der Strukturveränderung STR im Laufe der Zeit, die zugleich einhergeht mit Verhaltensänderungen f. Und diese Veränderungen erfolgen nicht isoliert, sondern in einem Feld anderer Strukturen {<STR1,f1>, …, <STRn,fn>}(t1) ==> {<STR1,f1>, …, <STRn,fn>}(t1+1) und von Umgebungskontexten {C1, …, Cn}(t1)==> {C1, …, Cn}(t1+1) , die sich mit verändern.
  4. Jede einzelne biologische Struktur ist zudem Teil einer übergreifenden biologischen Population POP, die einen ähnlich kodierten Wissensspeicher G teilt, also POP = {Menge aller STRi für die gilt, dass ihr kodiertes Wissen Gi zur einer Ähnlichkeitsklasse Gi gehört}.
  5. Hier deuten sich komplexe Vernetzungsstrukturen in der Zeit an, die in dem bisherigen Komplexitätskonzept nicht befriedigend repräsentiert sind.
  6. Mit diesen ungelösten Fragen im Hinterkopf stellt sich die weitere Frage, welche der nachfolgenden Ereignisse in der biologischen Evolution eine weitere Steigerung der Komplexität manifestieren?

 

GEHIRN – BEWUSSTSEIN – GEIST

 

  1. Man kann beobachten, wie biologische Zellen sich in nahezu alle Lebensbereiche der Erde ausbreiten: im Meer, im Sediment, auf Land, in der Luft, in heißen und kalten Umgebungen, ohne und mit Sauerstoff, in immer komplexeren Verbänden von Zellen, mit immer komplexeren Strukturen innerhalb der Verbände, mit komplexer werdenden Kooperationen aufgrund von Kommunikation, als Pflanzen und Tiere, als Einzelgänger arbeitend, in Gruppen, Schwärmen, ganzen ‚Staaten‘, mit immer komplexeren Sprachen, mit Schriftsystemen, mit immer komplexeren Werkzeugen, …
  2. … die äußerlich beobachtbaren immer komplexer werdenden Verhaltensweisen korrelieren mit einer zunehmenden Verdichtung der internen Informationsverarbeitung mittels spezialisierter Zellverbände (Nervensystem, Gehirn). Die aktuelle Wahrnehmung der eigenen Körperzustände wie Eigenschaften der Umgebung wurde immer differenzierter. Die Informationsverarbeitung kann Wahrnehmungsereignisse abstrahieren, speichern und erinnern... Im Erinnerbaren lassen sich Unterschiede und Veränderungen erkennen, darin Beziehungen, zugleich kann Gegenwärtiges, Erinnertes neu kombiniert (Denken, Planen) werden. Dazu entwickelt sich die Fähigkeit, aktuell Wahrgenommenes symbolisch zu benennen, es mit anderen zu kommunizieren. Dies erschließt neue Dimensionen der Orientierung in der Gegenwart und über die Gegenwart hinaus.
  3. Wichtig ist, dass man diese neuen Fähigkeiten und Leistungen nicht direkt am Nervensystem ablesen kann (obgleich dies immer größer und dichter wird), sondern nur über das beobachtbare Verhalten, über die Wechselwirkungen mit anderen Systemen und der Umgebung. So ist das Gehirn von Säugetieren strukturell systemisch nicht wirklich verschieden, aber die Verhaltensweisen der jeweiligen Systeme im Verbund sind markant anders.
  4. Dies deutet auf eine neue Form von Dualität (oder wie andere vielleicht sagen würden), von Dialektik hin: die zunehmende Komplexität des Verhaltens korrespondiert mit einer entsprechend anwachsenden komplexen Umgebung, die ihre empirische Fundierung im Körper, im Gehirn zu haben scheint, aber andererseits kann sich diese Komplexität nur entfalten, nur zeigen, nur manifestieren, in dem Maße, wie diese äußere Komplexität empirisch verfügbar ist. Von daher ist es möglicherweise fruchtlos, zu fragen, was hier Ursache für was ist: das Gehirn für die Umgebung oder die Umgebung für das Gehirn. Manche sprechen hier ja auch von Ko-Evolution. Entscheidend ist offensichtlich der Prozess, durch den sich diese Wechselbeziehungen entfalten und wirken können. Dies impliziert, dass die beteiligten Strukturen plastisch, veränderlich sind.
  5. In der klassischen Philosophie nannte man ein komplexes Verhalten dieser Art ‚geistig‘, da man es im Organismus auf das Prinzip des Pneumas, der Psyche, des Geistes zurückführte (ohne letztlich zu wissen, was das jeweils ‚an sich‘ sein sollte). In diesem Verständnis könnte man formulieren, dass Lebensformen entstanden, deren Verhalten eine Komplexität zeigén, die man als geistig bezeichnen könnte.
  6. Dieses Aufkommen des Geistes (‚Emerging Mind‘) definiert sich damit nicht über die direkt messbaren Strukturen (Nervensystem, Struktur, Umfang,..), sondern über den Umfang der möglichen Zustände des Verhaltens, das direkt abhängig ist sowohl von den möglichen Zuständen des Gehirns, des zugehörigen Körpers, aber auch über die Gegebenheiten der Umwelt. Anders ausgedrückt, das neue Potential dieser Lebensform erkennt man nicht direkt und alleine an ihren materiellen Strukturen, sondern an der Dynamik ihrer potentiellen inneren Zustände in Wechselwirkung mit verfügbaren Umwelten. Es ist nicht nur entscheidend, dass diese Systeme symbolisch kommunizieren konnten, sondern auch WAS; nicht entscheidend alleine, dass sie Werkzeuge bilden konnten, sondern auch WIE und WOZU, usw.
  7. Es ist nicht einfach, dieses neue Potential angemessen theoretisch zu beschreiben, da eben die rein strukturellen Elemente nicht genügend aussagestark sind. Rein funktionelle Aspekte auch nicht. Es kommen hier völlig neue Aspekte ins Spiel.
  8. Für die Frage, wann ungefähr zeitlich solche Lebensformen auf der Erde auftreten, gibt es möglicherweise nicht den einen Zeitpunkt, sondern eher ein Zeitkorridor, innerhalb dessen sich unterschiedliche Phänomene angesammelt haben, die zusammen dann solch einen neuen Komplexitätshöhepunkt anzeigen. (Beginn Hominisation ca. -7 bis -5 Mio ; Migrationswellen ausgehend von Afrika (-130.000 bis -115.000 und -100.000 bis -50.000) ; Entstehung der Schrift  ca. -4000 im Gebiet des fruchtbaren Halbmonds)

 

KOEXISTENZ VON GEIST UND GESELLSCHAFT

  1. Da alle Handlungen des Menschen, die über den Augenblick hinausgehen, an seine Erinnerungs- und Denkfähigkeit gebunden sind, durch die der Augenblick in real erfahrene oder virtuell vorstellbare Zusammenhänge nach hinten und vorne eingebettet werden kann, wird man die gesamte Entwicklung komplexer Gesellschaften immer nur unter Voraussetzung einer entsprechenden Kommunikation und entsprechender Wissensmodelle verstehen können. Das verfügbare Wissen kann stabilisieren, konservieren und – im negativen Fall – blockieren, und im positiven Fall Alternativen aufzeigen, neue Möglichkeiten, Ursache-Wirkung Zusammenhänge deutlich machen.
  2. Daraus legt sich nahe, dass eine Theorie der Gesellschaft die handelnden semiotischen Akteure als Grundelemente umfassen sollte.
  3. Während eine biologische Population von Systemen durch den gemeinsamen biologischen Bauplan (realisiert im DNA-Molekül samt zugehöriger Dekodierungsstruktur) charakterisiert ist, definiert sich eine Gesellschaft von Systemen über gemeinsamen Wissensmodelle mit den zugehörigen semiotischen Prozessen (die Redeweise von den Memen, die Dawkins 1976 eingeführt hat, ist hier möglicherweise zu schwach) sowie den zugehörigen empirischen Umweltkontexten. Zu sagen, dass es eine Ko-Evolution zwischen Umgebung und Gesellschaft gibt ist zu schwach: entscheidend ist die Mikrostruktur des Prozesses und der hier wirkenden Faktoren in einem Multi-Agenten-Prozess mit Wissensanteilen und Bedeutung.

Einen Überblick über alle Blogeinträge von Autor cagent nach Titeln findet sich HIER.

Einen Überblick über alle Themenbereiche des Blogs findet sich HIER.

MEMO PHILOSOPHIE JETZT – WERKSTATTGESPRÄCH – 27.November 2016

EINLADUNG

  1. Entsprechend der Einladung war das Thema dieses Treffens dieses Mal nicht das Fühlen (im philosophischen Sinne), sondern das Denken, unser eigenes Denken.

EINSTIMMUNG

  1. Jeden Tag benutzen wir unser Denken, indem wir mit anderen direkt kommunizieren oder indem wir jemandem etwas schreiben oder von jemand anderem etwas lesen/ hören.
  2. Aber was tun wir da, wenn wir mit anderen direkt kommunizieren?
  3. Die Frage ist nicht neu und hat schon viele Menschen vor uns bewegt.
  4. In einem kleinen historischen Blitzlicht wurde anhand wichtiger Philosophen und Denkern ein Zeitstrahl eingeblendet, der von Platos Geburt bis zur Gegenwart reichte (siehe Bild 1).
Zeittaffel von Plato bis zur Gegenwart
BILD 1: Zeittaffel von Plato bis zur Gegenwart
  1. Aus der Breite der (antiken) griechischen Philosophie waren stellvertretend nur die Namen der beiden bekanntesten griechischen Denker Plato und Aristoteles angeführt. Es dauerte ca. 600 – 800 Jahre, bis einige wenige Werke von Aristoteles im römischen Reich eine Übersetzung fanden, die bis ins Mittelalter wirkten.
  2. Im Mittelalter – hier abgebildet in der Spanne zwischen ca. 735 und 1360, also ca. 600 Jahre – gab es erst die Phase der direkten Aufnahme der wenigen aristotelischen Texte (zusammen mit Werken von Porphyr, Victorinus und Boethius); aus der intensiven Kommentierung entstanden zunehmend eigene, neue Positionen, die am Ende des 14.Jahrhunderts zu dem führte, was dann später neue empirische Wissenschaft, neue Logik und Mathematik bzw. neue Philosophie genannt wurde.
  3. Der Überblick machte dann einen Sprung in die letzten 150 Jahre bis zur Gegenwart.
  4. Der Überblick beginnt mit Bréal, der als Begründer der Idee einer Semantik gilt, der Lehre von der sprachlichen Bedeutung. Aus der Vielzahl der hier einschlägigen Denker und Denkerinnen folgt eine Auswahl der besonders bekannten Namen (teilweise mit Angabe der hier einschlägigen Werke).
  5. Allerdings, wie neuere Studien zum Mittelalter zeigen, sind viele der Ideen, die heute als neu daher kommen, im Mittelalter zumindest angedacht worden. Während im neuzeitlichen Denken des 20.Jahrhunderts die formalen Aspekte des Denkens und Sprechens stark bis fast vollständig von den assoziierten Inhalten (Bedeutungen) losgelöst erscheinen, hat das Mittelalter noch versucht, die Ausdrucksstrukturen und die Logik in ihrer intensiven Wechselwirkung zu denken. So sind z.B. die google-Algorithmen zur Analyse von Texten (und Bildern und …) heute ausschließlich an den formalen Ausdruckselementen orientiert; ein Bezug zu assoziierten Bedeutungen, wie sie jeder normale Sprecher-Hörer benutzt, fehlt vollständig. Dieser Bezug ist mit den bekannten Algorithmen auch nicht zu bekommen.
  6. Nach dieser blitzlichtartigen Einbettung der aktuellen Situation in den übergreifenden Denkkontext gab es die ‚individuelle Fühlpause‘ (manche nennen dies Meditation). Jeder konnte für sich – wie auch immer – 20 Min meditieren und sich anschließend Notizen machen.
  7. Wir stiegen dann in die erste Diskursrunde ein.(Siehe Bild 2)
PhJ Werkstattgespraech 27.November 2016 im INM - Gedankenskizze
BILD 2: PhJ Werkstattgespraech 27.November 2016 im INM – Gedankenskizze

START MIT EINER ÄUSSERUNG

  1. Für das gemeinsame Gedankenexperiment gab es zwei Leitfragen, von denen wir letztlich nur die erste ansatzweise bearbeiten konnten: FRAGE1: WIE HÄNGT EIN SPRACHLICHER AUSDRUCK MIT SEINER BEDEUTUNG ZUSAMMEN?
  2. Das Experiment begann damit, dass ein Teilnehmer aus der Runde spontan eine Äußerung macht: „Es ist behaglich“.
  3. Anhand dieser sprachlichen Äußerung entwickelte sich ein lebhaftes und intensives Gespräch, in dem jeder immer neue Aspekte beisteuerte.
  4. Wie man aus dem Bild 2 entnehmen kann, gab es zunächst mal Äußerungen von anderen TeilnehmernInnen, wie man diese anderen es formuliert hätten (siehe Bild 2).
  5. Daraus ergab sich, dass eine aktuelle, konkrete Äußerung in Beziehung zu setzen ist zum jeweiligen Sprecher bzw. Hörer. Je nach Sprecher empfindet dieser den Raum mit seiner für alle gleichen Temperatur entweder zu warm (also nicht behaglich), gerade richtig (z.B. behaglich) oder ganz anders.
  6. Außerdem empfanden manche Teilnehmer als Hörer die Allgemeinheit des Ausdrucks („Es ist“) zu vage. Lieber hätten sie gehört, dass der Sprecher das konkreter sagt, mehr über sich selbst („Ich empfinde es…“), was dem Hörer eher die Möglichkeit gibt, die Situation einzuschätzen. In der allgemeinen, unbestimmten Formulierung konnte es klingen, als ob der Sprecher für sich in Anspruch nimmt, auch für die anderen zu sprechen. Das fordert evtl. Widerspruch heraus…
  7. Dann wurde darauf aufmerksam gemacht, dass die Art der sprachlichen Äußerungen unterschiedliche Muster zulässt. Neben sachlicher Feststellung/ Behauptung gibt es auch einfache Ausrufe, Fragen, Befehle, Versprechen usw.
  8. Weitere Aspekte kamen ins Spiel: die Körpersprache des Sprechers. Wie steht diese im Verhältnis zu dem, was er sagt.
  9. Mit Beispielen aus eigenen Sprecherfahrungen wurde thematisiert, wie jemand von ganz vielen verschiedenen Gewohnheiten, Regeln, gesellschaftlichen Erwartungen in seinen Äußerungen gesteuert sein kann. Der Begriff der Rolle wurde eingeführt. Die Gesamtheit der wirkenden Regeln und Erwartungen können in der jeweiligen Situationen normativ wirken: jemand hat in einer bestimmten Situation bestimmte Gefühle, muss aber als Elternteil in diesem Moment eine gewisse Verantwortung wahrnehmen, entsprechend ein Therapeut in einem Beratungsgespräch, ein Lehrer in einer Unterrichtssituation, usw.
  10. Angeregt von Wittgenstein brachte ein Teilnehmer auch das Wort Sprachspiel in den Diskurs ein. Eine einzelne isolierte sprachliche Äußerung allein ist oft/ meistens nicht verständlich ohne die Einbettung in die Situation, ohne das Wechselspiel zwischen den Beteiligten, ohne dass alle Beteiligten in der Situation bestimmten (unterstellten) Regeln folgen.
  11. Ferner spielt der zeitliche Ablauf eine Rolle: was war vorher? So erwähnten einige TeilnehmerInnen, dass sie die vorausgehende individuelle Fühlzeit (Meditation) als sehr angenehm, beruhigend, entspannend erlebt hatten und danach ganz anders in den Diskurs eingestiegen sind.

DENKEN ÜBER DAS DENKEN

  1. Dies führte im Verlauf der zweiten Diskursrunde dann zum Versuch, das bislang Gesagte aus einer mehr reflektierenden Position nochmals zu betrachten. Anhand der Frage 1 gab es mehrere Anregungen des Gesprächsleiters, die Erzählperspektive des Teilnehmers mal zu verlassen und über den Diskurs zu reden. Erst als im unteren Teil von Bild 2 Ansätze einer theoretischen Modellbildung skizziert wurden, in der der Sprecher-Hörer als ein abstrakter Kreis erschien, der verschiedene sinnliche Wahrnehmungen hat, verschiedene Motive/ Interessen sowie unterschiedliche Erinnerungen/ erworbene Kompetenzen, setzte sich ansatzweise der Gedanke durch, dass die Ausdruckselemente (gesprochene Laute, geschriebene Zeichen, bestimmte Gesten,…) nicht automatisch, von vornherein, mit etwas anderem, dem, was dann Bedeutung verleiht, assoziiert sind. Man kann etwas sehen (einen Tisch im Zimmer) und etwas hören (einen sprachlichen Ausdruck ‚Tisch‘). Ohne dass man notwendigerweise den gesprochenen Ausdruck ‚Tisch‘ mit einem gesehenen Objekt (Tisch) assoziiert. Allein die Vielzahl der unterschiedlichen Sprachen zeigt, dass der deutsche Ausdruck für Russen, Chinesen, Spanier, Nigerianer, …. nicht zwingend ist. Sie haben das Problem anders gelöst.
  2. Ein Teilnehmer betonte mehrfach, dass man das Sprachgeschehen nicht in seine Bestandteile auflösen könne/ sollte, da man es ansonsten nicht verstehen würde. Mit Hinweis auf das (noch sehr primitive) Modell wurde erläutert, dass das sich Bewusstmachen der unterschiedlichen Komponenten, die in der interne Maschinerie des Sprecher-Hörers (letztlich im Gehirn) solch ein dynamisches Verhalten ermöglichen, kein Gegensatz sein muss zu einem holistischen Blick auf ein dynamisches Sprachgeschehen, eingebettet in Situationsfolgen. Das Zustandekommen von Assoziationen der unterschiedlichsten Arten in komplexen Handlungsfolgen ist gerade der Kern dessen, was man Lernen nennt. Im Lernprozess fließen alle diese unterschiedlichen Komponenten zusammen (aber nicht zwangsweise!).

AUSBLICK MIT FRAGEN

  1. Gegen Ende stellten sich dann viele neue Fragen.
  2. Z.B. die Frage nach den realen, konkreten Objekten in der Sprechsituation und der Frage, ob und wie diese als abstrakte Objekte im Kopf sein können, auch wenn sie in der konkreten Situation nicht mehr vorkommen. (So kann man ja über Gegenstände, Objekte auch in ihrer Abwesenheit sprechen).
  3. Eng damit zusammenhängend die Frage nach allgemeinen Begriffen. Wir reden von Tischen, jeder konkrete Tisch ist aber anders; entsprechend Begriffe wie Stuhl, Tasse, Mensch usw.
  4. Andere Fragestellungen ergaben sich aus dem Eindruck, dass sich die Sprache verrohen würde, vereinfachen.
  5. Oder: welche Bedeutung kommt der Handschrift zu? Kann man auf sie verzichten ohne negative Wirkung auf das Sprachvermögen/ das Sprachverstehen?
  6. Schließlich der Wunsch, dass die einzelnen noch mehr Beispiele aus ihrer persönlichen Sprachlerngeschichte beisteuern, da die Beispiele, die während des Gesprächs spontan erzählt wurden, sehr aufschlussreich waren.

Einen Überblick über alle Einträge zur Philosophiewewrkstatt nach Titeln findet sich HIER.

Einen Überblick über alle Themenbereiche des Blogs finden sich HIER.

MATHEMATIK UND WIRKLICHKEIT – DISKUTIERT AM BEISPIEL DES BUCHES VON TEGMARK: Our Mathematical Universe (2014) – Teil2

Max Tegmark (2014), Our Mathematical Universe. My Quest of the Ultimate Nature of Reality, New York: Alfred A.Knopf

Nachtrag: 3.Okt.13:55h, Bild zum letzten Abschnitt

KONTEXT

1. Diesem Teil ging ein einleitender Teil 1 voraus. In ihm wird ein erster Horizont aufgespannt. Darin u.a. die These, dass das Universum sich nicht nur mathematisch beschreiben lässt, sondern selbst auch ein mathematisches Objekt sei.
2. Für die weitere Diskussion werden die Kapitel 2-8 zunächst übersprungen und die Aufmerksamkeit gilt den Kapiteln 9ff. In diesen werden die erkenntnistheoretischen und physik- methodischen Voraussetzungen besprochen, die Tegmark in der modernen Physik am Werke sieht.

SELBSTBESCHREIBUNG EINES PHYSIKERS

Konzepte aus Kap.9 Tegmark (2014) herausgezogen und neu angeordnet von G.Doeben-Henisch (2016)
Konzepte aus Kap.9 Tegmark (2014) herausgezogen und neu angeordnet von G.Doeben-Henisch (2016)

3. Wir erinnern uns aus Kapitel 1, dass Tegmark selbst ein Mensch ist, ein homo sapiens (sapiens), der für sich die Methoden der Physik in Anspruch nimmt.
4. Von daher macht es Sinn, dass er sich selbst mit seinen Erkenntnis ermöglichenden Fähigkeiten in den Blick nimmt.
5. In diesem Zusammenhang (vgl. Bild 1) macht er darauf aufmerksam, dass wir nach den neuesten Erkenntnissen der Naturwissenschaften (und der Selbsterfahrung, die er in Beispielen in Form von Selbstexperimenten bemüht), davon ausgehen müssen, dass unsere bewusste Wahrnehmung einer Welt in unserem Körper, in unserem Gehirn stattfindet. Diese bewusste Wahrnehmung bildet für uns die primäre Realität, die man als interne Realität bezeichnen kann, wenn man außerhalb dieser inneren Realität eine externe Realität voraussetzt.
6. Nach allem, was wir heute wissen, übersetzen unsere Sinnesorgane Ereignisse der externen Realität (die in einer angenommenen externen Welt stattfinden), in komplexe Signalverarbeitungsprozesse in unserem Gehirn. Ein kleiner Teil dieser vom Gehirn automatisch – und daher nicht-bewusst – verarbeiteten Signale werden uns bewusst, bilden den Stoff unserer bewussten Wahrnehmung. Er nennt diese bewussten Signale auch Qualia. Sie werden automatisch so vom Gehirn aufbereitet, dass wir beständig z.B. ein konsistentes 3D-Model einer Wirklichkeit zur Verfügung haben, mittels dem wir uns im Raum des Bewusstseins orientieren. Wichtiges Detail: verschiedene Menschen können mit ihren Sinnesorganen u.U. unterschiedliche Signale von der gleichen Signalquelle empfangen (z.B. unterschiedliche Farbwahrnehmung). Trotzdem scheint das interne Modell zum Zwecke der Orientierung zu funktionieren.
7. Die wissenschaftlichen Untersuchungen zum Verhältnis zwischen messbaren externen Ereignissen und der Wahrnehmung dieser Ereignisse basierend auf den weitgehend nicht-bewussten sensorischen Prozessen im Körper deuten an, dass der Körper und das Gehirn keine 1-zu-1 Abbildung der externen Ereignisse liefern, sondern diese auf unterschiedliche Weise verändern: (i) hervorstechend ist, dass nur ein Bruchteil der (heute) messbaren externen Ereignisse erfasst und dann verarbeitet wird (z.B. nur ein kleiner Teil aus dem Wellenspektrum wird erfasst). Wir haben also den Sachverhalt der Auslassung (‚omission‘). (ii) Ferner liefert das Gehirn Eigenschaften in der bewussten Wahrnehmung (z.B. 3D-Modell), die in der auslösenden sensorischen Wahrnehmung (2D) nicht gegeben ist. Diesen Sachverhalt bezeichnet Tegmark als Illusion. (iii) Ferner kann das Gehirn eine Vielzahl von unterschiedlichen Halluzinationen erzeugen (z.B. Erinnerungen, Träume, Fantasien, Wahnvorstellungen …), die weder aktuell in der externen Realität vorkommen noch genau so, wie sie als halluziniertes Ereignis im Bewusstsein auftreten.

THEORIEN

Konzepte Nr.2 aus Kap.9 Tegmark (2014) herausgezogen und neu angeordnet von G.Doeben-Henisch (2016)
Konzepte Nr.2 aus Kap.9 Tegmark (2014) herausgezogen und neu angeordnet von G.Doeben-Henisch (2016)

8. Nach diesen vorbereitenden Überlegungen stellt sich die Frage, wo und wie in diesem Bild der Ort für physikalische Theorien ist?
9. Die große Mehrheit der Philosophen hatte in der Vergangenheit an dieser Stelle die interne Realität, das interne Weltmodell, als möglichen Ort weiterer Theoriebildung vermutet und dazu dann jeweils umfangreichste Überlegungen angestellt, wie man sich diese Maschinerie des bewussten Erkennens vorzustellen habe, damit man in diesem Rahmen das Denken einer physikalischen Theorie rekonstruieren könnte.
10. Tegmark klammert dieses Vorgehensweise vom Start weg aus. Bevor überhaupt ein Gedanke in diese Richtung aufscheinen kann erklärt er, dass der höchste Triumph der Physik darin bestehen würde, dass die Physik mit der externen Realität startet, diese mathematisch beschreibt, und zwar so, dass man innerhalb dieser Beschreibung dann die Entstehung und das Funktionieren der internen Realität ableiten (‚derive‘) kann. (vgl. S.237f)
11. Ihm ist schon bewusst, dass es für eine volle physikalische Theorie dieser Art notwendig wäre, eine vollständig detaillierte Beschreibung des Gehirns, speziell auch des Phänomens des Bewusstseins, mit zu liefern. (vgl. S.238) Aber er meint, man kann sich diese Aufgabe ersparen und den ganzen Komplex der subjektiven (und zugehörigen nicht-bewussten) Prozesse ausklammern (‚decouple‘), weil Menschen die Fähigkeit zeigen, sich trotz und mit ihrer individuellen Subjektivität auf eine Weise miteinander zu verständigen, die auf einer Sicht der externen Welt in der internen Welt beruht, die zwischen Menschen geteilt (‚shared‘) werden kann.
12. Diese zwischen Menschen in der Kommunikation gemeinschaftlichen Sicht der externen Welt (auf der Basis der internen Welt) nennt er Konsensus Realität (‚consensus reality‘).(vgl. S.238f)
13. Die Konsensus Realität verortet er zwischen der externen und der internen Realität.
14. Mit dieser begrifflichen Unterscheidung begründet er für sich, warum eine physikalische Theorie möglich ist, ohne dass man eine Theorie des Bewusstseins hat; er räumt aber ein, dass man natürlich für eine endgültige vollständige (physikalische) Theorie auch eine vollständige Theorie des Bewusstseins samt allen zugehörigen Aspekten bräuchte.
15. Während man sich als Leser noch fragt, wie denn die Physik diese nicht ganz leichte Aufgabe angehen will, erklärt Tegmark ohne weitere Begründung, dass diese delikate Aufgabe nicht von der Physik geleistet werden solle, sondern von der Kognitionswissenschaft (‚cognitive science‘). (vgl. S.238f)
16. Obwohl Tegmark selbst viele Beispiele bringt, die illustrieren sollen, dass es aus Sicht der Physik gerade die Wechselwirkung zwischen der externen und internen Realität war, um auf dem Weg zu einer umfassenden physikalischen Theorie voran zu schreiten (vgl. SS.240ff), delegiert er nun diese delikate Aufgabe an die Kognitionswissenschaft. Warum soll die Kognitionswissenschaft diese delikate Aufgabe lösen können und die Physik nicht? Bedeutet dies, dass die Kognitionswissenschaft ein Teil der Physik ist oder hat sie etwas Besonderes über die Physik hinaus? Letzteres würde seinem Anspruch widersprechen, dass die Physik das Ganze erklärt.
17. Tegmark lässt diese Fragen schlicht offen. Er meint nur, die Physik habe hier noch einen sehr langen Weg zu gehen. (vgl. S.242)
18. Er fällt einfach die Entscheidung, den Aspekt der ersten Realität innerhalb der allgemeinen Theoriebildung in seinem Buch auszuklammern und sich auf die Frage der Rolle der Mathematik in physikalischen Theorien zu beschränken, sofern sie sich mit der externen und der Konsensus Realität beschäftigen.(vgl. S.240)

DISKURS
EIN BISSCHEN ENTTÄUSCHT ….

19. Ich muss gestehen, dass ich als Leser an dieser Stelle des Buches irgendwie enttäuscht bin. Nachdem das Buch mit so viel Elan gestartet ist, so viel wunderbares Wissen aufbietet, um diese Fragen zu erhellen, kommt es an einer entscheidenden Stelle zu einer Art gedanklichen Totalverweigerung. Natürlich kann jeder verstehen – und ich besonders –, dass man aus Zeitgründen eine komplexe Fragestellung vorläufig ausklammert, deren Behandlung ‚nach hinten schiebt‘, aber es ist dennoch schade, nicht als Vorwurf, sondern als Erlebnis.
20. Trotz dieser Einschränkung der Perspektive des weiteren Vorgehens bleiben natürlich noch viele interessante Fragen im Raum, insbesondere das Hauptthema der Rolle der Mathematik in einer physikalischen Theorie verbunden mit der These von Tegmark, dass die externe Realität selbst ein mathematisches Objekt sei.
21. Bevor dieser Aspekt im Blog weiter untersucht wird, soll aber noch ein wenig an dieser Umschaltstelle in der Darstellung von Tegmark verweilt werden. Diese ist zu wichtig, als dass man sein Vorgehen einfach unkommentiert lassen sollte.

INNEHALTEN: EXTERN – INTERN

22. Tegmark geht davon aus, dass eine physikalische Theorie die externe und die Konsensus Realität beschreibt, und dies mit Hilfe der Mathematik.
23. Er stellt einleitend fest, dass wir direkt von der externen Realität aber nichts wissen. Unser Gehirn liefert uns ein Weltmodell W0, das uns als Basis des Verstehens und Verhaltens dient, das aber nicht die Welt ist, wie sie vielleicht jenseits dieses Modells W0 existiert. Die Geschichte des menschlichen Erkennens und die Untersuchungen zum modernen Alltagsverstehen belegen, dass die Erkenntnis, dass unser individuelles Welterleben auf Basis von W0 nicht die Welt sein kann, die jenseits des Gehirns existiert, nicht nur erst wenige tausend Jahre alt ist, sondern es in der Regel nur wenigen Menschen gelingt, dies explizit zu denken, selbst heute (die meisten – alle? – Naturwissenschaftler z.B. sind nicht in der Lage, die mögliche Welt jenseits von W0 unter expliziten Berücksichtigung von W0 zu denken!). Tegmark selbst demonstriert diese Unfähigkeit vor den Augen des Lesers.
24. Er beschreibt zwar empirische (und nicht-empirische) Fakten, die die Annahme der Unterscheidung von W0 und etwas jenseits von W0 nahelegen, aber er macht keine Anstalten, darüber nach zu denken, was dies für empirische Theorien über die Welt jenseits von W0 bedeutet.
25. Wie kann es sein, dass unser Denken in W0 verankert ist, aber doch über eine Welt jenseits von W0 redet, als ob es W0 nicht gibt?
26. Die Evolutionsbiologen sagen uns, dass im Laufe der Evolution von biologischen Systemen deren Gehirne in diesen Systemen so optimiert wurden, dass das jeweilige System nicht durch die internen (automatischen) Berechnungsprozesse des Gehirns abgelenkt wird, sondern nur mit jenen Aspekten versorgt wird, die für das Überleben in der umgebenden Welt (jenseits des Gehirns) wichtig sind; nur diese wurden dem System bewusst. Alles andere blieb im Verborgen, war nicht bewusst. Dies heißt, es war (und ist?) ein Überlebensvorteil, eine Identität von internem Weltmodell W0 und der jeweils umgebenden Welt zu ermöglichen. Hunderttausende von Jahren, Millionen von Jahren war dies überlebensförderlich.
27. In diesem Überlebenskampf war es natürlich auch wichtig, dass Menschen in vielen Situationen und Aufgaben kooperieren. Voraussetzung dafür war eine minimale Kommunikation und dafür eine hinreichend strukturell ähnliche Wahrnehmung von umgebender Welt und deren Aufbereitung in einem internen Modell W0.
28. Kommunikation in einer geteilten Handlungswelt benötigt Signale, die ausgetauscht werden können, die sich mit gemeinsamen wichtigen Sachverhalten assoziieren lassen, die sowohl Teil der äußeren Welt sind wie auch zugleich Teil des internen Modells. Nur durch diese Verbindung zwischen Signalen und signalverbundenen Sachverhalten einerseits und deren hinreichend ähnlichen Verankerung in den individuellen Weltmodellen W0 boten die Voraussetzungen, dass zwei verschiedene Weltmodelle – nämlich eines von einem biologischen System A mit W0_a und eines von einem biologischen System B mit W0_b – miteinander durch kommunikative Akte ausgetauscht, abgestimmt, verstärkt, verändert … werden konnten.
29. Dies ist der mögliche Ort der Konsensus Realität, von der Tegmark spricht.
30. Weil die individuellen Gehirne unterschiedlicher biologischer Systeme der Art homo sapiens (sapiens) eine hinreichend ähnliche Struktur von Signalverarbeitung und Modellgenerierung haben ist es ihnen möglich, Teile ihres Modells W0 mittels Kommunikation auszutauschen. Kommunikativ können sie austauschen, Ob etwas der Fall ist. Kommunikativ können sie sich zu bestimmten Handlungen koordinieren.
31. Die Zuordnung zwischen den benutzten Signalereignissen und den damit assoziierten Sachverhalten ist zu Beginn offen: sie müssen von Fall zu Fall im Bereich von möglichen Alternativen entschieden werden. Dies begründet arbiträre Konventionen, die dann – nach ihrer Einführung – zu pragmatischen Regeln werden können.
32. Die von Tegmark angesprochene Konsensus Realität ist von daher ein hybrides Konstrukt: primär ist es ein Produkt der internen Realität, Teil des internen Weltmodells W0, aber durch die Beziehung zwischen dem internen Modell W0 mit einer unterstellten externen Welt Wx (also z.B. wm0: Wx –→ W0, wm1:W0 –→ Wx*) und der Hypothese, dass diese Abbildungsprozesse bei unterschiedlichen Individuen A und B der gleichen Art homo sapiens (sapiens) hinreichend strukturell ähnlich sind, kann man annehmen, dass W0_a und W0_b strukturell hinreichend ähnlich sind – EQ(W0_a, W0_b) – und eine arbiträre Zuordnung von beliebigen Signalereignissen zu diesen unterstellten Gemeinsamkeiten damit synchronisierbar ist.
33. Man kann an dieser Stelle den fundamentalen Begriff der Zeichenrelation derart einführen, dass man sagt, dass diese grundlegenden Fähigkeit der Assoziierung von Signalereignissen S und zeitgleich auftretenden anderen Ereignissen O in der unterstellten äußeren Welt Wx sich über die Wahrnehmung dann im internen Weltmodell W0 eines biologischen Systems als S‘-O‘-Beziehung repräsentieren lässt. Diese interne Repräsentation einer in der Außenwelt Wx auftretenden Korrelation von Ereignissen S und O ist dann eine Zeichenrelation SR(S‘,O‘). Die an sich arbiträren Signalereignisse S und die davon unabhängigen zeitgleichen Ereignisse O können auf diese Weise in einer internen Beziehung miteinander verknüpft werden. Über diese intern vorgenommene Verknüpfung sind sie dann nicht mehr arbiträr. Ein Signalereignis s aus S und ein anderes Ereignis o aus O erklären sich dann gegenseitig: SR(s‘,o‘) liest sich dann so: das Signalereignis s‘ ist ein Zeichen für das andere Ereignis o‘ und das andere Ereignis o‘ ist die Bedeutung für das Zeichen s‘. Insofern verschiedene Systeme ihre Zeichenrelationen koordinieren entsteht ein Kode, ein Zeichensystem, eine Sprache, mittels deren sie sich auf Basis ihrer internen Weltmodelle W0 über mögliche äußere Welten verständigen können.
34. Die Konsensus Realität wäre demnach jener Teil des Bewusstseins eines biologischen Systems, dessen Phänomene (Qualia) sich über eine hinreichende Korrespondenz mit einer unterstellten Außenwelt Wx mit den internen Modellen W0 anderer Systeme koordinieren lassen.
35. Dass die beteiligten Signalereignisse als Zeichen mittels Symbolen realisiert werden, mittels Ausdrücken über einem Alphabet, später dann mit einem Alphabet, das man einer mengentheoretischen Sprache zuschreiben kann, die zur Grundsprache der modernen Mathematik geworden ist, ist für den Gesamtvorgang zunächst unwesentlich. Entscheidend ist die biologische Maschinerie, die dies ermöglicht, der ‚Trick‘ mit dem Bewusstsein, das das System von der unfassbaren Komplexität der beteiligten automatischen Prozessen befreit, von der Fähigkeit zu Abstraktionen (was hier noch nicht erklärt wurde), von dem fantastischen Mechanismus eines Gedächtnisses (was hier auch noch nicht erklärt wurde), und manchem mehr.
36. Dass Tegmark das Konzept der Konsensus Realität einführt, sich aber die Details dieser Realität ausspart, ist eine Schwachstelle in seiner Theoriebildung, die sich im weiteren Verlauf erheblich auswirken wird. Man kann schon an dieser Stelle ahnen, warum seine These von der äußeren Welt Wx als mathematischem Objekt möglicherweise schon im Ansatz scheitert.

SEMIOTIK GRUNDLEGENDER ALS PHYSIK?

37. Ohne diesen Punkt hier voll zu diskutieren möchte ich an dieser Stelle zu überlegen geben, dass der Erklärungsanspruch der Physik in weiten Teilen sicher berechtigt und unverzichtbar ist. Doch bei der Reflexion auf die Grundlagen einer physikalischen Theorie (die letztlich auch Teil einer wissenschaftlichen Erklärung sein sollte) müssen wir offensichtlich die Physik verlassen. Die klassische und die moderne Physik hat für ihre Existenz und ihr Funktionieren eine Reihe von Voraussetzungen, die nicht zuletzt den Physiker selbst mit einschließen. Sofern dieser Physiker als biologisches System ein Zeichenbenutzer ist, gehen die Gesetzmäßigkeiten eines Zeichenbenutzers als Voraussetzungen in die Physik ein. Sie hinterlassen nachhaltige Spuren in jeder physikalischen Theorie qua Zeichensystem. Diejenige Wissenschaft, die für Zeichen allgemein zuständig war und ist, ist die Semiotik. Bis heute hat die Semiotik zwar noch keine einheitliche, systematische Gestalt, aber dies muss nicht so sein. Man kann die Semiotik genauso wissenschaftlich und voll mathematisiert betreiben wie die moderne Physik. Es hat halt nur noch niemand getan. Aber die Physik hat ja auch noch niemals ihre erkenntnistheoretischen Voraussetzungen vollständig reflektiert. Vielleicht können sich eine neue Semiotik und eine neue Physik die Hand geben für ein gemeinsames Abenteuer des Geistes, was die Denkhemmungen der Vergangenheit vergessen macht. Das Beharren auf tradierten Vorurteilen war schon immer das größte Hindernis für eine tiefere Erkenntnis.

NACHTRAG

Konzepte in Anlehnung an Tegmark (2014) Kap.9 von G.Doeben-Henisch
Konzepte in Anlehnung an Tegmark (2014) Kap.9 von G.Doeben-Henisch

In Ergänzung zum vorausgehenden Text kann es hilfreich sein, sich klar zu machen, dass Tegmark als Physiker ein biologisches System der Art homo sapiens (sapiens) ist, dessen primäre Wirklichkeit in einem internen Modell der Art W0 zu suchen ist. Um sich mit seinen Physikkollegen zu verständigen benutzt er mathematische Texte, die mit bestimmten Messwerten korreliert werden können, die ebenfalls als Zeichen von Messprozeduren generiert werden. Der Zusammenhang der Messwerte mit den mathematischen Texten wird intern (!!!) kodiert. Insofern spielt die Art und Weise der internen Modelle, ihre Beschaffenheit, ihre Entstehung, ihre Abgleichung etc. eine fundamentale Rolle in der Einschätzung der potentiellen Bedeutung einer Theorie. Physikalische Theorien sind von daher grundlegend nicht anders als alle anderen Theorien (sofern diese mathematische Ausdrücke benutzen, was jeder Disziplin freisteht). Sie unterscheiden sich höchstens durch die Art der Messwerte, die zugelassen werden. Sofern eine moderne philosophische Theorie physikalische Messwerte akzeptiert — und warum sollte sie dies nicht tun? — überlappt sich eine philosophische Theorie mit der Physik. Sofern eine moderne philosophische Theorie die Voraussetzungen einer physikalischen Theorie in ihree Theoriebildung einbezieht, geht sie transparent nachvollziehbar über die Physik hinaus. Semiotik sehe ich als Teilaspekt der Philosophie.

Einen Überblick über alle Beiträge des Autors cagent nach Titeln findet sich HIER.

Einen Überblick über alle Themen des Blogs findet sich HIER.

SEMIOTIK UND KÜNSTLICHE INTELLIGENZ. EIN VIELVERSPRECHENDES TEAM. Nachschrift eines Vortrags an der Universität Passau am 22.Okt.2015

KONTEXT

  1. Im Rahmen der interdisziplinären Ringvorlesung Grenzen (Wintersemester 2015/16) an der Universität Passau (organisiert von der Deutsche Gesellschaft für Semiotik (DGS) e.V. in Kooperation mit der Professur für Neuere deutsche Literaturwissenschaft und Mediensemiotik (Prof. Dr. Jan-Oliver Decker und Dr. Stefan Halft) hatte ich einen Vortrag angenommen mit dem Titel Semiotik und künstliche Intelligenz. Ein vielversprechendes Team. Wie immer halte ich Vorträge immer zu Fragen, die ich bis dahin noch nicht ausgearbeitet hatte und nutze diese Herausforderung, es dann endlich mal zu tun.
  2. Die Atmosphäre beim Vortrag war sehr gut und die anschließenden Gespräche brachte viele interessanten Aspekte zutage, was wir im Rahmen der DGS noch tun sollten/ könnten, um das Thema weiter zu vertiefen.

MOTIV – WARUM DIESES THEMA

  1. Angesichts der vielfältigen Geschichte der Semiotik könnte man natürlich ganze Abende nur mit Geschichten über die Semiotik füllen. Desgleichen im Fall der künstlichen Intelligenz [KI]. Der Auslöser für das Thema war dann auch der spezielle Umstand, dass im Bereich der KI seit etwa den 80iger Jahren des 20.Jahrhunderts in einigen Forschungsprojekten das Thema Semiotik ganz neu auftaucht, und nicht als Randthema sondern verantwortlich für die zentralen Begriffe dieser Forschungen. Gemeint sind die berühmten Roboterexperimente von Luc Steels (ähnlich auch aufgegriffen von anderen, z.B. Paul Vogt) (siehe Quellen unten).
  2. Unter dem Eindruck großer Probleme in der klassischen KI, die aus einem mangelnden direkten Weltbezug resultierten (das sogenannte grounding Problem) versuchte Steels, Probleme des Zeichen- und Sprachlernens mit Hilfe von Robotern zu lösen, die mit ihren Sensoren direkten Kontakt zur empirischen Welt haben und die mit ihren Aktoren auch direkt auf die Welt zurück wirken können. Ihre internen Verarbeitungsprozesse können auf diese Weise abhängig gemacht werden (eine Form von grounding) von der realen Welt (man spricht hier auch von embodied intelligence).
  3. Obwohl Steels (wie auch Vogt) auf ungewöhnliche Weise grundlegende Begriffe der Semiotik einführen, wird dieser semiotische Ansatz aber nicht weiter reflektiert. Auch findet nicht wirklich eine Diskussion des Gesamtansatzes statt, der aus dieser Kombination von Semiotik und Robotik/ KI entsteht bzw. entstehen könnte. Dies ist schade. Der Vortrag Semiotik und künstliche Intelligenz. Ein vielversprechendes Team stellt einen Versuch dar, heraus zu arbeiten, warum die Kombination Semiotik und KI nicht nur Sinn macht, sondern eigentlich das Zeug hätte, zu einem zentralen Forschungsparadigma für die Zukunft zu werden. Tatsächlich liegt dem Emerging Mind Projekt, das hier im Blog schon öfters erwähnt wurde und am 10.November 2015 offiziell eröffnet werden wird, genau dieses Semiotik-KI-Paradigma zugrunde.

WELCHE SEMIOTIK?

  1. Wer Wörterbücher zur Semiotik aufschlägt (z.B. das von Noeth 2000), wird schnell bemerken, dass es eine große Vielfalt von Semiotikern, semiotischen Blickweisen, Methoden und Theorieansätze gibt, aber eben nicht die eine große Theorie. Dies muss nicht unbedingt negativ sein, zumal dann nicht, wenn wir ein reiches Phänomen vor uns haben, das sich eben einer einfachen Theoriebildung widersetzt. Für die Praxis allerdings, wenn man Semiotik in einer realen Theoriebildung einsetzen möchte, benötigt man verbindliche Anknüpfungspunkte, auf die man sich bezieht. Wie kann man solch eine Entscheidung motivieren?
  2. Aus der Sicht der Wissenschaftsphilosophie biete es sich an, die unterschiedlichen Zugangsweisen zur Erfahrung und und Beschreibung von Wirklichkeit als quasi Koordinatensystem zu wählen, diesem einige der bekanntesten semiotischen Ansätze zu zuordnen und dann zu schaue, welche dieser semiotischen Positionen der Aufgabenstellung am nächsten kommen. Von einer Gesamttheorie her betrachtet sind natürlich alle Ansätze wichtig. Eine Auswahl bzw. Gewichtung kann nur pragmatische Gründe haben.

ZUGÄNGE ZUR WIRKLICHKEIT

  1. Grundsätzlich gibt es aus heutiger Sicht zwei Zugangsweisen: über den intersubjektiven (empirischen) Bereich und über das subjektive Erleben.
  2. Innerhalb des empirischen Bereichs gab es lange Zeit nur den Bereich des beobachtbaren Verhaltens [SR] (in der Psychologie) ohne die inneren Zustände des Systems; seit ca. 50-60 Jahren eröffnen die Neurowissenschaften auch einen Zugriff auf die Vorgänge im Gehirn. Will man beide Datenbereiche korrelieren, dann gerät man in das Gebiet der Neuropsychologie [NNSR].
  3. Der Zugang zur Wirklichkeit über den subjektiven Bereich – innerhalb der Philosophie auch als phänomenologischer Zugang bekannt – hat den Vorteil einer Direktheit und Unmittelbarkeit und eines großen Reichtums an Phänomenen.
  4. Was den meisten Menschen nicht bewusst ist, ist die Tatsache, dass die empirischen Phänomene nicht wirklich außerhalb des Bewusstseins liegen. Die Gegenstände in der Zwischenkörperzone (der empirische Bereich) sind als Gegenstände zwar (was wir alle unterstellen) außerhalb des Bewusstseins, aber die Phänomene, die sie im Bewusstsein erzeugen, sind nicht außerhalb, sondern im Bewusstsein. Das, was die empirischen Phänomene [PH_em] von den Phänomenen, unterscheidet, die nicht empirisch [PH_nem] sind, ist die Eigenschaft, dass sie mit etwas in der Zwischenkörperwelt korrespondieren, was auch von anderen Menschen wahrgenommen werden kann. Dadurch lässt sich im Falle von empirischen Phänomenen relativ leicht Einigkeit zwischen verschiedenen Kommunikationsteilnehmern über die jeweils korrespondierenden Gegenstände/ Ereignisse erzielen.
  5. Bei nicht-empirischen Phänomenen ist unklar, ob und wie man eine Einigkeit erzielen kann, da man nicht in den Kopf der anderen Person hineinschauen kann und von daher nie genau weiß, was die andere Person meint, wenn sie etwas Bestimmtes sagt.
  6. Die Beziehung zwischen Phänomenen des Bewusstseins [PH] und Eigenschaften des Gehirns – hier global als NN abgekürzt – ist von anderer Art. Nach heutigem Wissensstand müssen wir davon ausgehen, dass alle Phänomene des Bewusstseins mit Eigenschaften des Gehirns korrelieren. Aus dieser Sicht wirkt das Bewusstsein wie eine Schnittstelle zum Gehirn. Eine Untersuchung der Beziehungen zwischen Tatsachen des Bewusstseins [PH] und Eigenschaften des Gehirns [NN] würde in eine Disziplin fallen, die es so noch nicht wirklich gibt, die Neurophänomenologie [NNPH] (analog zur Neuropsychologie).
  7. Der Stärke des Bewusstseins in Sachen Direktheit korrespondiert eine deutliche Schwäche: im Bewusstsein hat man zwar Phänomene, aber man hat keinen Zugang zu ihrer Entstehung! Wenn man ein Objekt sieht, das wie eine Flasche aussieht, und man die deutsche Sprache gelernt hat, dann wird man sich erinnern, dass es dafür das Wort Flasche gibt. Man konstatiert, dass man sich an dieses Wort in diesem Kontext erinnert, man kann aber in diesem Augenblick weder verstehen, wie es zu dieser Erinnerung kommt, noch weiß man vorher, ob man sich erinnern wird. Man könnte in einem Bild sagen: das Bewusstsein verhält sich hier wie eine Kinoleinwand, es konstatiert, wenn etwas auf der Leinwand ist, aber es weiß vorher nicht, ob etwas auf die Leinwand kommen wird, wie es kommt, und nicht was kommen wird. So gesehen umfasst das Bewusstsein nur einen verschwindend kleinen Teil dessen, was wir potentiell wissen (können).

AUSGEWÄHLTE SEMIOTIKER

  1. Nach diesem kurzen Ausflug in die Wissenschaftsphilosophie und bevor hier einzelne Semiotiker herausgegriffen werden, sei eine minimale Charakterisierung dessen gegeben, was ein Zeichen sein soll. Minimal deshalb, weil alle semiotischen Richtungen, diese minimalen Elemente, diese Grundstruktur eines Zeichens, gemeinsam haben.
  2. Diese Grundstruktur enthält drei Komponenten: (i) etwas, was als Zeichenmaterial [ZM] dienen kann, (ii) etwas, das als Nichtzeichenmaterial [NZM] fungieren kann, und (iii) etwas, das eine Beziehung/ Relation/ Abbildung Z zwischen Zeichen- und Nicht-Zeichen-Material in der Art repräsentiert, dass die Abbildung Z dem Zeichenmaterial ZM nicht-Zeichen-Material NZM zuordnet. Je nachdem, in welchen Kontext man diese Grundstruktur eines Zeichens einbettet, bekommen die einzelnen Elemente eine unterschiedliche Bedeutung.
  3. Dies soll am Beispiel von drei Semiotikern illustriert werden, die mit dem zuvor charakterisierten Zugängen zur Wirklichkeit korrespondieren: Charles William Morris (1901 – 1979), Ferdinand de Saussure (1857-1913) und Charles Santiago Sanders Peirce (1839 – 1914) .
  4. Morris, der jüngste von den Dreien, ist im Bereich eines empirischen Verhaltensansatzes zu positionieren, der dem verhaltensorientierten Ansatz der modernen empirischen Psychologie nahe kommt. In diesem verhaltensbasierten Ansatz kann man die Zeichengrundstruktur so interpretieren, dass dem Zeichenmaterial ZM etwas in der empirischen Zwischenwelt korrespondiert (z.B. ein Laut), dem Nicht-Zeichen-Material NZM etwas anderes in der empirischen Außenwelt (ein Objekt, ein Ereignis, …), und die Zeichenbeziehung Z kommt nicht in der empirischen Welt direkt vor, sondern ist im Zeichenbenutzer zu verorten. Wie diese Zeichenbeziehung Z im Benutzer tatsächlich realisiert ist, war zu seiner Zeit empirische noch nicht zugänglich und spielt für den Zeichenbegriff auch weiter keine Rolle. Auf der Basis von empirischen Verhaltensdaten kann die Psychologie beliebige Modellannahmen über die inneren Zustände des handelnden Systems machen. Sie müssen nur die Anforderung erfüllen, mit den empirischen Verhaltensdaten kompatibel zu sein. Ein halbes Jahrhundert nach Morris kann man anfangen, die psychologischen Modellannahmen über die Systemzustände mit neurowissenschaftlichen Daten abzugleichen, sozusagen in einem integrierten interdisziplinären neuropsychologischen Theorieansatz.
  5. Saussure, der zweit Jüngste von den Dreien hat als Sprachwissenschaftler mit den Sprachen primär ein empirisches Objekt, er spricht aber in seinen allgemeinen Überlegungen über das Zeichen in einer bewusstseinsorientierten Weise. Beim Zeichenmaterial ZM spricht er z.B. von einem Lautbild als einem Phänomen des Bewusstseins, entsprechend von dem Nicht-Zeichenmaterial auch von einer Vorstellung im Bewusstsein. Bezüglich der Zeichenbeziehung M stellt er fest, dass diese außerhalb des Bewusstseins liegt; sie wird vom Gehirn bereit gestellt. Aus Sicht des Bewusstseins tritt diese Beziehung nur indirekt in Erscheinung.
  6. Peirce, der älteste von den Dreien, ist noch ganz in der introspektiven, phänomenologischen Sicht verankert. Er verortet alle drei Komponenten der Zeichen-Grundstruktur im Bewusstsein. So genial und anregend seine Schriften im einzelnen sind, so führt diese Zugangsweise über das Bewusstsein zu großen Problemen in der Interpretation seiner Schriften (was sich in der großen Bandbreite der Interpretationen ausdrückt wie auch in den nicht selten geradezu widersprüchlichen Positionen).
  7. Für das weitere Vorgehen wird in diesem Vortrag der empirische Standpunkt (Verhalten + Gehirn) gewählt und dieser wird mit der Position der künstlichen Intelligenz ins Gespräch gebracht. Damit wird der direkte Zugang über das Bewusstsein nicht vollständig ausgeschlossen, sondern nur zurück gestellt. In einer vollständigen Theorie müsste man auch die nicht-empirischen Bewusstseinsdaten integrieren.

SPRACHSPIEL

  1. Ergänzend zu dem bisher Gesagten müssen jetzt noch drei weitere Begriffe eingeführt werden, um alle Zutaten für das neue Paradigma Semiotik & KI zur Verfügung zu haben. Dies sind die Begriffe Sprachspiel, Intelligenz sowie Lernen.
  2. Der Begriff Sprachspiel wird auch von Luc Steels bei seinen Roboterexperimenten benutzt. Über den Begriff des Zeichens hinaus erlaubt der Begriff des Sprachspiels den dynamischen Kontext des Zeichengebrauchs besser zu erfassen.
  3. Steels verweist als Quelle für den Begriff des Sprachspiels auf Ludwig Josef Johann Wittgenstein (1889-1951), der in seiner Frühphase zunächst die Ideen der modernen formalen Logik und Mathematik aufgriff und mit seinem tractatus logico philosophicus das Ideal einer am logischen Paradigma orientierten Sprache skizzierte. Viele Jahre später begann er neu über die normale Sprache nachzudenken und wurde sich selbst zum schärfsten Kritiker. In jahrelangen Analysen von alltäglichen Sprachsituationen entwickelte er ein facettenreiches Bild der Alltagssprache als ein Spiel, in dem Teilnehmer nach Regeln Zeichenmaterial ZM und Nicht-Zeichen-Material NZM miteinander verknüpfen. Dabei spielt die jeweilige Situation als Kontext eine Rolle. Dies bedeutet, das gleiche Zeichenmaterial kann je nach Kontext unterschiedlich wirken. Auf jeden Fall bietet das Konzept des Sprachspiels die Möglichkeit, den ansonsten statischen Zeichenbegriff in einen Prozess einzubetten.
  4. Aber auch im Fall des Sprachspielkonzepts benutzt Steels zwar den Begriff Sprachspiel, reflektiert ihn aber nicht soweit, dass daraus ein explizites übergreifendes theoretisches Paradigma sichtbar wird.
  5. Für die Vision eines neuen Forschungsparadigmas Semiotik & KI soll also in der ersten Phase die Grundstruktur des Zeichenbegriffs im Kontext der empirischen Wissenschaften mit dem Sprachspielkonzept von Wittgenstein (1953) verknüpft werden.

INTELLIGENZ

  1. Im Vorfeld eines Workshops der Intelligent Systems Division des NIST 2000 gab es eine lange Diskussion zwischen vielen Beteiligten, wie man denn die Intelligenz von Maschinen messen sollte. In meiner Wahrnehmung verhedderte sich die Diskussion darin, dass damals nach immer neuen Klassifikationen und Typologien für die Architektur der technischen Systeme gesucht wurde, anstatt das zu tun, was die Psychologie schon seit fast 100 Jahren getan hatte, nämlich auf das Verhalten und dessen Eigenschaften zu schauen. Ich habe mich in den folgenden Jahren immer wieder mit der Frage des geeigneten Standpunkts auseinandergesetzt. In einem Konferenzbeitrag von 2010 (zusammen mit anderen, insbesondere mit Louwrence Erasmus) habe ich dann dafür argumentiert, das Problem durch Übernahme des Ansatzes der Psychologie zu lösen.
  2. Die Psychologie hatte mit Binet (1905), Stern (1912 sowie Wechsler (1939) eine grundsätzliche Methode gefunden hatte, die Intelligenz, die man nicht sehen konnte, indirekt durch Rückgriff auf Eigenschaften des beobachtbaren Verhaltens zu messen (bekannt duch den Begriff des Intelligenz-Quotienten, IQ). Die Grundidee bestand darin, dass zu einer bestimmten Zeit in einer bestimmten Kultur bestimmte Eigenschaften als charakteristisch für ein Verhalten angesehen werden, das man allgemein als intelligent bezeichnen würde. Dies impliziert zwar grundsätzlich eine gewisse Relativierung des Begriffs Intelligenz (was eine Öffnung dahingehend impliziert, dass zu anderen Zeiten unter anderen Umständen noch ganz neue Eigenschaftskomplexe bedeutsam werden können!), aber macht Intelligenz grundsätzlich katalogisierbar und damit messbar.
  3. Ein Nebeneffekt der Bezugnahme auf Verhaltenseigenschaften findet sich in der damit möglichen Nivellierung der zu messenden potentiellen Strukturen in jenen Systemen, denen wir Intelligenz zusprechen wollen. D.h. aus Sicht der Intelligenzmessung ist es egal ob das zu messende System eine Pflanze, ein Tier, ein Mensch oder eine Maschine ist. Damit wird – zumindest im Rahmen des vorausgesetzten Intelligenzbegriffs – entscheidbar, ob und in welchem Ausmaß eine Maschine möglicherweise intelligent ist.
  4. Damit eignet sich dieses Vorgehen auch, um mögliche Vergleiche zwischen menschlichem und maschinellem Verhalten in diesem Bereich zu ermöglichen. Für das Projekt des Semiotk & KI-Paradigmas ist dies sehr hilfreich.

LERNEN

  1. An dieser Stelle ist es wichtig, deutlich zu machen, dass Intelligenz nicht notwendigerweise ein Lernen impliziert und Lernen nicht notwendigerweise eine Intelligenz! Eine Maschine (z.B. ein schachspielender Computer) kann sehr viele Eigenschaften eines intelligenten Schachspielers zeigen (bis dahin, dass der Computer Großmeister oder gar Weltmeister besiegen kann), aber sie muss deswegen nicht notwendigerweise auch lernfähig sein. Dies ist möglich, wenn erfahrene Experten hinreichend viel Wissen in Form eines geeigneten Programms in den Computer eingeschrieben haben, so dass die Maschine aufgrund dieses Programms auf alle Anforderungen sehr gut reagieren kann. Von sich aus könnte der Computer dann nicht dazu lernen.
  2. Bei Tieren und Menschen (und Pflanzen?) gehen wir von einer grundlegenden Lernfähigkeit aus. Bezogen auf das beobachtbare Verhalten können wir die Fähigkeit zu Lernen dadurch charakterisieren, dass ein System bis zu einem Zeitpunkt t bei einem bestimmten Reiz s nicht mit einem Verhalten r antwortet, nach dem Zeitpunkt t aber dann plötzlich doch, und dieses neue Verhalten über längere Zeit beibehält. Zeigt ein System eine solche Verhaltensdynamik, dann darf man unterstellen, dass das System in der Lage ist, seine inneren Zustände IS auf geeignete Weise zu verändern (geschrieben: phi: I x IS —> IS x O (mit der Bedeutung I := Input (Reize, Stimulus s), O := Output (Verhaltensantworten, Reaktion r), IS := interne Zustände, phi := Name für die beobachtbare Dynamik).
  3. Verfügt ein System über solch eine grundlegende Lernfähigkeit (die eine unterschiedlich reiche Ausprägung haben kann), dann kann es sich im Prinzip alle möglichen Verhaltenseigenschaften aneignen/ erwerben/ erlernen und damit im oben beschriebenen Sinne intelligent werden. Allerdings gibt es keine Garantie, dass eine Lernfähigkeit notwendigerweise zu einer bestimmten Intelligenz führen muss. Viele Menschen, die die grundsätzliche Fähigkeit besitzen, Schachspielen oder Musizieren oder Sprachen zu lernen,  nutzen diese ihre Fähigkeiten niemals aus; sie verzichten damit auf Formen intelligenten Verhaltens, die ihnen aber grundsätzlich offen stehen.
  4. Wir fordern also, dass die Lernfähigkeit Teil des Semiotik & KI-Paradigmas sein soll.

LERNENDE MASCHINEN

  1. Während die meisten Menschen heute Computern ein gewisses intelligentes Verhalten nicht absprechen würden, sind sie sich mit der grundlegenden Lernfähigkeit unsicher. Sind Computer im echten Sinne (so wie junge Tiere oder menschliche Kinder) lernfähig?
  2. Um diese Frage grundsätzlich beantworten zu können, müsste man ein allgemeines Konzept von einem Computer haben, eines, das alle heute und in der Zukunft existierende und möglicherweise in Existenz kommende Computer in den charakteristischen Eigenschaften erschöpfend beschreibt. Dies führt zur Vor-Frage nach dem allgemeinsten Kriterium für Computer.
  3. Historisch führt die Frage eigentlich direkt zu einer Arbeit von Turing (1936/7), in der er den Unentscheidbarkeitsbeweis von Kurt Gödel (1931) mit anderen Mitteln nochmals nachvollzogen hatte. Dazu muss man wissen, dass es für einen formal-logischen Beweis wichtig ist, dass die beim Beweis zur Anwendung kommenden Mittel, vollständig transparent sein müssen, sie müssen konstruktiv sein, was bedeutet, sie müssen endlich sein oder effektiv berechenbar. Zum Ende des 19.Jh und am Anfang des 20.Jh gab es zu dieser Fragestellung eine intensive Diskussion.
  4. Turing wählte im Kontrast zu Gödel keine Elemente der Zahlentheorie für seinen Beweis, sondern nahm sich das Verhalten eines Büroangestellten zum Vorbild: jemand schreibt mit einem Stift einzelne Zeichen auf ein Blatt Papier. Diese kann man einzeln lesen oder überschreiben. Diese Vorgabe übersetze er in die Beschreibung einer möglichst einfachen Maschine, die ihm zu Ehren später Turingmaschine genannt wurde (für eine Beschreibung der Elemente einer Turingmaschine siehe HIER). Eine solche Turingmaschine lässt sich dann zu einer universellen Turingmaschine [UTM] erweitern, indem man das Programm einer anderen (sekundären) Turingmaschine auf das Band einer primären Turingmaschine schreibt. Die primäre Turingmaschine kann dann nicht nur das Programm der sekundären Maschine ausführen, sondern kann es auch beliebig abändern.
  5. In diesem Zusammenhang interessant ist, dass der intuitive Begriff der Berechenbarkeit Anfang der 30ige Jahre des 20.Jh gleich dreimal unabhängig voneinander formal präzisiert worden ist (1933 Gödel und Herbrand definierten die allgemein rekursiven Funktionen; 1936 Church den Lambda-Kalkül; 1936 Turing die a-Maschine für ‚automatische Maschine‘, später Turing-Maschine). Alle drei Formalisierungen konnten formal als äquivalent bewiesen werden. Dies führte zur sogenannten Church-Turing These, dass alles, was effektiv berechnet werden kann, mit einem dieser drei Formalismen (also auch mit der Turingmaschine) berechnet werden kann. Andererseits lässt sich diese Church-Turing These selbst nicht beweisen. Nach nunmehr fast 80 Jahren nimmt aber jeder Experte im Feld an, dass die Church-Turing These stimmt, da bis heute keine Gegenbeispiele gefunden werden konnten.
  6. Mit diesem Wissen um ein allgemeines formales Konzept von Computern kann man die Frage nach der generellen Lernfähigkeit von Computern dahingehend beantworten, dass Computer, die Turing-maschinen-kompatibel sind, ihre inneren Zustände (im Falle einer universellen Turingmaschine) beliebig abändern können und damit die Grundforderung nach Lernfähigkeit erfüllen.

LERNFÄHIGE UND INTELLIGENTE MASCHINEN?

  1. Die Preisfrage stellt sich, wie eine universelle Turingmaschine, die grundsätzlich lernfähig ist, herausfinden kann, welche der möglichen Zustände interessant genug sind, um damit zu einem intelligenten Verhalten zu kommen?
  2. Diese Frage nach der möglichen Intelligenz führt zur Frage der verfügbaren Kriterien für Intelligenz: woher soll eine lernfähige Maschine wissen, was sie lernen soll?
  3. Im Fall biologischer Systeme wissen wir mittlerweile, dass die lernfähigen Strukturen als solche dumm sind, dass aber durch die schiere Menge an Zufallsexperimenten ein Teil dieser Experimente zu Strukturen geführt hat, die bzgl. bestimmter Erfolgskriterien besser waren als andere. Durch die Fähigkeit, die jeweils erfolgreichen Strukturen in Form von Informationseinheiten zu speichern, die dann bei der nächsten Reproduktion erinnert werden konnten, konnten sich die relativen Erfolge behaupten.
  4. Turing-kompatible Computer können speichern und kodieren, sie brauchen allerdings noch Erfolgskriterien, um zu einem zielgerichtete Lernen zu kommen.

LERNENDE SEMIOTISCHE MASCHINEN

  1. Mit all diesen Zutaten kann man jetzt lernende semiotische Maschinen konstruieren, d.h. Maschinen, die in der Lage sind, den Gebrauch von Zeichen im Kontext eines Prozesses, zu erlernen. Das dazu notwendige Verhalten gilt als ein Beispiel für intelligentes Verhaltens.
  2. Es ist hier nicht der Ort, jetzt die Details solcher Sprach-Lern-Spiele auszubreiten. Es sei nur soviel gesagt, dass man – abschwächend zum Paradigma von Steels – hier voraussetzt, dass es schon mindestens eine Sprache L und einen kundigen Sprachteilnehmer gibt (der Lehrer), von dem andere Systeme (die Schüler), die diese Sprache L noch nicht kennen, die Sprache L lernen können. Diese Schüler können dann begrenzt neue Lehrer werden.
  3. Zum Erlernen (Training) einer Sprache L benötigt man einen definierten Kontext (eine Welt), in dem Lehrer und Schüler auftreten und durch Interaktionen ihr Wissen teilen.
  4. In einer Evaluationsphase (Testphase), kann dann jeweils überprüft werden, ob die Schüler etwas gelernt haben, und wieviel.
  5. Den Lernerfolge einer ganzen Serie von Lernexperimenten (ein Experiment besteht aus einem Training – Test Paar) kann man dann in Form einer Lernkurve darstellen. Diese zeigt entlang der Zeitachse, ob die Intelligenzleistung sich verändert hat, und wie.
  6. Gestaltet man die Lernwelt als eine interaktive Softwarewelt, bei der Computerprogramme genauso wie Roboter oder Menschen mitwirken können, dann kann man sowohl Menschen als Lehrer benutzen wie auch Menschen im Wettbewerb mit intelligenten Maschinen antreten lassen oder intelligente Maschinen als Lehrer oder man kann auch hybride Teams formen.
  7. Die Erfahrungen zeigen, dass die Konstruktion von intelligenten Maschinen, die menschenähnliche Verhaltensweisen lernen sollen, die konstruierenden Menschen dazu anregen, ihr eigenes Verhalten sehr gründlich zu reflektieren, nicht nur technisch, sondern sogar philosophisch.

EMERGING MIND PROJEKT

  1. Die zuvor geschilderten Überlegungen haben dazu geführt, dass ab 10.November 2015 im INM Frankfurt ein öffentliches Forschungsprojekt gestartet werden soll, das Emerging Mind Projekt heißt, und das zum Ziel hat, eine solche Umgebung für lernende semiotische Maschinen bereit zu stellen, mit der man solche semiotischen Prozesse zwischen Menschen und lernfähigen intelligenten Maschinen erforschen kann.

QUELLEN

  • Binet, A., Les idees modernes sur les enfants, 1909
  • Doeben-Henisch, G.; Bauer-Wersing, U.; Erasmus, L.; Schrader,U.; Wagner, W. [2008] Interdisciplinary Engineering of Intelligent Systems. Some Methodological Issues. Conference Proceedings of the workshop Modelling Adaptive And Cognitive Systems (ADAPCOG 2008) as part of the Joint Conferences of SBIA’2008 (the 19th Brazilian Symposium on Articial Intelligence); SBRN’2008 (the 10th Brazilian Symposium on Neural Networks); and JRI’2008 (the Intelligent Robotic Journey) at Salvador (Brazil) Oct-26 – Oct-30(PDF HIER)
  • Gödel, K. Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I, In: Monatshefte Math.Phys., vol.38(1931),pp:175-198
  • Charles W. Morris, Foundations of the Theory of Signs (1938)
  • Charles W. Morris (1946). Signs, Language and Behavior. New York: Prentice-Hall, 1946. Reprinted, New York: George Braziller, 1955. Reprinted in Charles Morris, Writings on the General Theory of Signs (The Hague: Mouton, 1971), pp. 73-397. /* Charles William Morris (1901-1979) */
  • Charles W. Morris, Signication and Signicance (1964)
  • NIST: Intelligent Systems Division: http://www.nist.gov/el/isd/
  • Winfried Noth: Handbuch der Semiotik. 2., vollständig neu bearbeitete Auflage. Metzler, Stuttgart/Weimar 2000
  • Charles Santiago Sanders Peirce (1839-1914) war ein US-amerikanischer Mathematiker, Philosoph und Logiker. Peirce gehort neben William James und John Dewey zu den maßgeblichen Denkern des Pragmatismus; außerdem gilt er als Begründer der modernen Semiotik. Zur ersten Einführung siehe: https://de.wikipedia.org/wiki/Charles Sanders Peirce Collected Papers of Charles Sanders Peirce. Bände I-VI hrsg. von Charles Hartshorne und Paul Weiss, 1931{1935; Bände VII-VIII hrsg. von Arthur W. Burks 1958. University Press, Harvard, Cambridge/Mass. 1931{1958
  • Writings of Charles S. Peirce. A Chronological Edition. Hrsg. vom Peirce Edition Project. Indiana University Press,Indianapolis, Bloomington 1982. (Bisher Bände 1{6 und 8, geplant 30 Bände)
  • Saussure, F. de. Grundfragen der Allgemeinen Sprachwissenschaft, 2nd ed., German translation of the original posthumously publication of the Cours de linguistic general from 1916 by H.Lommel, Berlin: Walter de Gruyter & Co., 1967
  • Saussure, F. de. Course in General Linguistics, English translation of the original posthumously publication of the Cours de linguistic general from 1916, London: Fontana, 1974
  • Saussure, F. de. Cours de linguistique general, Edition Critique Par Rudolf Engler, Tome 1,Wiesbaden: Otto Harrassowitz, 1989 /*This is the critical edition of the dierent sources around the original posthumously publication of the Cours de linguistic general from 1916. */
  • Steels, Luc (1995): A Self-Organizing Spatial Vocabulary. Articial Life, 2(3), S. 319-332
  • Steels, Luc (1997): Synthesising the origins of language and meaning using co-evolution, self-organisation and level formation. In: Hurford, J., C.Knight und M.Studdert-Kennedy (Hrsg.). Edinburgh: Edinburgh Univ. Press.

  • Steels, Luc (2001): Language Games for Autonomous Robots. IEEE Intelligent Systems, 16(5), S. 16-22. Steels, Luc (2003):

  • Evolving grounded Communication for Robots. Trends in Cognitive Science, 7(7), S. 308-312.

  • Steels, Luc (2003): Intelligence with Representation. Philosophical Transactions of the Royal Society A, 1811(361), S. 2381-2395.

  • Steels, Luc (2008): The symbol grounding problem has been solved, so what’s next?. In M. de Vega, Symbols and Embodiment: Debates on Meaning and Cognition. Oxford: Oxford University Press, S. 223-244.
  • Steels, Luc (2012): Grounding Language through Evolutionary Language Games. In: Language Grounding in Robots. Springer US, S. 1-22.

  • Steels, Luc (2015), The Talking Heads experiment: Origins of words and meanings, Series: Computational Models of Language Evolution 1. Berlin: Language Science Press.
  • Stern, W., Die psychologischen Methoden der Intelligenzprüfung und deren Anwendung an Schulkindern, Leipzig: Barth, 1912

  • Turing, A. M. On Computable Numbers with an Application to the Entscheidungsproblem. In: Proc. London Math. Soc., Ser.2, vol.42(1936), pp.230-265; received May 25, 1936; Appendix added August 28; read November 12, 1936; corr. Ibid. vol.43(1937), pp.544-546. Turing’s paper appeared in Part 2 of vol.42 which was issued in December 1936 (Reprint in M.DAVIS 1965, pp.116-151; corr. ibid. pp.151-154).(an online version at: http://www.comlab.ox.ac.uk/activities/ieg/elibrary/sources/tp2-ie.pdf, last accesss Sept-30, 2012)

  • Turing, A.M. Computing machinery and intelligence. Mind, 59, 433-460. 1950

  • Turing, A.M.; Intelligence Service. Schriften, ed. by Dotzler, B.; Kittler, F.; Berlin: Brinkmann & Bose, 1987, ISBN 3-922660-2-3

  • Vogt, P. The physical symbol grounding problem, in: Cognitive Systems Research, 3(2002)429-457, Elsevier Science B.V.
  • Vogt, P.; Coumans, H. Investigating social interaction strategies for bootstrapping lexicon development, Journal of Articial Societies and Social Simulation 6(1), 2003

  • Wechsler, D., The Measurement of Adult Intelligence, Baltimore, 1939, (3. Auage 1944)

  • Wittgenstein, L.; Tractatus Logico-Philosophicus, 1921/1922 /* Während des Ersten Weltkriegs geschrieben, wurde das Werk 1918 vollendet. Es erschien mit Unterstützung von Bertrand Russell zunächst 1921 in Wilhelm Ostwalds Annalen der Naturphilosophie. Diese von Wittgenstein nicht gegengelesene Fassung enthielt grobe Fehler. Eine korrigierte, zweisprachige Ausgabe (deutsch/englisch) erschien 1922 bei Kegan Paul, Trench, Trubner und Co. in London und gilt als die offizielle Fassung. Die englische Übersetzung stammte von C. K. Ogden und Frank Ramsey. Siehe einführend Wikipedia-DE: https://de.wikipedia.org/wiki/Tractatus logicophilosophicus*/

  • Wittgenstein, L.; Philosophische Untersuchungen,1936-1946, publiziert 1953 /* Die Philosophischen Untersuchungen sind Ludwig Wittgensteins spätes, zweites Hauptwerk. Es übten einen außerordentlichen Einfluss auf die Philosophie der 2. Hälfte des 20. Jahrhunderts aus; zu erwähnen ist die Sprechakttheorie von Austin und Searle sowie der Erlanger Konstruktivismus (Paul Lorenzen, Kuno Lorenz). Das Buch richtet sich gegen das Ideal einer logik-orientierten Sprache, die neben Russell und Carnap Wittgenstein selbst in seinem ersten Hauptwerk vertreten hatte. Das Buch ist in den Jahren 1936-1946 entstanden, wurde aber erst 1953, nach dem Tod des Autors, veröffentlicht. Siehe einführend Wikipedia-DE: https://de.wikipedia.org/wiki/Philosophische Untersuchungen*/

Eine Übersicht über alle Blogeinträge des Autors cagent nach Titeln findet sich HIER

Buch: Die andere Superintelligenz. Oder: schaffen wir uns selbst ab? – Kapitel 5 – neu – Version 2

Journal: Philosophie Jetzt – Menschenbild, ISSN 2365-5062, 27.August 2015
URL: cognitiveagent.org
Email: info@cognitiveagent.org

Autor: Gerd Doeben-Henisch
Email: gerd@doeben-henisch.de

VORBEMERKUNG: Der folgende Text ist ein Vorabdruck zu dem Buch Die andere Superintelligenz. Oder: schaffen wir uns selbst ab?, das im November 2015 erscheinen soll.

Was ist Leben?

Erst die Erde

Etwa 9.2 Mrd Jahre nach dem sogenannten Big Bang kam es zur Entstehung unseres Sonnensystems mit der Sonne als wichtigstem Bezugspunkt. Nur ca. 60 Mio Jahre später gab es unsere Erde. Die Zeitspanne, innerhalb der Spuren von Leben auf der Erde bislang identifiziert wurden, liegt zwischen -4 Mrd Jahre von heute zurück gerechnet bis ca. -3.5 Mrd Jahre. Oder, vom Beginn der Erde aus gesehen, ca. 540 Mio Jahre bis ca. 1 Mrd Jahre nach der Entstehung der Erde.

Alte Bilder vom Leben

Wenn man vom Leben spricht, von etwas Belebtem im Gegensatz zum Unbelebtem, fragt man sich sofort, wie man ‚Leben‘ definieren kann? In der zurückliegenden Geschichte gab es viele Beschreibungs- und Definitionsversuche. Einer, der heute noch begrifflich nachwirkt, ist die Sicht der Philosophie der Antike (ca. -600 bis 650) . Hier wurde das ‚Atmen‘ (gr. ‚pneo‘) als charakteristisches Merkmal für ‚Lebendiges‘ genommen, wodurch es vom ‚Unbelebtem‘ abgegrenzt wurde. Aus dem ‚Atmen‘ wurde zugleich ein allgemeines Lebensprinzip abgeleitet, das ‚Pneuma‘ (im Deutschen leicht missverständlich als ‚Geist‘ übersetzt, im Lateinischen als ’spiritus‘), das sich u.a. im Wind manifestiert und ein allgemeines kosmologisches Lebensprinzip verkörpert, das sowohl die Grundlage für die psychischen Eigenschaften eines Lebewesens bildet wie auch für seine körperliche Lebendigkeit. In der Medizin gab es vielfältige Versuche, das Pneuma im Körper zu identifizieren (z.B. im Blut, in der Leber, im Herzen, im Gehirn und den Nerven). Im philosophischen Bereich konnte das Pneuma ein heißer Äther sein, der die ganze Welt umfasst. Eine andere Auffassung sieht das Pneuma zusammengesetzt aus Feuer und Luft, woraus sich alle Körper der Welt bilden. Das Pneuma wird auch gesehen als die ‚Seele‘, die allein das Leben des Körpers ermöglicht. Bei den Stoikern wird das Pneuma-Konzept zum allumfassenden Begriff einer Weltseele gesteigert. Mit der Zeit vermischte sich der Pneuma-Begriff mit dem Begriff ’nous‘ (Kurzform für ’noos‘)(Englisch als ‚mind‘ übersetzt; Deutsch ebenfalls als ‚Geist‘), um darin die kognitiv-geistige Dimension besser auszudrücken. Weitere einflussreiche begriffliche Koordinierungen finden statt mit dem lateinischen ‚mens‘ (Deutsch auch übersetzt mit ‚Geist‘) und dem hebräischen ‚ruach‘ (im Deutschan ebenfalls mit ‚Geist‘ übersetzt; bekannt in der Formulierung ‚Der Geist Gottes (= ‚ruach elohim‘) schwebte über den Wassern‘; in der Septuaginta, der griechischen Übersetzung der hebräischen Bibel, heißt es ‚pneuma theou‘ (= der Geist Gottes)) (Anmerkung: Diese Bemerkungen sind ein kleiner Extrakt aus der sehr ausführlichen begriffsgeschichtlichen Herleitung in Sandkühler 2010)

Die Zelle im Fokus

War es für die antiken Philosophen, Mediziner und Wissenschaftler noch praktisch unmöglich, die Frage nach den detaillierten Wirkprinzipien des ‚Lebens‘ genauer zu beantworten, erarbeitete sich die moderne Naturwissenschaft immer mehr Einsichten in die Wirkprinzipien biologischer Phänomene (bei Tieren, Pflanzen, Mikroben, molekularbiologischen Sachverhalten), so dass im Laufe des 20.Jahrhunderts klar wurde, dass die Gemeinsamkeit aller Lebensphänomene auf der Erde in jener Superstruktur zu suchen ist, die heute (biologische) Zelle genannt wird.

Alle bekannten Lebensformen auf der Erde, die mehr als eine Zelle umfassen (wir als Exemplare der Gattung homo mit der einzigen Art homo sapiens bestehen aus ca. 10^13 vielen Zellen), gehen zu Beginn ihrer körperlichen Existenz aus genau einer Zelle hervor. Dies bedeutet, dass eine Zelle über alle notwendigen Eigenschaften verfügt, sich zu reproduzieren und das Wachstum eines biologischen Systems zu steuern.

So enthält eine Zelle (Anmerkung: Für das Folgende benutze ich B.Alberts et.al (2008)) alle Informationen, die notwendig sind, um sowohl sich selbst zu organisieren wie auch um sich zu reproduzieren. Die Zelle operiert abseits eines chemischen Gleichgewichts, was nur durch permanente Aufnahme von Energie realisiert werden kann. Obwohl die Zelle durch ihre Aktivitäten die Entropie in ihrer Umgebung ‚erhöht‘, kann sie gegenläufig durch die Aufnahme von Energie auch Entropie verringern. Um einen einheitlichen Prozessraum zu gewährleisten, besitzen Zellen eine Membran, die dafür sorgt, dass nur bestimmte Stoffe in die Zelle hinein- oder herauskommen.

Keine Definition für außerirdisches Leben

Obgleich die Identifizierung der Zelle samt ihrer Funktionsweise eine der größten Errungenschaften der modernen Wissenschaften bei der Erforschung des Phänomens des Lebens darstellt, macht uns die moderne Astrobiologie darauf aufmerksam, dass eine Definition der Lebensphänomene mit Einschränkung des Blicks auf die speziellen Bedingungen auf der Erde nicht unproblematisch ist. Wunderbare Bücher wie „Rare Earth“ von Peter Douglas Ward (Geboren 1949) und Donald Eugene Brownlee (Geboren 1943) „ASTROBIOLOGY. A Multidisciplinary Approach“ von Jonathan I.Lunine (Geb. 1959) machen zumindest sichtbar, wo die Probleme liegen könnten. Lunine diskutiert in Kap.14 seines Buches die Möglichkeit einer allgemeineren Definition von Leben explizit, stellt jedoch fest, dass es aktuell keine solche eindeutige allgemeine Definition von Leben gibt, die über die bekannten erdgebundenen Formen wesentlich hinausgeht. (Vgl. ebd. S.436)

Schrödingers Vision

Wenn man die Charakterisierungen von Leben bei Lunine (2005) in Kap.14 und bei Alberts et.al (2008) in Kap.1 liest, fällt auf, dass die Beschreibung der Grundstrukturen des Lebens trotz aller Abstraktionen tendenziell noch sehr an vielen konkreten Eigenschaften hängen.

Erwin Rudolf Josef Alexander Schrödinger (1887-1961), der 1944 sein einflussreiches Büchlein „What is Life? The Physical Aspect of the Living Cell“ veröffentlichte, kannte all die Feinheiten der modernen Molekularbiologie noch nicht . Schrödinger unterzog das Phänomen des Lebens einer intensiven Befragung aus Sicht der damaligen Physik. Auch ohne all die beeindruckenden Details der neueren Forschung wurde ihm klar, dass das hervorstechendste Merkmal des ‚Biologischen‘, des ‚Lebendigen‘ die Fähigkeit ist, angesichts der physikalisch unausweichlichen Zunahme der Entropie einen gegensätzlichen Trend zu realisieren; statt wachsender Unordnung als Entropie diagnostizierte er eine wachsende Ordnung als negative Entropie, also als etwas, was der Entropie entgegen wirkt.

Diesen Gedanken Schrödingers kann man weiter variieren und in dem Sinne vertiefen, dass der Aufbau einer Ordnung Energie benötigt, mittels der Freiheitsgrade eingeschränkt und Zustände temporär ‚gefestigt‘ werden können.

Fragt sich nur, warum?

Alberts et.al (2008) sehen das Hauptcharakteristikum einer biologischen Zelle darin, dass sie sich fortpflanzen kann, und nicht nur das, sondern dass sie sich selbstmodifizierend fortpflanzen kann. Die Realität biologischer Systeme zeigt zudem, dass es nicht nur um ‚irgendeine‘ Fortpflanzung ging, sondern um eine kontinuierlich optimierende Fortpflanzung.

Metastrukturen

Nimmt man diese Eckwerte ernst, dann liegt es nahe, biologische Zellen als Systeme zu betrachten, die einerseits mit den reagierenden Molekülen mindestens eine Objektebene [O] umfasst und in Gestalt der DNA eine Art Metaebene [M]; zwischen beiden Systemen lässt sich eine geeigneten Abbildung [R] in Gestalt von Übersetzungsprozessen realisieren, so dass die Metaebene M mittels Abbildungsvorschrift R in eine Objektebene O übersetzt werden kann ($latex R: M \longmapsto O$). Damit eine Reproduktion grundsätzlich gelingen kann, muss verlangt werden, dass das System mit seiner Struktur ‚lang genug‘ stabil ist, um solch einen Übersetzungsprozess umsetzen zu können. Wie diese Übersetzungsprozesse im einzelnen vonstatten gehen, ist letztlich unwichtig. Wenn in diesem Modell bestimmte Strukturen erstmals realisiert wurden, dann fungieren sie als eine Art ‚Gedächtnis‘: alle Strukturelemente von M repräsentieren potentielle Objektstrukturen, die jeweils den Ausgangspunkt für die nächste ‚Entwicklungsstufe‘ bilden (sofern sie nicht von der Umwelt ‚aussortiert‘ werden).

Die Rolle dieser Metastrukturen lässt sich letztlich nicht einfach mit den üblichen chemischen Reaktionsketten beschreiben; tut man es dennoch, verliert man die Besonderheit des Phänomens aus dem Blick. Eine begriffliche Strategie, um das Phänomen der ‚wirkenden Metastrukturen‘ in den Griff zu bekommen, war die Einführung des ‚Informationsbegriffs‘.

Information

Grob kann man hier mindestens die folgenden sprachlichen Verwendungsweisen des Begriffs ‚Information‘ im Kontext von Informationstheorie und Molekularbiologie unterscheiden:

  1. Unreflektiert umgangssprachlich (‚Information_0‘)
  2. Anhand des Entscheidungsaufwandes (Bit) (‚Information_1‘)
  3. Rein statistisch (a la Shannon 1948) (‚Information_2‘)
  4. Semiotisch informell (ohne die Semiotik zu zitieren) (‚Semantik_0‘)
  5. Als komplementär zur Statistik (Deacon) (‚Semantik_1‘)
  6. Als erweitertes Shannonmodell (‚Semantik_2‘)

Information_0

Die ‚unreflektiert umgangssprachliche‘ Verwendung des Begriffs ‚Information‘ (hier: ‚Information_0‘) brauchen wir hier nicht weiter zu diskutieren. Sie benutzt den Begriff Information einfach so, ohne weitere Erklärungen, Herleitungen, Begründungen. (Ein Beispiel Küppers (1986:41ff))

Information_1

Die Verwendung des Begriffs Information im Kontext eines Entscheidungsaufwandes (gemessen in ‚Bit‘), hier als ‚Information_1‘ geht auf John Wilder Tukey (1915-2000) zurück.

Information_2

Shannon (1948) übernimmt zunächst diesen Begriff Information_1, verzichtet dann aber im weiteren Verlauf auf diesen Informationsbegriff und führt dann seinen statistischen Informationsbegriff ein (hier: ‚Information_2‘), der am Entropiekonzept von Boltzmann orientiert ist. Er spricht dann zwar immer noch von ‚Information‘, bezieht sich dazu aber auf den Logarithmus der Wahrscheinlichkeit eines Ereignisses, was alles und jedes sein kann. Ein direkter Bezug zu einem ’speziellen‘ Informationsbegriff (wie z.B. Information_1) besteht nicht. Man kann die logarithmierte Wahrscheinlichkeit eines Ereignisses als ‚Information‘ bezeichnen (hier: ‚Information_2‘), aber damit wird der Informationsbegriff inflationär, dann ist alles eine Information, da jedes Ereignis mindestens eine Wahrscheinlichkeit besitzt. (Leider benutzt auch Carl Friedrich von Weizsäcker (1971:347f) diesen inflationären Begriff (plus zusätzlicher philosophischer Komplikationen)). Interessanterweise ist es gerade dieser inflationäre statistische Informationsbegriff Information_2, der eine sehr starke Resonanz gefunden hat.

Semantik 0

Nun gibt es gerade im Bereich der Molekularbiologie zahlreiche Phänomene, die bei einer Beschreibung mittels eines statistischen Informationsbegriffs wichtige Momente ihres Phänomens verlieren. (Dazu eine kleine Übersicht bei Godfrey-Smith, Kim Sterelny (2009)) Ein Hauptkritikpunkt war und ist das angebliche Fehlen von Bedeutungselementen im statistischen Modell von Shannon (1948). Man spricht auch vom Fehlen einer ‚Semantik‘. Allerdings wird eine Diskussion der möglichen Bedeutungsmomente von Kommunikationsereignissen unter Verwendung des Begriffs ‚Semantik‘ auch oft unreflektiert alltagssprachlich vorgenommen (hier: Semantik_0′), d.h. es wird plötzlich von Semantik_0 gesprochen (oft noch erweitert um ‚Pragmatik‘), ohne dass die Herkunft und Verwendung dieses Begriffs in der Wissenschaft der Semiotik weiter berücksichtigt wird. (Ein Beispiel für solch eine verwirrende Verwendungsweise findet sich z.B. wieder bei Weizsäcker (1971:350f), wo Information_0, Information_2 sowie Semantik_0 miteinander frei kombiniert werden, ohne Berücksichtigung der wichtigen Randbedingungen ihrer Verwendung; ganz ähnlich Küppers (1986:61ff); zur Semiotik siehe Noeth (2000)). Ein anderes neueres Beispiel ist Floridi (2015:Kap.3+4) Er benutzt zwar den Begriff ‚Semantik‘ extensiv, aber auch er stellt keinen Bezug zur semiotischen Herkunft her und verwendet den Begriff sehr speziell. Seine Verwendung führt nicht über den formalen Rahmen der statistischen Informationstheorie hinaus.

Semantik 1

Sehr originell ist das Vorgehen von Deacon (2007, 2008, 2010). Er diagnostiziert zwar auch einen Mangel, wenn man die statistische Informationstheorie von Shannon (1948) auf biologische Phänomene anwenden will, statt sich aber auf die schwierige Thematik einer expliziten Semantik einzulassen, versucht er über die Ähnlichkeit des Shannonschen statistischen Informationsbegriffs mit dem von Boltzmann einen Anschluss an die Thermodynamik zu konstruieren. Von dort zum Ungleichgewicht biologischer Systeme, die durch Arbeit und Energieaufnahme ihr Gleichgewicht zu halten versuchen. Diese Interaktionen des Systems mit der Umgebung modifizieren die inneren Zustände des Systems, die wiederum dann das Verhalten des Systems ‚umweltgerecht‘ steuern. Allerdings belässt es Deacon bei diesen allgemeinen Annahmen. Die ‚Abwesenheit‘ der Bedeutung im Modell von Shannon wird über diese frei assoziierten Kontexte – so vermutet man als Leser – mit den postulierten internen Modifikationen des interagierenden Systems begrifflich zusammengeführt. Wie dies genau gedacht werden kann, bleibt offen.

Semantik 2

So anregend die Überlegungen von Deacon auch sind, sie lassen letztlich offen, wie man denn – auch unter Berücksichtigung des Modells von Shannon – ein quasi erweitertes Shannonmodell konstruieren kann, in dem Bedeutung eine Rolle spielt. Hier eine kurze Skizze für solch ein Modell.

Ausgehend von Shannons Modell in 1948 besteht die Welt aus Sendern S, Empfängern D, und Informationskanälen C, über die Sender und Empfänger Signale S eingebettet in ein Rauschen N austauschen können (<S,D,S,N,C> mit C: S —> S x N).

Ein Empfänger-Sender hat die Struktur, dass Signale S in interne Nachrichten M dekodiert werden können mittels R: S x N —> M. Umgekehrt können auch Nachrichten M in Signale kodiert werden mit T: M —> S. Ein minimaler Shannon Sender-Empfänger hat dann die Struktur <M, R, T>. So gesehen funktionieren R und T jeweils als ‚Schnittstellen‘ zwischen dem ‚Äußeren‘ und dem ‚Inneren‘ des Systems.

In diesem minimalen Shannonmodell kommen keine Bedeutungen vor. Man kann allerdings annehmen, dass die Menge M der Nachrichten eine strukturierte Menge ist, deren Elemente Paare der Art (m_i,p_i) in M mit ‚m_i‘ als Nachrichtenelement und ‚p_i‘ als Wahrscheinlichkeit, wie oft dieses Nachrichtenelement im Kanal auftritt. Dann könnte man Shannons Forml H=-Sum(p_i * log2(p_i)) als Teil des Systems auffassen. Das minimale Modell wäre dann <M, R, T, H>.

Will man ‚Bedeutungen‘ in das System einführen, dann muss man nach der Semiotik einen Zeichenbegriff für das System definieren, der es erlaubt, eine Beziehung (Abbildung) zwischen einem ‚Zeichenmaterial‚ und einem ‚Bedeutungsmaterial‚ zu konstruieren. Nimmt man die Signale S von Shannon als Kandidaten für ein Zeichenmaterial, fragt sich, wie man das Bedeutungsmaterial B ins Spiel bringt.

Klar ist nur, dass ein Zeichenmaterial erst dann zu einem ‚Zeichen‘ wird, wenn der Zeichenbenutzer in der Lage ist, dem Zeichenmaterial eine Bedeutung B zuzuordnen. Eine einfache Annahme wäre, zu sagen, die dekodierten Nachrichten M bilden das erkannte Zeichenmaterial und der Empfänger kann dieses Material irgendwelchen Bedeutungen B zuordnen, indem er das Zeichenmaterial M ‚interpretiert‚, also I : M —> B. Damit würde sich die Struktur erweitern zu <B, M, R, T, H, I>. Damit nicht nur ein Empfänger ‚verstehen‘ kann, sondern auch ‚mitteilen‘, müsste der Empfänger als Sender Bedeutungen auch wieder ‚umgekehrt lesen‘ können, also -I: B —> M. Diese Nachrichten könnten dann wieder mittels T in Signale übersetzt werden, der Kanal sendet diese Signale S angereichert mit Rauschen N zum Empfänger, usw. Wir erhalten also ein minimal erweitertes Shannon Modell mit Bedeutung als <B, M, R, T, H, I, -I>. Ein Sender-Empfänger kann also weiterhin die Wahrscheinlichkeitsstruktur seiner Nachrichten auswerten; zusätzlich aber auch mögliche Bedeutungsanteile.

Bliebe als Restfrage, wie die Bedeutungen B in das System hineinkommen bzw. wie die Interpretationsfunktion I entsteht?

An dieser Stelle kann man die Spekulationen von Deacon aufgreifen und als Arbeitshypothese annehmen, dass sich die Bedeutungen B samt der Interpretationsbeziehung I (und -I) in einem Adaptionsprozess (Lernprozess) in Interaktion mit der Umgebung entwickeln. Dies soll an anderer Stelle beschrieben werden.

Für eine komplette Beschreibung biologischer Phänomene benötigt man aber noch weitere Annahmen zur Ontogense und zur Phylogense. Diese seien hier noch kurz skizziert. (Eine ausführliche formale Darstellung wird anderswo nachgeliefert).

Ontogenese

Von der Lernfähigkeit eines biologischen Systems muss man die Ontogenese unterscheiden, jenen Prozess, der von der Keimzelle bis zum ausgewachsenen System führt.

Die Umsetzung der Ontogenese in einem formalen Modell besteht darin, einen Konstruktionsprozess zu definieren, das aus einem Anfangselement Zmin das endgültige System Sys in SYS erstellen würde. Das Anfangselement wäre ein minimales Element Zmin analog einer befruchteten Zelle, das alle Informationen enthalten würde, die notwendig wären, um diese Konstruktion durchführen zu können, also Ontogenese: Zmin x X —> SYS. Das ‚X‘ stünde für alle die Elemente, die im Rahmen einer Ontogenese aus der Umgebung ENV übernommen werden müssten, um das endgültige system SYS = <B, M, R, T, H, I, -I> zu konstruieren.

Phylogenese

Für die Reproduktion der Systeme im Laufe der Zeiten benötigte man eine Population von Systemen SYS, von denen jedes System Sys in SYS mindestens ein minimales Anfangselement Zmin besitzt, das für eine Ontogenese zur Verfügung gestellt werden kann. Bevor die Ontogenese beginnen würde, würden zwei minimale Anfangselemente Zmin1 und Zmin2 im Bereich ihrer Bauanleitungen ‚gemischt‘. Man müsste also annehmen, dass das minimale System um das Element Zmin erweitert würde SYS = <B, M, Zmin, R, T, H, I, -I>.

Erstes Zwischenergebnis

Auffällig ist also, dass das Phänomen des Lebens

  1. trotz Entropie über dynamische Ungleichgewichte immer komplexere Strukturen aufbauen kann.
  2. innerhalb seiner Strukturen immer komplexere Informations- und Bedeutungsstrukturen aufbaut und nutzt.

So wie man bislang z.B. die ‚Gravitation‘ anhand ihrer Wirkungen erfasst und bis heute erfolglos zu erklären versucht, so erfassen wir als Lebende das Leben anhand seiner Wirkungen und versuchen bis heute auch erfolglos, zu verstehen, was hier eigentlich passiert. Kein einziges physikalisches Gesetzt bietet auch nur den leisesten Anhaltspunkt für dieses atemberaubende Geschehen.

In dieser Situation den Menschen als eine ‚vermutlich aussterbende Art‘ zu bezeichnen ist dann nicht einfach nur ‚gedankenlos‘, sondern im höchsten Maße unwissenschaftlich, da es letztlich einer Denkverweigerung nahe kommt. Eine Wissenschaft, die sich weigert, über die Phänomene der Natur nachzudenken, ist keine Wissenschaft.

Fortsetzung Folgt.

QUELLEN

  1. H.J. Sandkühler (Hg.), 2010, „Enzyklopädie Philosophie“, Hamburg: Felix Meiner Verlag, Band 1: Von A bis H, Kapitel: Geist, SS.792ff
  2. B.Alberts et.al (Hg.), 2008, „Molecular Biology of the CELL“, Kap.1, 5.Aufl., New York: Garland Science, Taylor & Francis Group
  3. Peter Douglas Ward und `Donald Eugene Brownlee (2000),“Rare Earth: Why Complex Life Is Uncommon in the Universe“, New York: Copernikus/ Springer,
  4. Jonathan I.Lunine (2005), „ASTROBIOLOGY. A Multidisciplinary Approach“, San Francisco – Boston – New York et al.: Pearson-Addison Wesley
  5. Zu Schroedinger 1944: Based on Lectures delivered under the auspices of the Institute at Trinity College, Dublin, in February 1943, Cambridge: University Press. 1944. Ich selbst habe die Canto Taschenbuchausgabe der Cambridge University von 1992 benutzt. Diese Ausgabe enthält ‚What is Life?‘, ‚Mind from Matter‘, sowie autobiographischen Angaben und ein Vorwort von Roger Penrose
  6. Anmerkung zu Schroedinger 1944: Sowohl James D. Watson (2003) wie auch ähnlich Francis Crick (1990) berichten, dass Schrödingers Schrift (bzw. einer seiner Vorträge) sie für ihre Erforschung der DNA stark angeregt hatte.
  7. James D.Watson und A.Berry(2003), „DNA, the Secret of Life“, New York: Random House
  8. Francis Crick (1990),„What Mad Pursuit: A Personal View of Scientific Discovery“, Reprint, Basic Books
  9. Peter Godfrey-Smith und Kim Sterelny (2009) Biological Information“, in: Stanford Enyclopedia of Philosophy
  10. Carl Friedrich von Weizsäcker (1971), „Die Einheit der Natur“, München: Carl Hanser Verlag
  11. Bernd-Olaf Küppers (1986), „Der Ursprung biologischer Information. Zur Naturphilosophie der Lebensentstehung“, München – Zürich: Piper Verlag.
  12. Claude E. Shannon, A mathematical theory of communication. Bell System Tech. J., 27:379-423, 623-656, July, Oct. 1948
  13. Claude E. Shannon; Warren Weaver (1949) „The mathematical theory of communication“. Urbana – Chicgo: University of Illinois Press.
  14. Noeth, W., Handbuch der Semiotik, 2. vollst. neu bearb. und erw. Aufl. mit 89 Abb. Stuttgart/Weimar: J.B. Metzler, xii + 668pp, 2000
  15. Luciano Floridi (2015) Semantic Conceptions of Information, in: Stanford Enyclopedia of Philosophy
  16. Deacon, T. (2007), Shannon-Boltzmann-Darwin: Redfining information. Part 1. in: Cognitive Semiotics, 1: 123-148
  17. Deacon, T. (2008), Shannon-Boltzmann-Darwin: Redfining information. Part 2. in: Cognitive Semiotics, 2: 167-194
  18. Terrence W.Deacon (2010), „What is missing from theories of information“, in: INFORMATION AND THE NATURE OF REALITY. From Physics to Metaphysics“, ed. By Paul Davies & Niels Henrik Gregersen, Cambridge (UK) et al: Cambridge University Press, pp.146 – 169

Einen Überblick über alle Blogbeiträge des Autors cagent nach Titeln findet sich HIER.

BUCHPROJEKT 2015 – Zwischenreflexion 18.August 2015 – INFORMATION IN DER MOLEKULARBIOLOGIE – Maynard-Smith

Der folgende Beitrag bezieht sich auf das Buchprojekt 2015.

SPANNENDER PUNKT BEIM SCHREIBEN

1. Das Schreiben des Buches hat zu einem spannenden Punkt geführt, der mich seit Jahren umtreibt, den ich aber nie so richtig zu packen bekommen habe: alle große begriffliche Koordinaten laufen im Ereignis der Zelle als einer zentralen Manifestation von grundlegenden Prinzipien zusammen. Die Physik hat zwar generelle Vorarbeiten von unschätzbarem Wert geleistet, aber erst das Auftreten von selbst reproduzierenden molekularen Strukturen, die wir (biologische) Zellen nennen, macht Dynamiken sichtbar, die ‚oberhalb‘ ihrer ‚Bestandteile‘ liegen. Dies könnte man analog dem physikalischen Begriff der ‚Gravitation‘ sehen: dem physikalischen Begriff entspricht kein direktes Objekt, aber es beschreibt eine Dynamik, eine Gesetzmäßigkeit, die man anhand des Verhaltens der beobachtbaren Materie indirekt ‚ableitet‘.

DYNAMIK BIOLOGISCHER ZELLEN

2. Ähnlich verhält es sich mit verschiedenen Dynamiken von biologischen Zellen. Die Beschreibung ihrer einzelnen Bestandteile (Chromatin, Mitochondrien, Golgiapparat, Membran, …) als solcher sagt nichts darüber aus, was tatsächlich eine biologische Zelle charakterisiert. Ihre Haupteigenschaft ist die generelle Fähigkeit, eingebettet in eine allgemeine Entropiezunahme sich eine Struktur zu generieren, die sich temporär funktionsfähig halten kann und in der Lage ist, Informationen zu sammeln, mittels deren sie sich selbst so kopieren kann, dass die Kopie sich von neuem zu einer funktionsfähigen Struktur aufbauen kann. Wie dies im einzelnen chemisch realisiert wurde, ist beeindruckend, es ist atemberaubend, aber es ist letztlich austauschbar; für die Gesamtfunktion spielen die chemischen Details keine Rolle.

BEGRIFF INFORMATION

3. Und hier beginnt das Problem. Obwohl es von einem theoretischen Standpunkt aus klar ist, dass die Details noch nicht die eigentliche Geschichte erzählen, wird in den vielen umfangreichen Büchern über Genetik und Molekularbiologie die eigentliche ‚Story‘ nicht erzählt. Dies fängt schon an mit dem wichtigen Begriff der Information. Spätestens seit Schrödingers Buch von 1944 „What is Life?“ ist klar, dass das selbstreproduktive Verhalten von Zellen ohne das Genom nicht funktioniert. Und es wurde auch sehr bald der Begriff der Information eingeführt, um den ‚Inhalt‘ des Genoms theoretisch zu klassifizieren. Das Genom enthält ‚Informationen‘, aufgrund deren in einer Vererbung neue hinreichend ähnlich Strukturen entstehen können.

STATISTISCHER INFORMATIONSBEGRIFF

4. Leider wurde und wird der Informationsbegriff im Sinne des rein statistischen Informationsbegriffs von Shannon/ Weaver (1948) benutzt, der explizit Fragen möglicher Bedeutungsbezüge (Semantik) außen vor lässt. Damit ist er eigentlich weitgehend ungeeignet, der Rolle der im Genom verfügbaren Informationen gerect zu werden.

MEHR ALS STATISTIK

5. Einer, der diese Unzulänglichkeit des rein statistischen Informationsbegriffs für die Beschreibung der Rolle der Information im Kontext des Genoms und der Zelle samt ihrer Reproduktionsdynamik immer kritisiert hatte, war John Maynard Smith (1920 – 2004). In seinem Artikel “ The concept of information in biology“ von 2000 kann man dies wunderbar nachlesen.

6. Zwar hat auch Maynard Smith keine explizite übergreifende Theorie der Reproduktionsdynamik, aber er kann an verschiedenen Eigenschaften aufweisen, dass der rein statistische Informationsbegriff nicht ausreicht.

7. Während im Shannon-Weaver Modell ein fester Kode A von einem Sender in Transportereignisse übersetzt (kodiert) wird, die wiederum in den festen Kode A von einem Empfänger zurückübersetzt (dekodiert) werden, ist die Lage bei der Zelle anders.

8. Nimmt man an, dass der zu sendende Kode das DNA-Molekül ist, das in seiner Struktur eine potentielle Informationssequenz repräsentiert, dann ist der Sender eine Zelle in einer Umgebung. Der ‚DNA-Kode‘ (der feste Kode A) wird dann umgeschrieben (Transskription, Translation) in zwei verschiedene Kodes (mRNA, tRNA). Während man die Zustandsform des mRNA-Moleküls noch in Korrespondenz zum DNA-Kode sehen kann (abr nicht vollständig), enthalten die verschiedenen tRNA-Moleküle Bestandteile, die über den ursprünglichen DNA-Kode hinausgehen. Daraus wird dann eine Proteinstruktur erzeugt, die sowohl eine gewisse Kopie des ursprünglichen DNA-Moleküls (Kode A) enthält, aber auch zusätzlich einen kompletten Zellkörper, der mit dem Kode A nichts mehr zu tun hat. Außerdem gibt es den Empfänger bei Beginn der Übermittlung noch gar nicht. Der Empfänger wird im Prozess der Übermittlung erst erzeugt! Anders formuliert: beim biologischen Informationsaustausch im Rahmen einer Selbstreproduktion wird zunächst der potentielle Empfänger (eine andere Zelle) erzeugt, um dann den DNA-Kode im Empfänger neu zu verankern.

9. Innerhalb dieses Gesamtgeschehens gibt es mehrere Bereiche/ Phasen, in denen das Konzept eines rein statistischen Informationsbegriffs verlassen wird.

10. So weist Maynard Smith darauf hin, dass die Zuordnung von DNA-Sequenzen zu den später erzeugten Proteinen mindestens zweifach den statistischen Informationsbegriff übersteigt: (i) die erzeugten Proteinstrukturen als solche bilden keine einfache ‚Übersetzung‘ das DNA-Kodes verstanden als eine syntaktische Sequenz von definierten Einheiten eines definierten endlichen Alphabets. Die Proteinmoleküle kann man zwar auch als Sequenzen von Einheiten eines endlichen Alphabets auffassen, aber es handelt sich um ein ganz anderes Alphabet. Es ist eben nicht nur eine reine ‚Umschreibung‘ (‚Transkription‘), sondern eine ‚Übersetzung‘ (‚Translation‘, ‚Translatio‘), in die mehr Informationen eingehen, als die Ausgangssequenzen im DNA-Kode beinhalten. (ii) Der DNA-Kode enthält mindestens zwei Arten von Informationselementen: solche, die dann in Proteinstrukturen übersetzt werden können (mit Zusatzinformationen), und solche, die die Übersetzung der DNA-Informationselemente zeitlich steuern. Damit enthält der DNA-Kode selbst Elemente, die nicht rein statistisch zu betrachten sind, sondern die eine ‚Bedeutung‘ besitzen, eine ‚Semantik‘. Diese Bedeutung st nicht fixiert; sie kann sich ändern.

ALLGEMEINE ZEICHENLEHRE = SEMIOTIK

11. Für Elemente eines Kodes, denen ‚Bedeutungen‘ zugeordnet sind, gibt es in der Wissenschaft das begriffliche Instrumentarium der allgemeinen Zeichenlehre, spricht ‚Semiotik‘ (siehe z.B. Noeth 2000).

12. Nimmt man die empirischen Funde und die semiotische Begrifflichkeit ernst, dann haben wir es im Fall der Zelle also mit eindeutigen (und recht komplexen) Zeichenprozessen zu; man könnte von der Zelle in diesem Sinne also von einem ’semiotischen System‘ sprechen. Maynard Smith deutet den Grundbegriff von Jacques Lucien Monod (1910-1976) ‚gratuity‘ im Sinne, dass Signale in der Biologie ‚Zeichen‘ seien. Ob dies die Grundintention von Monod trifft, ist eine offene Frage; zumindest lässt die Maschinerie, die Monod beschreibt, diese Deutung zu.

13. Eine zusätzliche Komplikation beim biologischen Zeichenbegriff ergibt sich dadurch, dass eine Zelle ja nicht ‚isoliert‘ operiert. Eine Zelle ist normalerweise Teil einer Population in einer bestimmten Umgebung. Welche Strukturen der Proteinaufbauprozess (Wachstum, Ontogenese) auch hervorbringen mag, ob er gewisse Zeiten überdauert (gemessen in Generationen), hängt entscheidend davon ab, ob die Proteinstruktur in der Interaktion mit der Umgebung ‚hinreichend lange‘ jene ‚Arbeit‘ verrichten kann, die notwendig ist, um eine Selbstreproduktion zu ermöglichen.

14. Ob eine Proteinstruktur in diesem weiterführenden Sinne ‚lebensfähig‘ ist, hängt also entscheidend davon ab, ob sie zur jeweiligen Umgebung ‚passt‘. Eine lebensfähige Proteinstruktur ist in diesem Sinne – von einer höheren theoretischen Betrachtungsweise aus gesehen – nichts anderes als ein auf Interaktion basierendes ‚Echo‘ zur vorgegebenen Umgebung.

15. Dass dies ‚Echo‘ nicht ’stagniert‘, nicht ‚auf der Stelle tritt‘, nicht ‚um sich selbst kreist‘, liegt entscheidend daran, dass die ‚letzte‘ Struktur den Ausgangspunkt für ‚weitere Veränderungen‘ darstellt. Die Zufallsanteile im gesamten Selbstreproduktionsprozess fangen also nicht immer wieder ‚von vorne‘ an (also keine ‚Auswahl mit Zurücklegen‘), sondern sie entwickeln eine Informationsstruktur ‚weiter‘. In diesem Sinne bildet die Informationssequenz des DNA-Moleküls auch einen ‚Speicher‘, ein ‚Gedächtnis‘ von vergangenen erfolgreichen Versuchen. Je mehr Zellen in einer Population verfügbar sind, umso größer ist diese molekulare Erfolgsgedächtnis.

Diese Fortsetzung war nicht die letzte Zwischenreflexion. Es geht noch weiter: HIER

QUELLEN

Schroedinger, E. „What is Life?“ zusammen mit „Mind and Matter“ und „Autobiographical Sketches“. Cambridge: Cambridge University Press, 1992 (‚What is Life‘ zuerst veröffentlicht 1944; ‚Mind an Matter‘ zuerst 1958)
Claude E. Shannon, „A mathematical theory of communication“. Bell System Tech. J., 27:379-423, 623-656, July, Oct. 1948 (URL: http://cm.bell-labs.com/cm/ms/what/shannonday/paper.html; last visited May-15, 2008)
Claude E. Shannon; Warren Weaver (1948) „The mathematical theory of communication“. Urbana – Chicgo: University of Illinois Press.
John Maynard Smith (2000), „The concept of information in biology“, in: Philosophy of Science 67 (2):177-194
Noeth, W., Handbuch der Semiotik, 2. vollst. neu bearb. und erw. Aufl. mit 89 Abb. Stuttgart/Weimar: J.B. Metzler, xii + 668pp, 2000
Monod, Jacques (1971). Chance and Necessity. New York: Alfred A. Knopf

Einen Überblick über alle Blogbeiträge des Autors cagent nach Titeln findet sich HIER.

Buch: Die andere Superintelligenz. Oder: schaffen wir uns selbst ab? – Kapitel 5

VORBEMERKUNG: Der folgende Text ist ein Vorabdruck zu dem Buch Die andere Superintelligenz. Oder: schaffen wir uns selbst ab?, das im November 2015 erscheinen soll

Das Wunder des Zeichens

Wenn wir zu verstehen beginnen, dass die wunderbare Welt unseres Erkennens im Gehirn stattfindet, das in unserem Körper eingeschlossen getrennt von der Welt existiert, kann sich die Frage stellen, wie denn das Gehirn von Dir und mein Gehirn miteinander kommunizieren können. Wie erfahre ich, was Du willst, und Du, was ich will? Woher kann ich wissen, warum Du diese Handlung gut findest, und wie erfährst Du, warum ich die andere Handlung gut finde?

Diese Fragen zielen auf das Wunder der Koordination zwischen Menschen, aber letztlich auch zwischen Tieren, auch zwischen Pflanzen, ja generell: wieso können biologische Zellen ihr Verhalten koordinieren?

Hier gibt es noch viele Fragen, auf die die Wissenschaften bis heute keine voll befriedigenden Antworten gefunden hat. Auf einige dieser Fragen werde ich weiter unten noch eingehen. Jetzt, hier, in diesem Kapitel, soll es um die Frage gehen, wie wir Menschen die Frage der Kommunikation mittels Sprache — zumindest ansatzweise — gelöst haben.

Auf etwas zeigen

Wenn Menschen mit anderen zusammen am Tisch sitzen und Essen ist es oft so, dass man einen Gegenstand vom Tisch benötigt, der weiter weg steht und man denjenigen bittet, der am nächsten dran sitzt, einem den Gegenstand zu reichen.

Man kann dies tun, indem man mit der Hand, den Fingern, mit dem Gesicht in die Richtung des Gegenstandes deutet und die andere Person ‚erkennt‘ aus der Richtung und dem, was sich auf dem Tisch befindet, was ‚gemeint‘ ist; die andere Person deutet dann vielleicht selbst auf diesen Gegenstand, mit einem fragenden Blick, und wenn es der Gegenstand ist, den man meint, dann nickt man vielleicht, freundlich, mit einem Lächeln, und die andere Person reicht einem den Gegenstand.

In diesem Fall waren es Bewegungen des Körpers und bestimmte Körperhaltungen die in einer konkreten Situation mit Teilen der Situation in Interaktion treten und die, eine andere ‚kooperierenden Person‘ vorausgesetzt, von dieser anderen kooperierenden Person mit bestimmten Teilen der Situation ‚in Beziehung gesetzt‘ werden. Eine Handbewegung ist in diesem Fall nicht einfach eine Handbewegung ‚für sich‘, sondern eine Handbewegung als Teil einer größeren Situation, wo der ‚Andere‘ die Handbewegung mit einem bestimmten Teil der Situation, einem Gegenstand G, in eine ‚Beziehung‘ bringt. Diese Beziehung ist selbst kein realer Gegenstand sondern ist eine der vielen ‚möglichen gedachten Beziehungen‘ im Kopf des Anderen zwischen der beobachteten Handbewegung und den verschiedenen Gegenständen auf dem Tisch. Durch den fragenden Blick will der Andere wissen, ob seine ‚gedachte Beziehung‘ jene Beziehung ist, die der Bittende ‚intendiert‘ (sich vorgestellt, gedacht, …) hatte. Wenn der Bittende bestätigend nickt, dann fühlt der Andere sich ‚bestätigt‘ und nimmt die hypothetische gedachte Beziehung als jene Beziehung, die jetzt in dieser Situation vom Bittenden ‚gemeint‘ ist. Punktuell, kurzfristig wurde also im Raum der vielen Möglichkeiten eine bestimmte mögliche Beziehung als hier und jetzt gewollte gedacht und durch Bewegungen ‚manifestiert‘ (ausgedrückt, mitgeteilt, …).

Wenn wir dieses alltägliche Beispiel verallgemeinern, dann haben wir folgende (theoretische) Zutaten:

  1. Wir haben mindestens zwei Teilnehmer A und B, die ein Kommunikationsspiel spielen.
  2. Wir unterstellen bei jedem Teilnehmer ein Bewusstsein, das einem Teilnehmer ermöglicht, Eigenschaften der Außenwelt W in seinem Bewusstsein ‚hinreichend gut‘ zu ‚repräsentieren‘.
  3. Jeder Teilnehmer hat einen Körper, der von dem anderen wahrgenommen werden kann und der Eigenschaften besitzt, die eine Unterscheidung von Körperhaltungen und Körperbewegungen erlauben.
  4. In der gemeinsam geteilten Situation (als Teil der Außenwelt) gibt es Objekte, die Eigenschaften besitzen, wodurch sie sich voneinander unterscheiden und aufgrund deren sie von den Teilnehmern ‚wahrgenommen‘ werden können.
  5. Wir unterscheiden zwischen der ‚Stimulation‘ der Sinnesorgane in Gestalt von sensorischem Input I durch die Objekte OBJ der Außenwelt (als $latex stim: SIT \times OBJ \longmapsto I$) und der eigentlichen Wahrnehmung als Ergebnis der internen Verarbeitung der Stimulation I in bewusste Perzepte P (als $latex perc: I \times IS \longmapsto IS \times P$) (‚IS‘ steht für irgendwelche internen Zustände, die bei diesem Prozess auch noch eine Rolle spielen.). Dies berücksichtigt, dass die gleichen Außenweltreize von verschiedenen Anderen unterschiedlich verarbeitet werden können.
  6. Objekte in der Außenwelt werden — auf unterschiedliche Weise — so wahrgenommen, als ob sie sich in einem dreidimensionalen Raum befinden. Dies bedeutet, eine Situation hat eine ‚Raumstruktur‘, in der die Objekte in bestimmten Positionen und Lagen vorkommen. Dadurch ergeben sich zwischen den Objekten charakteristische räumliche Beziehungen. Während die Stimulation der Sinnesorgane diese räumlichen Strukturen partiell ‚vereinfacht‘, kann die Wahrnehmung mit Unterstützung des Gehirns daraus partiell räumliche Strukturen ‚zurückrechnen‘.
  7. Wenn zwei Gegenstände sich im Raum der Außenwelt so befinden, dass wir sie wahrnehmen können (z.B. eine Schüssel auf dem Tisch und eine Hand, die in diese ‚Richtung‘ deutet), können wir außer der räumlichen Beziehung auch andere mögliche Beziehungen (z.B. eine ‚Zeigebeziehung‘) wahrnehmen. Diese Beziehungen existieren als mögliche ‚gedachte Beziehungen‘ im Bewusstsein eines Teilnehmers. Ein Teilnehmer kann sich unendlich viele Beziehungen denken.
  8. Dass ein Anderer A zwei Objekte der Außenwelt mit einer ‚gedachten Beziehung‘ verbinden kann, die der Bittende B in seinem Bewusstsein ’sich vorstellt’/ ‚denkt‘, setzt ferner voraus, dass es zwischen der Wahrnehmung und dem ‚Vorstellen’/ ‚Denken‘ zwischen A und B hinreichend viel ‚Ähnlichkeit‘ gibt. Könnte ein A grundsätzlich sich nicht jene ‚Beziehungen‘ ‚vorstellen‘, die sich B vorstellt, wenn er mit seiner Hand in Richtung eines bestimmten Gegenstands (z.B. der einen roten Schüssel …) deutet, dann könnte B so viel deuten wie er will, der Andere A würde sich einfach nicht vorstellen

Nach dieser — noch immer vereinfachenden — Darstellung des Sachverhalts, können wir uns dem Begriff des Zeichens zuwenden.

Der Begriff des Zeichens

Mit dieser Frage gerät man in den Bereich der allgemeinen Wissenschaft von den Zeichen, der Semiotik (Anmerkung: Die Geschichte der Semiotik ist lang und vielschichtig. Einen guten Überblick bietet Winfried Noeth in seinem ‚Handbuch der Semiotik‘ von 2000, publiziert von J.B. Metzler (Stuttgart/Weimar)). Obwohl es je nach Zeit und Denkmode sehr unterschiedliche Formulierungen gibt, kann man eine Kernstruktur erkennen, die sich in allen unterschiedlichen Positionen durchhält.

Allerdings sollte man sich vorab klar machen, ob man — wie es historisch zunächst der Fall war — den Begriff des Zeichens primär durch Bezugnahme auf den Raum des Bewusstseins charakterisieren will, oder durch Bezugnahme auf das beobachtbare Verhalten (wie es die empirischen Wissenschaften favorisieren).

Der berühmteste Vertreter einer bewusstseinszentrierten Vorgehensweise ist Charles Sanders Peirce (1839 – 1914). Für den verhaltensorientierten Ansatz einflussreich war Charles William Morris (1901 – 1979). Eine Kombination aus bewusstseinsbasierten und verhaltensorientierten Aspekten bietet Ferdinand de Saussure (1857 – 1913).

Der Gebrauch eines Zeichens setzt — wie zuvor — eine Kommunikationssituation voraus mit mindestens zwei Teilnehmern, die mit ihren Körpern in der Situation anwesend sind und über hinreichend gleiche Körperstrukturen für Wahrnehmung und Denken verfügen.

Am Beispiel der Situation des Essens möchte ich die rote Schüssel mit dem Nachtisch gereicht bekommen; diese steht nicht in meiner Griffweite. Ich sehe meine Schwester Martina so sitzen, dass Sie mir die Schüssel reichen könnte. Ohne Sprache könnte ich nur mit Handbewegungen und Gesichtsausdrücken versuchen, ihr klar zu machen, was ich möchte. Mit Sprache könnte ich Laute erzeugen, die als Schallwellen ihr Ohr erreichen und sagen würden ‚Hallo M, kannst Du mir bitte mal die rote Schüssel reichen?‘. Sofern meine Schwester Deutsch kann (was der Fall ist), wird sie diese Schallwellen in ihrem Kopf so ‚übersetzen‘, dass sie einen Bezug herstellt zu ihrer Wahrnehmung der roten Schüssel, zur Wahrnehmung von mir, und wird eine Aktion einleiten, mir die Schüssel zu reichen.

Der gesprochene Satz ‚Hallo M, kannst Du mir bitte mal die rote Schüssel reichen?‘ als ganzer stellt ein Ausdrucksmittel dar, bildet ein Material, mittels dessen ein Sprecher (in dem Fall ich), einen Hörer (in dem Fall meine Schwester) in die Lage versetzt, nur aufgrund des Schalls einen Bezug zu einem realen Objekt herzustellen und dieses Objekt in eine Handlung (mir das Objekt rüber reichen) einzubetten. Meine Schwester als Hörerin ist damit interpretierend tätig; sie stellt aktiv eine Verbindung her zwischen dem gehörten Schall und Elementen ihrer Wahrnehmung der Situation. Diese Interpretation befähigt sie, eine Handlung zu planen und auszuführen.

Rein verhaltensorientiert kann man sagen, dass die gesamte sprachliche Äußerung ein Zeichenmaterial darstellt, das vom Hörer intern ‚verarbeitet‘ wird, was zu einer bestimmten Handlung führt (die rote Schüssel reichen). Der Hörer nimmt hier eine Interpretation (Int) vor, durch die der Schall, das Zeichenmaterial (ZM) in Beziehung gesetzt wird zu etwas Wahrgenommenem; dies führt wiederum zu einer beobachtbaren Handlung, die damit zur Bedeutung (M) des Zeichenmaterials wird: $latex Int: ZM \longmapsto M$. Anders ausgedrückt, das Gesagte, der Sprachschall, bekommt durch diesen Zusammenhang eine neue Funktion; der Schall steht nicht mehr nur ‚für sich alleine‘, sondern es spielt eine Rolle in einer Beziehung. Damit wird das an sich neutrale Schallereignis zu einem ‚Zeichen‘. Ein Hörer verwandelt mit seiner Interpretation ein an sich neutrales Ereignis in ein Zeichen für etwas anderes, was man die Bedeutung des Zeichens nennt.

Als Wissenschaftler kann man hier weiter verallgemeinern und den Hörer als ein Input-Output-System betrachten mit dem Sprachschall und den visuellen Wahrnehmungen als Input I und dem beobachtbaren Verhalten als Output O und der Interpretation Int als Verhaltensfunktion $latex \phi$, geschrieben $latex \phi: I \times IS \longmapsto IS \times O$

Interpretieren

Wer die Thematik ‚Zeichen‘, ‚Semiotik‘, ‚Sprache‘, Sprachverstehen‘ usw. ein wenig kennt, der weiß, dass wir uns damit einer Materie genähert haben, die sehr umfangreich und beliebig kompliziert ist, so kompliziert, dass fast alle wirklich interessanten Fragen noch kaum als gelöst bezeichnet werden können. Ich beschränke mich daher hier nur auf einige Kernpunkte. Nach Bedarf müssten wir das vertiefen.

Wie man an dieser Stelle ahnen kann, ist der Vorgang des Interpretierens das eigentliche Herzstück des Zeichenbegriffs. Hier geschieht die Zuordnung zwischen gehörtem Schall (oder gelesenem Text, oder gesehenen Gesten, oder …) zu anderen bekannten Wissensinhalten, vorzugsweise zu Wahrnehmungselementen der aktuellen Situation. Will man die Details dieses Interpretationsprozesses beschreiben, hat man mit einem verhaltensbasierten Ansatz ein Problem: alles, was sich im ‚Innern‘ eines biologischen Systems abspielt, ist zunächst nicht beobachtbar. Da hilft es auch nicht, wenn man heute einen Körper ‚aufmachen‘ kann und Körperorgane, Zellen, Prozesse in den Zellen untersuchen kann. Schaltzustände von Zellen, speziell Gehirnzellen, sagen als solche nichts über das Verhalten. Es sei denn, man ist in der Lage, explizit einen Zusammenhang zwischen den Zuständen von Gehirnzellen und beobachtbarem Verhalten herzustellen, was in der Neuropsychologie zur Methode gehört. Ähnlich könnte man bei der expliziten Parallelisierung von beobachtbarem Verhalten und rein subjektiven Phänomenen vorgehen oder eine explizite Parallelisierung zwischen Aktivitäten von Gehirnzellen (oder auch anderer Zellen) mit rein subjektiven Phänomenen.

Die verhaltensbasierte empirische Psychologie hat in zahllosen Modellbildungen gezeigt, wie man auf der Basis von Verhaltensdaten empirisch kontrollierte Hypothesen über mögliche Verarbeitungsmechanismen im System formulieren kann. Wieweit diese Modelle sich im Rahmen von neuropsychologischen Studien in der Zukunft bestätigen lassen oder diese modifiziert werden müssen, das wird die Zukunft zeigen.

Abstraktionen – Allgemeinbegriffe

Wenn wir mittels sprachlicher Ausdrücke Gegenstände unserer Alltagswelt ansprechen, benutzen wir fast ausnahmslos sogenannte Allgemeinbegriffe. Ich frage nach der ‚Schüssel‘ wohl wissend, dass es hunderte von Gegenständen geben kann, die konkret verschieden sind, die wir aber alle als ‚Schüssel‘ bezeichnen würden; desgleichen mit Ausdrücken wie ‚Tasse‘, ‚Flasche‘, ‚Tisch‘, Stuhl‘, usw.

Indem wir sprachliche Ausdrücke benutzen machen wir stillschweigend Gebrauch von der Fähigkeit unseres Gedächtnisses, dass alles, was wir gegenständlich wahrnehmen, ‚verallgemeinert‘ wird, d.h. von Details abgesehen wird und Kerneigenschaften abstrahiert werden (die Philosophen sprechen auch von Kategorisierung, der Bildung von Kategorien; eine andere Bezeichnung ist das Wort ‚Klasse‘). Dies geschieht offensichtlich unbewusst, ‚automatisch‘; unser Gedächtnis arbeitet einfach so, stillschweigend, lautlos. Was immer wir wahrnehmen, es wird in ein abstraktes Konzept ‚übersetzt‘, und alles, was zukünftig diesem Konzept ‚ähnlicher‘ ist als anderen Konzepten, das wird dann diesem Konzept zugerechnet. Ein gedankliches Gegenstandskonzept kann auf diese Weise für viele hundert unterschiedliche konkrete Gegenstände stehen. Und die Sprache braucht immer nur ein einziges Wort für ein solches abstraktes Gegenstands-Konzept.

Im konkreten Fall (wie z.B. dem Essen) ist die Verständigung meist einfach, da vielleicht nur eine einzige Schüssel auf dem Tisch steht. Wenn nicht, dann haben diese Schüsseln eventuell eine unterscheidende Eigenschaft (anhand ihrer räumlichen Position, Farbe, Größe, Inhalt, …). Die Schüssel ’neben‘ …, die ‚rote‘ Schüssel…, die ‚kleine weiße Schüssel‘ …, die Schüssel mit dem Reis ….

Wenn wir den Interpretationsprozess genauer beschreiben wollen, dann müssten wir diese Abstraktionsprozesse und ihre Anwendung in die Theoriebildung mit einbeziehen.

Diese Abstraktionsprozesse finden wir nicht nur bei ‚Gegenständen‘, sondern auch bei der Lautwahrnehmung. Wen wir ein gesprochenes Wort wie ‚Tasse‘ hören, dann hören wir dieses gesprochene Wort auch dann, wenn es schneller, langsamer, höher, tiefer, lauter oder leiser usw. gesprochen wird. Alle diese verschiedenen Äußerungsereignisse sind physikalisch sehr unterschiedlich und die moderne Sprachtechnologie hat viele Jahrzehnte gebraucht, um ‚in den meisten Fällen‘ das ‚richtige‘ Wort zu erkennen. Wir Menschen gehen mit diesen vielen unterschiedlichen Realisierungen vergleichsweise mühelos um. Auch hier verfügt unser Wahrnehmungs- und Gedächtnissystem über sehr leistungsfähige Abstraktionsprozesse, die zur Ausbildung von Lautkategorien und dann Wortklassen führen.

Wechselwirkungen zwischen Kategorien und Sprache

Damit finden wir auf der untersten Ebene des sprachlichen Zeichengebrauchs zwei selbständige Abstraktions- und Kategoriensysteme (Laute, Gegenstände), die im Zeichengebrauch zusammen geführt werden. Bevor Kinder diese beiden Systeme nicht meistern, können sie nicht wirklich Sprache lernen. Wenn sie es aber geschafft haben, diese Laut- und Gegenstandskategorien in sich zu realisieren, dann explodiert ihr Sprachlernen. (Anmerkung: Für einen Überblick siehe: Language development. Besonders aufschlussreich sind die empirischen Daten zur Entwicklung der Lautbildung, des Bedeutungserwerbs und der Grammatik. Umfassendere Theoriebildungen sind meist sehr spekulativ.)

Eine oft diskutierte Frage ist, in wieweit die Kategorienbildung bei den Gegenständen unabhängig ist von der Korrelation mit den Laut- und Wortkategorien (Anmerkung: Siehe einen Überblick zum Streit über die Sapir-Whorf-Hypothese.). Sofern diese Abstraktionsprozesse in genetisch bedingten Verarbeitungsprozessen gründen (wie z.B. der Farbwahrnehmung) darf man davon ausgehen, dass die sprachlichen Besonderheiten diese grundsätzlichen Kategorienbildung im Gegenstandsbereich nicht verändern, höchstens unterschiedlich nutzen. Für das gemeinsame Erlernen von Sprache bildet die Unabhängigkeit der vorsprachlichen Kategorienbildung eine Voraussetzung, dass eine Sprache gelernt werden kann. Gibt es hier Abweichungen (Anmerkung: wie z.B. bei Farbblindheit, generell Sehstörungen oder gar Blindheit, bei Taubheit, bei Störungen der Sinneswahrnehmungen, usw.), dann wird das gemeinsame Erlernen von Sprache in unterschiedlichen Graden erschwert bzw. eingeschränkt.

Bedeutung als Werden

Man kann erkennen, dass schon auf dieser untersten Ebene des Sprachgebrauchs Menschen, obgleich sie das gleiche Wort benutzen (wie ‚Flasche‘, ‚Tasse‘, …), damit ganz unterschiedliche Dinge verbinden können, je nachdem welche konkreten Gegenstände sie im Laufe ihrer Lerngeschichte sie wahrnehmen konnten. Je weiter sich diese Gegenstände von einfachen Alltagsgegenständen entfernen und komplexere Gegenstände benennen wie Tätigkeiten (‚Autofahren‘, ‚Einkaufen‘, ‚Reparieren‘, ..), komplexe Situationen (‚Parkhaus‘, ‚Jahrmarkt‘, ‚Sportveranstaltung‘, …) oder komplexe Organisationen (‚Gemeindeverwaltung‘, ‚politische Partei‘, ‚Demokratie‘, …), umso vielfältiger und umso unschärfer (‚fuzzy‘) werden die damit eingeschlossenen konkreten Eigenschaften. So wunderbar die Verfügbarkeit von abstrakten Begriffen/ Klassen/ Kategorien/ Allgemeinbegriffen den Gebrauch von Sprache vereinfacht, so trügerisch können diese Begriffe sein. 10 Menschen benutzen das Wort ‚Gott‘ und jeder versteht damit möglicherweise etwas ganz anderes.

Der Aufbau einer gemeinsam geteilten Bedeutungswelt ist in keiner Weise ein ‚Selbstgänger‘; langer Atem, gemeinsame Anstrengungen, Abstimmungen, Abgleiche, viel Kommunikation ist notwendig, um Verstehen zu ermöglichen, Missverständnisse zu verringern und bewusster Manipulation entgegen zu treten.

Einen Überblick über alle Blogbeiträge des Autors cagent nach Titeln findet sich HIER.

GEMEINSAMKEIT IN DER VIELFALT – GRASWURZEL-/ BOTTOM-UP-PHILOSOPHIE – Memo zur philosophieWerkstatt vom 12.Okt.2014

Dieses Memo bezieht sich auf die philosophieWerkstatt v.2.0 vom 12.Okt.2014.

1. Ein neuer Ort, eine neue Zeit, neue Menschen …. die philosophieWerkstatt v2.0 ging an den Start und trotz schönem Wetter und vielen Grippeinfizierten gab es eine bunte Runde von Gesprächsteilnehmern die sich zu einem philosophischen Gespräch zusammen fanden.

2. In einer kleinen ‚Aufwärmphase‘ konnte jeder etwas von sich und seinen Erwartungen erzählen und es wurde ein erstes Begriffsfeld sichtbar, das von Vielfalt kündete und einen erkennbaren Zusammenhang noch vermissen lies (siehe nachfolgendes Bild).

Begriffe im Raum, unverbunden, der Anfang
Begriffe im Raum, unverbunden, der Anfang

3. Es stand die Frage im Raum, ob und wie man hier zu einem verbindlichen Zusammenhang kommen könne? Wie – hier vorgreifend auf das Ergebnis des Gespräches – das abschließende Gesprächsbild andeutet, kam es zu immer mehr Differenzierungen, wechselseitigen Abhängigkeiten, Verdichtungen und Abstraktionen, die – wenngleich noch zaghaft – eine erste Struktur andeuten, an der man bei einem Nachfolgegespräch weiter anknüpfen könnte.

Begriffe in einem beginnenden Zusammenhang, Umrisse einer Struktur
Begriffe in einem beginnenden Zusammenhang, Umrisse einer Struktur

BILDER VON DER WELT – BEDEUTUNG

4. Eine erste Wendung im Gespräch kam durch den Hinweis, dass die ‚Bedeutung‘, die wir von den ‚Ausdrücken‘ einer Sprache unterscheiden, ‚in unserem Kopf‘ zu verorten sei. Dort. ‚in unserem Kopf‘ haben wir ‚Bilder von der Welt‘ (‚Vorstellungen‘, ‚mentale Repräsentationen‘), die für uns ‚Eigenschaften der umgebenden Welt‘ repräsentieren.

VORWISSEN

5. Bald kam auch der Begriff des ‚Vorwissens‘, der ‚bisherigen Erfahrung‘, einer ‚Vorprägung‘ ins Spiel: gemeint war damit, dass wir in jedem Augenblick nicht vom Punkt Null beginnen, sondern schon Erfahrungen in der Vergangenheit gemacht haben, die auf die aktuelle ‚Wahrnehmung der Welt‘ einwirken: als ‚Erwartungen‘, als ‚Vor-Urteil‘, als ‚Übertragung‘.

SOZIALER DRUCK

6. Hier wurde auch darauf hingewiesen, dass die ‚Interpretation der Wahrnehmung‘ von anderen Menschen (‚Gruppenzwang‘, ‚gesellschaftliche Gewohnheiten/ Erwartungen‘, ‚Prüfungssituationen‘) zusätzlich beeinflusst werden kann. Während man normalerweise spontan (fast unbewusst) entscheidet, wie man eine Wahrnehmung interpretieren soll (obgleich sie vieldeutig sein kann), kann dieser Prozess unter sozialem Druck gestört werden; wie zögern, werden unsicher, bemerken, dass die Situation vielleicht nicht eindeutig ist, und suchen dann nach Anhaltspunkten, z.B. nach den Meinungen der anderen. Oft ist es so, dass die ‚Mehrheit‘ besser ist als die Meinung eines einzelnen; die Mehrheit kann aber auch völlig daneben liegen (berühmtes Galileo-Beispiel).

ÄHNLICHKEITEN ZWISCHEN PERSONEN

7. Die Frage war, wie es denn überhaupt zu ‚Ähnlichkeiten‘ zwischen Personen kommen kann, wenn jeder seine Bilder im Kopf hat?

8. Ein Schlüssel scheint darin zu liegen, dass jeder seine Bilder in seinem Kopf anlässlich der Gegebenheiten der umgebenden Welt ‚formt‘. Sofern die umgebende Welt für alle die ‚gleiche‘ ist, lässt sich von daher eine gewisse Ähnlichkeit der Bilder motivieren.

9. Zusätzlich gibt es aber auch die Sachlage, dass die Körper der Menschen mit ihren Organen und Prozessen, insbesondere mit ihrem Gehirn und den darauf basierenden Information verarbeitenden Prozessen, eine gewisse Ähnlichkeit zwischen allen Menschen aufweisen, so dass auch dadurch Ähnlichkeiten zwischen den Bildern im Kopf begünstigt werden.

BEGRENZUNG DES BEWUSSTSEINS

10. In der neuzeitlichen Orientierung am Bewusstsein als primärer Erkenntnisquelle (ungefähr seit Descartes und später bis zur Phänomenologie) gab es keine Ansatzpunkte, um diese implizite ‚Harmonie der Körper und Erkenntnisse‘ aufzuhellen. Die antike Philosophie – insbesondere Aristoteles und seine Schüler – hatte zwar Ansatzpunkte, die Erkenntnisse über die Welt einzubeziehen, aber die damaligen ‚Welterkenntnisse‘ reichten nicht aus, um das moderne empirische Wissen über die physikalische, chemische, biologische und kulturelle Evolution vorweg zu nehmen. Erst mit den neuen Wissenschaften und einer davon inspirierten Strömung einer ‚evolutionär inspirierten‘ Erkenntnistheorie und Philosophie lieferte erste sachdienliche Hinweise, dass die unübersehbare ‚Harmonie der Körper‘ auch ein Grund für die Ähnlichkeit zwischen den Bildern in den verschiedenen Köpfen sein kann.

SCHLÜSSEL EVOLUTION

11. Mehr noch, die verblüffende ‚Passung‘ von menschlicher Erkenntnis zur ‚umgebenden Welt‘ ist letztlich vollständig induziert von einer evolutionären Entwicklung, in der sich nur solche Organismen ‚durchsetzen‘ konnten, die relativ am besten die ‚lebensfördernden Eigenschaften‘ der umgebenden (aber auch in sich sich verändernden) Welt aufgreifen und nutzen konnten.

12. Wenn man davon sprechen kann, dass der Menschen ein ‚Ebenbild‘ sei, wie es biblische Texte nahelegen (hier ohne kritischen Kommentar), dann zunächst mal ein Ebenbild der vorgegebenen Erde als Teil eines Sonnensystems als Teil einer Galaxie als Teil eines BigBang-Universums (Weiterreichende Interpretationen sind damit per se noch nicht ausgeschlossen).

BILDER IM KOPF vs. WELT

13. Es wurde auch festgestellt, dass man zwischen den ‚Bildern von der Welt im Kopf‘ und den ’sprachlichen Ausdrücken‘ unterscheiden muss.

ALLGEMEINBEGRIFFE

14. Die ‚Bilder von der Welt‘ repräsentieren irgendwie (mal mehr, mal weniger ‚passend‘) die ‚Gegebenheiten‘ der umgebenden Welt. Dies geschieht durch eine ‚denkerische‘ Mixtur aus ’sinnlicher Erfahrung von Einzelnem‘ und ‚denkerischer Abstraktion von Allgemeinheiten‘, so dass wir in jedem Moment zwar einen einzelnen konkreten Gegenstand identifizieren können, zugleich aber auch immer einen ‚allgemeinen Begriff‘, eine ‚Kategorie‘ zur Verfügung haben, die anhand von ‚abstrahierten Eigenschaften‘ einzelne Gegenstände als ‚Beispiele‘ (‚Instanzen‘) einer allgemeinen Struktur erscheinen lässt. Unser Denken lässt gar nichts anderes zu; es ‚zwingt‘ uns zur ‚automatischen‘ (‚unbewussten‘) Konstruktion von ‚Allgemeinbegriffen‘.

SPRACHE UND DING

15. Es wurde darauf hingewiesen, dass wir ja auch verschiedene Sprachen sprechen und dass möglicherweise die ‚Bilder im Kopf‘ bis zu einem gewissen Grade unabhängig von der verwendeten Sprache sind. Deswegen können wir auch zwischen den Sprachen übersetzen! Weil die körpergebundenen Sachstrukturen – bis zu einem gewissen Grade – sprachunabhängig gegeben sind und sich ‚aufbauen‘, können die Ausdrücke einer Sprache L darauf Bezug nehmen und durch andere ‚bedeutungsgleiche‘ Ausdrücke ‚ersetzt werden.

VERÄNDERLICHE WELT vs. STATISCHE BILDER

16. Die ‚Bedeutung‘ sprachlicher Ausdrücke (ihre ‚Semantik‘) begründet sich also von den körperbedingten Objektstrukturen her. Wenn nun die umgebende Welt sich ändert (Prozess, Geschichte, Evolution, …), dann ändern sich zwar die Sachstrukturen in der Welt, nicht aber unbedingt synchron die Bilder im Kopf eines Menschen. Damit entsteht das, was wir oft erleben: Menschen benutzen Ausdrücke einer Sprache L, ‚Begriffe‘, ‚Termini‘, die sie mit bestimmten ‚Bildern im Kopf‘ verknüpfen (assoziieren), aber diese Bilder können ‚veraltet‘ sein, da sich die Gegebenheiten in der Welt mittlerweile verändert haben (im Gespräch wurde der Ausdruckswandel des Begriffs ‚Student‘ angesprochen).

EINFACH vs. KOMPLEX

17. Vor dem Hintergrund einer ‚erlernten‘ Bedeutung kann es dann passieren, dass die ‚erlernten‘ Bedeutungen aus einer früheren Zeit die Welt ‚einfacher‘ erscheinen lassen als die gegenwärtige Welt mit ihrer wachsenden Vielfalt (es standen die Bemerkungen im Raum, dass Mädchen und junge Frauen es früher ‚einfacher‘ gehabt haben sollen als Mädchen und junge Frauen heute).

WAS IST WAHRHEIT?

18. An diesem Punkt im Gespräch angekommen stellte sich nochmals die Frage nach der ‚Wahrheit‘, ein Begriff, der ganz am Anfang etwas isoliert im Raum stand.

19. Ausgangspunkt ist die alltägliche Beobachtung, dass wir manchen Aussagen als ‚richtig‘, manche als ‚falsch‘ bezeichnen. Dies knüpft an dem Umstand an, dass ‚Behauptungen über die Gegebenheiten der Welt‘ bis zu einem gewissen Grade ‚überprüfbar‘ sind. D.h. es scheint, dass wir die ‚Bilder in unserem Kopf‘ mit den sinnlich wahrnehmbaren Gegebenheiten der umgebenden Welt bis zu einem gewissen Grad so ‚vergleichen‘ können, dass wir eine ‚Übereinstimmung‘ oder ‚Nicht-Übereinstimmung‘ feststellen können, und zwar alle Menschen in gleicher Weise.

20. Wenn wir diesen grundsätzlichen Sachverhalt zum Ausgangspunkt nehmen, dann würde der Begriff ‚Wahrheit‘ in diesem Kontext bedeuten, dass eine Aussage mit ’sinnlicher Bestätigung‘ sowohl ‚richtig‘ als auch ‚wahr‘ wäre bzw. — falls keine Übereinstimmung vorliegt –, ’nicht richtig‘ bzw. ‚falsch‘ bzw. ’nicht wahr‘ wäre.

21. Bei diesem Interpretationsansatz werden damit die ‚Gegebenheiten der Welt‘ zum Ausgangspunkt, zur ‚Vorgabe‘, zum ‚Maßstab‘, an dem wir uns letztlich orientieren. Davon abgeleitet könnte man dann auch – ganz im Sinne der antiken Metaphysik und Ontologie – davon sprechen, dass ‚das Seiende‘, wie es uns – in gewissem Sinne ‚a priori‘ – vorgegeben ist, das ‚Wahre‘, die ‚Wahrheit‘ verkörpert, an der wir uns orientieren müssen, wollen wir im Sinn der Welt/ des Sonnensystems/ der Galaxie/ des BigBang-Universums/ des … ‚wahr‘ sein. Empirische Wissenschaft ist dann nichts anderes als antike Metaphysik (dafür gäbe es noch mehr Argumente).

22. Eine solcherart (ontologisch) verstandene Wahrheit ist dann nicht beliebig, sondern eher ‚verpflichtend‘: wer das ‚Leben‘ ‚achtet‘ und ‚liebt‘ muss sich eigentlich an dieser Wahrheit orientieren. Dies wäre damit auch die mögliche Begründung einer ‚Ethik des Lebens‘, die sich z.B. als ‚ökologisches Denken‘ manifestiert.

ANALYTISCH WAHRHEIT

23. Wenn wir annehmen, dass wir zu einem bestimmten Zeitpunkt ‚Bilder im Kopf‘ von der umgebenden Welt haben und wir diese Bilder als ‚zutreffen‘ – sprich als ‚wahr‘ – betrachten, dann können wir oft auch auf der Basis dieser vorausgesetzten Bilder ‚Schlüsse ziehen‘. Berühmt sind die Beispiele mit Syllogismen wie (Annahme 1) ‚Alle Menschen sind sterblich‘, (Annahme2:) ‚Sokrates ist ein Mensch‘, (Schluß:) ‚Sokrates ist sterblich‘. Nimmt man an, dass Annahme 1 und 2 ‚wahr‘ sind, dann folgt ‚analytisch‘ (ohne Bezug auf die aktuelle empirische Welt), der Schluss. Die Wissenschaft der Logik arbeitet im Prinzip nur mit solchen analytischen Schlüssen und ihren möglichen (formalen) Formen. Sie weiß als Wissenschaft der Logik nichts von der Welt (was sich auch darin auswirkt/ auswirken kann, dass sie formale Strukturen entwickelt, die mehr oder weniger ‚unbrauchbar‘ für das weltbezogene Alltagsdenken sind).

ALLE SIND TRÄGER DER WAHRHEIT

24. Rückblickend zu diesem Gespräch kann man also sagen, dass letztlich jeder Stücke der allgemeinen Wahrheit mit sich herum trägt und dass es eigentlich nur darauf ankommt, diese einzelnen Fragmente zusammen zu sammeln und sie in rechter Weise ‚zusammen zu fügen’… Graswurzel-Philosophie … Bottom-Up Philosophie … induktives Denken …

Die Ankündigung zur nächsten Sitzung am 9.Nov.2014 findet sich HIER.

Für einen Überblick über alle Blogeinträge zur Philosophiewerkstatt siehe HIER

Für einen Überblick über alle Blogeinträge nach Titeln siehe HIER

AVICENNAS ABHANDLUNG ZUR LOGIK – Teil 19

(Letzte Änderung: 3.Oktober 2014, 08:47h)

VORGESCHICHTE

Für einen Überblick zu allen vorausgehenden Beiträgen dieser rekonstruierenden Lektüre von Avicennas Beitrag zur Logik siehe AVICENNAS ABHANDLUNG ZUR LOGIK – BLITZÜBERSICHT.

1. Bei der Beschreibung der ‚Bedeutung‘ der logischen Ausdrücke in einer syllogistischen Figur wurde im letzten Beitrag Gebrauch gemacht von Diagrammen, in denen ‚Kreise‘ ‚Mengen‘ repräsentieren und die Anordnung der Kreise ‚Mengenverhältnisse‘.

2. Diese Vorgehensweise ist nicht neu und wird vielfach benutzt. Am bekanntesten ist wohl der Begriff ‚Venn-Diagramm‘.

3. So bekannt die Methode von verdeutlichenden Mengendiagrammen einerseits ist, so wenig tragen diese Methoden bislang zum wirklichen Verständnis des Gesamtzusammenhanges bei. Uns interessiert ja hier der Mensch als ’semiotisches System‘, als ein ‚adaptives Input-Output-System‘, das sowohl Objektstrukturen $latex perc(X,W)=I, O \subseteq I$ aus der umgebenden Welt W wahrnehmen kann wie auch – von den Objekten unterschiedene – Ausdrucksstrukturen $latex perc(X,W)=I, E \subseteq I$, die sich auf die Objektstrukturen beziehen können.

Übersicht zum Wissen K bestehend aus Ausdrücken E, Objekten O sowie Bedeutungsbeziehungen M
Übersicht zum Wissen K bestehend aus Ausdrücken E, Objekten O sowie Bedeutungsbeziehungen M

4. Entsprechend der Begriffe, die in Teil 14b eingeführt worden sind (und dann in den nachfolgenden Beiträgen weiter differenziert wurden), bilden die Objekte O eine dynamische Hierarchie mit impliziten Raum-, Zeit- und Anzahlstrukturen, angereichert mit diversen Beziehungen innerhalb dieser Strukturen. Wenn wir von der ‚Bedeutung‘ M der logischen Ausdrücke E – also M(E) — sprechen wollen, dann müssen wir diese gesamte dynamische Objektstruktur ins Auge fassen. Man wird zwar erwarten, dass sich die Strukturen, die in Mengendiagrammen verdeutlicht werden, in der dynamischen Objektstruktur ‚wiederfinden‘, aber man muss in einzelnen konkreten Schritten (‚konstruktiv‘) aufzeigen, wie dies gehen könnte.

FIGUR 1 MIT DEN QUANTOREN AAA

5. Betrachten wir die Struktur des ersten Syllogismus mit der Quantorenkombination (A F B), (A B H) und (A F H).

6. Wenn gesagt wird, dass ‚Alle F sind B‘ und ‚Alle B sind H‘, dann handelt es sich bei dem Quantor ‚Alle‘ um einen ‚Anzahlquantor‘, der sich auf Objekte bezieht, die entsprechend Elemente enthalten, über die man solche Aussagen machen kann. Nach der bisherigen Analyse geht dies nur, wenn sich die Ausdrücke ‚F‘, ‚B‘ und ‚H‘ auf ‚echte Objekte‘ aus Oa beziehen. Die Menge der ‚Elemente‘ eines echten Objektes kann man in der Tat mittels eines ‚Kreises‘ ‚modellieren‘ in dem Sinne, dass die Kreisfläche alle Elemente symbolisiert, die zum echten Objekt gehören.

7. Da wir es im ersten Beispiel (A F B), (A B H) und (A F H) ausschließlich mit echten Objekten zu tun haben, könnten wir für jedes dieser Objekte ein Kreismodell benutzen.

8. Die Aussagen (A F sind B), (A B sind H) und (A F sind H) stellen jeweils (i) eine Beziehung zwischen den Elementen von zwei Mengen her und (ii) machen Angaben zu der Anzahl; in diesem Fall ‚Alle‘.

9. Grundsätzlich gibt es folgende Möglichkeiten: ELEMENTSCHAFT: (i) Ein Element x aus einer Menge A ist auch Element von einer anderen Menge B oder (ii) eben nicht. Zusätzlich gibt es die ANZAHL: (iii) Die festgestellte Elementschaft trifft auf ‚Alle‘ Elemente zu oder (iv) ’nicht‘ auf ‚alle‘, d.h. ‚einige‘. Oder (v) ‚Für Alle nicht‘, also ‚keine‘.
10. Benutzt man das Kreismodell, dann kann man die Elementschaftsbeziehung eines Elementes x dadurch ausdrücken, dass man x ‚in‘ einem Kreis notiert oder ‚außerhalb‘.

11. Die Anzahlbeziehung könnte man dann grundsätzlich so ausdrücken, dass (i) bei ‚Allen‘ Elementen alle Elemente eines Objektes A auch im Objekt B sind, d.h. die beiden Kreise überdecken sich vollständig. Bei (ii) ‚Nicht Alle = Einige‘ gibt es Elemente eines Objektes A, die auch im Objekt B sind, aber nicht alle. In diesem Fall würden sich im Kreismodell die beiden Kreise A und B teilweise überdecken/ überlappen. (iii) Bei einer Aussage wie ‚Einige A sind nicht B‘ ist zwar klar, dass einige Elemente von A definitiv nicht in B sind, aber was weiß man von den anderen Elementen von A? Kann man zwingend davon ausgehen, dass diese dann in B sind? Denkbar wäre, dass alle anderen Elemente von A, die nicht in B sind zu einer anderen Menge C gehören und man nur darauf hinweisen wollte, dass einige mit Blick auf B nicht in B seien. Insofern wäre eine Aussage wie ‚Einige A sind nicht B‘ zunächst ‚unterbestimmt’/ ’nicht vollständig definiert‘, solange man keine speziellen Verabredungen trifft. Schließlich (iv) hat man noch den Fall ‚Alle A sind nicht B‘. Dies ist wieder eindeutig. Fasst man alle Elemente außerhalb von B als das ‚Komplement von B‘ ($latex \overline{B}$) auf, dann kann man sagen, dass alle Elemente von A in dem Komplement sind; keines ist in B.

Modellierung von Objekten mitels Kreisen
Modellierung von Objekten mitels Kreisen

12. Grafisch sieht dies so aus (siehe Diagramm): (i) zwei Kreise sich entweder vollständig überlappen (zwei Objekte sind ‚identisch gleich‘) – was im Beispiel nicht vorkommt –, oder (ii) ein Kreis ist völlig in einen anderen eingebettet (ein Objekt ist eine Teilmenge von einem anderen), oder (iii) zwei Kreise überschneiden sich partiell, oder (iv) zwei Kreise sind völlig voneinander getrennt (was man alternativ auch so ausdrücken kann, dass der eine Kreis eine Teilmenge des Komplements des anderen Kreises ist.

Modellierung von Objekten mittels Kreisen im Fall von Komplementen
Modellierung von Objekten mittels Kreisen im Fall von Komplementen

13. Während sich der explizite Bezug eines Objektes A zu einem Objekt B konkret und konstruktiv darstellen lässt, zeigen sich im Falle von ‚Komplementbildungen‘ (siehe Diagramm) Probleme. Die rein grafische Modellierung erlaubt keine klare Zuordnung von zwei Komplementen. Dazu bräuchte man zusätzliche Informationen. Diese könnte man z.B. durch explizite Aufstellung von ‚Axiomen‘ gewinnen. Will man aber die ‚Logik des tatsächlichen Sprachgebrauchs‘ nicht ‚verbiegen‘, muss man zuvor die Frage stellen, ob sich Anhaltspunkte aus dem dynamischen Objektmodell gewinnen lassen.

14. Nimmt man beispielsweise an, dass das dynamische Objektmodell ein ‚bottom-up‘ Modell ist, das seinen Ausgang bei konkreten, endlichen Wahrnehmungsereignissen Os nimmt, die mittels einer vorgegebenen Verarbeitungsmaschinerie (Gehirn, Algorithmus) in eine abstrakte Struktur von Objektebenen übersetzt werden, dann würde man vermuten, dass diese Maschinerie grundsätzlich von endlichen Mengen ausgeht, deren Informationsgehalt durch entsprechende Operationen ‚ausgewertet‘ wird. Die Bildung von – quasi ‚unendlichen‘ – ‚Komplementen‘ zu endlichen Strukturen ist dann zwar als Operation definierbar, aber wäre nur erklärt für den ‚endlichen Anteil‘. Das ‚Verhalten im quasi Unendlichen‘ wäre nicht wirklich definiert; es würde dann zwar ‚begrifflich existieren‘, aber wäre ‚praktisch nicht nutzbar‘. Letzteres wäre auch ’systemgefährdend‘, da die Annahme von Elementen in einem nur abstrakt konstruierbaren ‚unendlichen Raum‘ schnell in ‚Gefahrenzonen‘ führen kann.

15. Würde man dies die ‚generelle Endlichkeitsannahme‘ [GenEndl] nennen, dann wäre dies eine Art ‚Meta-Axiom‘, mit dem man die verschiedenen logischen Beziehungen als ‚zulässig‘ oder ’nicht zulässig‘ qualifizieren könnte [Mit dem philosophischen Konstruktivismus hat diese Endlichkeitsthese hier nur bedingt etwas zu tun].

ECHTE OBJEKTE und VERERBUNG

16. Es wurde oben schon festgestellt, dass die in der ersten Figur zugrunde liegende Annahme bzgl. der Art der Objekte in der Rekonstruktion dieses Blogs ‚echte Objekte‘ sein müssen, also Objektrepräsentationen, in denen Objekte repräsentiert werden, die echte Eigenschaften haben und denen man aufgrund dieser Charakterisierung andere Eigenschaftsvorkommnisse als Elemente zuordnen kann. Ferner gilt in dieser Rekonstruktion, dass die dynamische Objektstruktur automatisch auch Raum und Zeit bereitstellt sowie eine Vielzahl von impliziten Beziehungen.

17. Wenn nun das Schema sagt ‚Alle F sind B‘ und ‚Alle B sind H‘ gefolgt von ‚Alle F sind H‘, dann haben wir drei echte Objekte F, B und H, die so beschaffen sein müssen, dass man über die potentiellen Elemente dieser echten Objekte reden kann.

18. In der dynamischen Objekthierachie O werden ‚echte Objekte‘ im Bereich O – Os primär über ihr ‚Objektprofil‘ repräsentiert (eine Menge charakteristischer Eigenschaften) ergänzt um eine endliche Menge von ‚Beispielen‘. Sei P_F das Profil für echte Objekte der Art F, P_B und P_H entsprechend die Profile für die Objektmengen B und H.

19. Zu sagen, dass ‚Alle F sind B‘ würde dann bedeuten, dass alle charakterisierenden Eigenschaften des Objektprofils P_F auch im Objektprofil von P_B vorkommen. Dies würde gelten, unabhängig davon, wie viele ‚reale‘ Elemente beide echten Objekte tatsächlich enthalten! Man könnte daher auch direkt hinschreiben $latex P_{F} \subseteq P_{B}, P_{B} \subseteq P_{H}, P_{F} \subseteq P_{H} $. Hier zeigt sich eine ‚transitive‘ Beziehung des Enthaltenseins.

20. Das Auftreten von drei echten Objekten in einer syllogistischen Schlussfigur stellt allerdings – gemessen am alltäglichen Denken – eine Art Spezialfall dar. In vielen – den meisten ? — Fällen setzen wir nicht echte Objekte alleine in Beziehung sondern betten echte Objekte ein in Veränderungsbeziehungen wie z.B. ‚Hans schaut Sonja an‘, ‚Die Sonne geht gerade auf‘, ‚Das berühmte rote Auto biegt um die Ecke‘, ‚Alle Nachbarn von Sonja sehen das rote Auto‘, ‚Hans ist ein Nachbar von Sonja‘, usw.

21. In solchen Sätzen nach dem Schema ‚S P‘ repräsentiert das Prädikat P dann eben die Veränderung und mögliche Begleitumstände.

22. Setzen wir F= ‚Die Nachbarn von Sonja‘ und ‚B1= ‚Das rote Auto‘, dann können wir schreiben (A F sehen B1). Setzen wir H1= ‚Hans‘, dann können wir schreiben (– H1 ist F). Da der Ausdruck ’sehen‘ keine ‚Enthaltensbeziehung‘ repräsentiert, sondern eine bestimmte Form von Aktivität, liegt keine mögliche Enthaltensbeziehung zwischen F und B1 vor. Wohl aber zwischen F und H1 im Sinne von $latex B1 \in F$. Dann kann man fragen, ob die Aktivität, die für ‚Alle F‘ gilt, damit auch für H1 gilt, da H1 ja ein Element von F ist. Von der Grundstruktur her würde unser Denken dies bejahen; wir denken einfach so. Also folgern wir ‚automatisch‘ (– H1 sieht B1).

23. Dies bedeutet, wenn es Profile von echten Objekten gibt, denen zusätzliche Eigenschaften zugeordnet werden – z.B. Aktivitäten –, dann wird gefolgert dass die zugeordneten Aktivitäten auf alle Elemente des Profils ‚übertragen‘ werden, oder, anders formuliert, alle Elemente eines Profils P eines echten Objektes ‚erben‘ die zugesprochenen Eigenschaften. Wenn ‚Alle‘ Elemente dieser Eigenschaften haben, dann erben alle, wenn ‚Nicht Alle‘, also ‚Einige‘, dann erben nur einige, oder ‚Alle nicht‘, dann erbt ‚Kein‘ Element.

24. Über die ‚Enthaltensbeziehung‘ (wie ‚ist‘, ’sind’…) werden also quasi ‚Vererbungsverhältnisse‘ repräsentiert. Über ‚Aktivitätszuweisungen‘ (‚läuft‘, ’spricht‘ …) werden zusätzliche ‚Eigenschaften‘ (‚unechte Objekte‘) repräsentiert, die für ausgewählte Elemente eines echten Objekts gelten.

QUANTORENVIELFALT

25. Betrachtet man alle Quantorenkombinationen der syllogistischen Muster, dann stellt man fest, dass es sich ausschließlich um ‚Anzahlquantoren‘ handelt, also Quantoren, die sich auf die potentiellen Elemente eines echten Objekts beziehen. ‚Potentielle Element‘, da diese Anzahlquantoren sich – wie gesagt – auf die Eigenschaften des Profils eines echten Objektes beziehen, mittels deren potentielle Elemente bestimmt werden, nicht auf die tatsächlichen Elemente.

26. In der dynamischen Objektstruktur gibt es aber auch ‚Raum-‚ und ‚Zeit-Quantoren‘.Warum kommen diese in den syllogistischen Mustern nicht vor? Die Beschränkung auf Anzahlquantoren stellt somit eine weitere starke Einschränkung dar.

27. Würde man sagen ‚Immer geht nach X Stunden wieder die Sonne auf‘, ‚X Stunden sind seit dem letzten Sonnenaufgang vergangen‘, dann könnte man daraus folgern, ‚jetzt wird die Sonne aufgehen‘. Setzt man eine Zeitachse mit Zeitpunkten voraus, für die mit ‚Immer = Zu allen Zeitpunkten = At‘ gesagt wird, dass eine Eigenschaft ‚F1=die Sonne‘ ‚geht auf‘ sich nach einem festen Abschnitt von ‚X Stunden‘ gesagt wird, dass sich diese Eigenschaft ‚wiederholt, also (At ‚X Stunden‘ geht auf F1), (Jetzt ist ‚X Stunden‘), (‚Jetzt ‚geht auf‘ F1). Implizit hat man hier auch die Struktur von echten Objekten (‚die Sonne‘) mit zugeordneten Eigenschaften ‚geht auf‘ bzw. den Zeitobjekten ‚Jetzt‘, ’10 Stunden‘.

28. Entsprechend kann man die Frage nach den Raum-Quantoren stellen. warum werden diese ausgeklammert? ‚Überall brennt die Sonne‘, ‚Hans wohnt in Berlin‘, ‚In Berlin brennt die Sonne‘. ‚Überall = An allen Orten = Ar‘, F1=’die Sonne‘, B1=’Hans‘, Berlin ist ein Ort, (Ar Orte brennt F1), (H1 wohnen Berlin), und über ‚Vererbung der Eigenschaft von allen Orten erbt der Ort Berlin die Eigenschaft (Berlin brennt F1).

OBJEKTIFIZIERUNG, ENTHALTENSEIN, ZUSCHREIBUNG, VERERBUNG

29. Aus den bisherigen Überlegungen lassen sich die Umrisse einer möglichen ‚Logik‘ auf der Basis einer ‚dynamischen Objektstruktur‘ erkennen.

30. Basis für alles andere sind ‚Objektifizierungen‘ von Eigenschaftsdimensionen wie ‚echte Objekte‘, ‚Raumgebiete‘ und ‚Zeitachse‘.

31. Zwischen echten Objekten, Raumpunkten und Zeitpunkten kann es ‚Enthaltensbeziehungen‘ geben. Z.B. (i) Von den Profileigenschaften von zwei echten Objekten A und B kann man sagen, dass ‚Alle‘ oder ‚Nicht Alle = Einige‘ oder ‚Alle nicht = Kein‘ Element von A auch Element von B ist. (ii) Die Wohnung von Hans ist Teil des Gebäudes X. Das Gebäude X gehört zum Ort Y…. (iii) Der 5.Oktober 1948 gehört schon zum Nachkriegsdeutschland. Nachkriegsdeutschland ist Teil des 20.Jahrhunderts. Das 20.Jahrhundert gehört zur Periode des homo sapiens.

32. Sofern Objektifizierungen angegeben sind, kann man diesen diverse Eigenschaften zuweisen (Das Auto ist rot; Die Nachbarn von Sonja sehen das rote Auto; die Sonne geht alle X Stunden auf; …)

33. Wenn man Objekten Eigenschaften zugeschrieben hat, dann kann man diese Eigenschafte ‚übertragen’/ ‚vererben‘ auf alle Elemente, die in dem betreffenden Objekt ‚enthalten sind‘. Wenn es zu allen Zeiten Kriege gab, dann gibt es auch zum aktuellen Zeitpunkt einen Krieg; wenn überall die Sonne scheint, dann auch dort, wo man ist; Wenn alle Menschen Lebewesen sind und von Lebewesen gesagt wird, dass sie sterben, dann sterben auch die Menschen.

Fortsetzung folgt

QUELLEN

  • Avicenna, ‚Avicennas Treatise on Logic‘. Part One of ‚Danesh-Name Alai‘ (A Concise Philosophical Encyclopedia) and Autobiography, edited and translated by Farang Zabeeh, The Hague (Netherlands): Martinus Nijhoff, 1971. Diese Übersetzung basiert auf dem Buch ‚Treatise of Logic‘, veröffentlicht von der Gesellschaft für Nationale Monumente, Serie12, Teheran, 1952, herausgegeben von M.Moien. Diese Ausgabe wiederum geht zurück auf eine frühere Ausgabe, herausgegeben von Khurasani.
  • Digital Averroes Research Environment
  • Immanuel Kant, Critik der reinen Vernunft‘, Riga, 1781
  • Konrad Lorenz, 1973, ‚Die Rückseite des Spiegels. Versuch einer Naturgeschichte des menschlichen Erkennens‘, München, Zürich: Piper
  • Nicholas Rescher (1928 – ),The Development of Arabic Logic. University of Pittsburgh Press, 1964
  • Hans-Jörg Sandkühler (Hg.) unter Mitwirkung von Dagmar Borchers, Arnim Regenbogen, Volker Schürmann und Pirmin Stekeler-Weithofer, ‚Enzyklopädie Philosophie‘, 3 Bd., Hamburg: FELIX MEINER VERLAG, 2010 (mit CD-ROM)
  • Stanford Encyclopedia of Philosophy, Aristotle’s Logic
  • Whitehead, Alfred North, and Bertrand Russell, Principia Mathematica, 3 vols, Cambridge University Press, 1910, 1912, and 1913; Second edition, 1925 (Vol. 1), 1927 (Vols 2, 3). Abridged as Principia Mathematica to *56, Cambridge University Press, 1962.
  • Alfred North Whitehead; Bertrand Russell (February 2009). Principia Mathematica. Volume One. Merchant Books. ISBN 978-1-60386-182-3.
  • Alfred North Whitehead; Bertrand Russell (February 2009). Principia Mathematica. Volume Two. Merchant Books. ISBN 978-1-60386-183-0.
  • Alfred North Whitehead; Bertrand Russell (February 2009). Principia Mathematica. Volume Three. Merchant Books. ISBN 978-1-60386-184-7

Eine Übersicht über alle bisherigen Blogeinträge nach Titeln findet sich HIER

AVICENNAS ABHANDLUNG ZUR LOGIK – Teil 15

VORGESCHICHTE

Für einen Überblick zu allen vorausgehenden Beiträgen dieser rekonstruierenden Lektüre von Avicennas Beitrag zur Logik siehe AVICENNAS ABHANDLUNG ZUR LOGIK – BLITZÜBERSICHT.

Übersicht zum Wissen K bestehend aus Ausdrücken E, Objekten O sowie Bedeutungsbeziehungen M
Übersicht zum Wissen K bestehend aus Ausdrücken E, Objekten O sowie Bedeutungsbeziehungen M

WAHR UND FALSCHE AUSSAGEN

1. Nach dem Blogeintrag Avicenna 14b gibt es jetzt Ausdrücke A, B, …, die ‚wahr‘ oder ‚falsch‘ sein können und die wir deshalb ‚Aussagen‘ (auch ‚Propositionen‘) nennen. Aussagen können mittels aussagenlogischer Operatoren wie ‚NEGATION‘, ‚UND‘, ‚IMPLIKATION‘ usw. zu komplexeren Ausdrücken so verknüpft werden, dass jederzeit ermittelt werden kann, wie der Wahrheitswert des komplexen Ausdrucks lautet, wenn die Wahrheitswerte der Teilausdrücke bekannt sind. Ob im Einzelfall eine Aussage A ‚wahr‘ oder ‚falsch‘ ist, muss durch Rückgriff auf ihre Bedeutungsbeziehung M(A) geklärt werden. Bislang ist nur klar, dass die Bedeutungsbeziehung M nur allgemein eine Beziehung zu den (kognitiven) Objekten O herstellt (siehe Grafik oben).

2. Avicenna spricht aber nicht nur von Aussagen A allgemein, sondern unterscheidet die Teilausdrücke ‚Subjekt‘ S und ‚Prädikat‘ P, zusätzlich oft noch ‚Quantoren‘ Q.

FEINSTRUKTUR DER BEDEUTUNG VON AUSDRÜCKEN

3. Man kann und muss dann die Frage stellen, ob und wie sich auf der Bedeutungsseite die Unterscheidung in S und P auf der Ausdrucksseite widerspiegelt?

ECHTE UND UNECHTE OBJEKTE

4. In vorausgehenden Blogeinträgen zu Avicenna (Avicenna 4, 5, 7 und 11) wurde schon unterschieden zwischen ‚echten‘ und ‚unechten‘ Objekten. ‚Unechte Objekte‘ sind solche Wissenstatbestände, die man zwar identifizieren und unterscheiden kann, die aber immer nur im Kontext von ‚echten Objekten‘ auftreten. ‚Unechte‘ Objekte werden meistens als ‚Eigenschaften‘ bezeichnet. Beispiel: die Farbe ‚Rot‘ können wir wahrnehmen und z.B. von der Farbe ‚Blau‘ unterscheiden, die Farbe ‚Rot‘ tritt aber nie alleine auf so wie z.B. Gegenstände (Tassen, Stühle, Früchte, Blumen, …) alleine auftreten.

5. Hier wird davon ausgegangen, dass die Objekthierarchie O primär von echten Objekten gebildet wird; unechte Objekte als Eigenschaften treten nur im Kontext eines echten Objekts auf.

GATTUNG UND ART; KATEGORIEN

6. Ein Objekt kann viele Eigenschaften umfassen. Wenn es mehr als ein Objekt gibt – also O1, O2, … — die sowohl Eigenschaften Ex gemeinsam haben wie auch Eigenschaften Ey, die unterschiedlich sind, dann kann man sagen, dass alle Objekte, die die Eigenschaften Ex gemeinsam haben, eine ‚Gattung‘ (‚genus‘) bilden, und dass man anhand der ‚unterscheidenden Eigenschaften Ey‘ unterschiedliche ‚Arten‘ (’species‘) innerhalb der Gattung unterscheiden kann.

7. Gattungen, die keine Gattungen mehr ‚über sich‘ haben können, sollen hier ‚Kategorien‘ genannt werden.

ONTOLOGISCHE UND DEFINITORISCHE (ANALYTISCHE) WAHRHEIT

8. Bislang ist der Wahrheitsbegriff $latex \top, \bot$ in dieser Diskussion an der hinreichenden Ähnlichkeit eines vorgestellten/ gedachten kognitiven) Objekts $latex a \in Oa$ mit sinnlichen wahrnehmbaren Eigenschaften $latex s \subseteq Os$ festgemacht worden. Ein ‚rein gedachtes Objekt $latex a \in Oa$ ist in diesem Sinne weder ‚wahr‘ $latex \top$ noch ‚falsch‘ $latex \bot$.

9. Setzt man allerdings eine Objekthierarchie O voraus, in der man von einem beliebigen individuellem Objekt a immer sagen kann, zu welchem Objekt Y es als seiner Gattung gehört, dann kann man eine Aussagen der Art bilden ‚a ist eine Tasse‘.

10. Wenn man zuvor in einer Definition vereinbart haben sollte, dass zum Begriff der ‚Tasse‘ wesentlich die Eigenschaften Ex gehören, und das Objekt a hätte die Eigenschaften $latex Ex \cup Ey$, dann würde man sagen, dass die Aussage ‚a ist eine Tasse‘ ‚wahr‘ ist, unabhängig davon, ob es zum kognitiven Objekt a ein ’sinnliches‘ ‚Pendant‘ geben würde oder nicht. Die Aussage ‚a ist eine Tasse‘ wäre dann ‚rein definitorisch‘ (bzw. ‚rein analytisch‘) ‚wahr.

11. Im Gegensatz zu solch einer rein definitorischen (analytischen) Wahrheit eines Objekts a, die als solche nichts darüber sagt, ob es das Objekt a ‚tatsächlich‘ gibt, soll hier die ursprünglich vereinbarte ‚Wahrheit‘ durch Bezug auf eine ’sinnliche Gegebenheit‘ $latex s \subseteq Os$ ‚ontologische‘ Wahrheit genannt werden, also einer Wahrheit, die sich auf das ‚real Seiende‘ in der umgebenden Welt W bezieht.

12. [Anmerkung: Dieses – auch im Alltagsdenken – unterstellte ‚Sein‘, die unterstellte übergreifende ‚Realität‘ ist nicht nur eine ‚Extrapolation‘ aufgrund sinnlicher Gegebenheiten ‚im‘ wissenden System, sondern ist in seiner unterstellten ‚Realität‘ auch nur eine sehr spezifische Form von Realität. Wie wir heute aufgrund immer komplexerer Messprozeduren wissen, gibt es ‚Realitäten‘, die weit jenseits aller sinnlichen Qualitäten liegen. Es fällt uns nur nicht so auf, weil diese gemessenen Eigenschaften X durch allerlei Prozeduren für unsere Sinnesorgane ‚umgerechnet‘, ‚transformiert‘ werden, so dass wir etwas ‚Sehen‘ oder ‚Hören‘, obgleich das gemessene X nicht zu sehen oder zu hören ist.]

13. Solange wir uns in unseren Aussagen auf das Enthaltensein eines Objektes a in einem Gattungsobjekts X beschränken ‚a ist ein X‘ oder das Feststellen von Eigenschaften der Art ‚a hat b‘ kann man sagen, dass eine Aussagestruktur wie (S P) wie folgt interpretiert werden kann: Es gibt einen Ausdruck A=(AsAp), bei dem ein Ausdrucksteil As sich auf ein echtes Objekt M(As) = $latex a \in Oa$ bezieht und der andere Ausdrucksteil Ap bezieht sich auf die Beziehung zwischen dem Objekt a und entweder einem Gattungsobjekt X (Ap = ‚ist ein X‘) oder auf eine Eigenschaft Y (Ap = ‚hat Y‘).

14. Derjenige Ausdrucksteil As, der sich auf das echte Objekt a bezieht, ‚von dem‘ etwas ausgesagt werden soll (‚ist ein…‘, ‚hat …‘), dieser Ausdrucksteil wird als ‚Subjekt‘ S bezeichnet, und der Ausdrucksteil Ap, mittels dem etwas über das Subjekt ausgesagt wird, wird ‚Prädikat‘ P genannt.

15. Hierbei ist eine gewisse ‚Asymmetrie‘ zu beachten. Die Bedeutung vom Ausdrucksteil As – M(As) – bezieht sich auf eine ‚konkrete‘ Eigenschaftsstruktur innerhalb der Objekthierarchie. Die Bedeutung vom Ausdrucksteil Ap – M(Ap) – bezieht sich auf eine ‚Beziehung‘ / ‚Relation’/ ein ‚Verhältnis‘ [R] zwischen dem bezeichneten Bedeutungsobjekt M(As) = a und einem anderen bezeichneten Bedeutungsobjekt M(Ap), also R(M(As), M(Ap)). Die Beziehung R ist selbst kein ‚Objekt‘ so wie das Objekt a oder das implizit angenommene ‚Bezugsobjekt‘ X bzw. Y von a. Eine solche Beziehung R setzt – um prozessural ‚hantierbar‘ zu sein – eine zusätzliche ‚Objektebene‘ voraus, auf der es ein R-Objekt gibt, das die Beziehung zwischen dem a-Objekt und dem X-Y-Objekt ‚repräsentiert.

16. [Anmerkung: Bei ’neuronalen Netzen‘ wäre das R-Objekt jenes Neuron, das die Verbindung zwischen zwei anderen Neuronen ‚realisiert‘.]

17. Fassen wir zusammen: Bei einem Ausdruck A der Art A=’Hans ist ein Mensch‘ gibt es den Ausdrucksteil As=’Hans‘ und den Ausdrucksteil Ap=’ist ein Mensch‘. Die Bedeutung des Ausdrucksteils As M(As) als M(‚Hans‘) ist ein Objekt h in der unterstellten Bedeutungshierarchie O des Sprechers, das gewisse Eigenschaften E(h) besitzt. Die Bedeutung des Ausdrucksteils Ap als M(Ap) bzw. M(‚ist ein Mensch‘) ist sowohl ein Objekt M mit Eigenschaften E(M) als auch eine Beziehung R_ist zwischen dem Objekt h und dem Objekt M, also R_ist(h,M). Die Beziehung ist definitorisch/ analytisch ‚wahr‘ wenn es gilt, dass die definierenden Eigenschaften E(M) des Objekts Mensch M auch bei den Eigenschaften E(h) von Hans zu finden sind, also $latex E(M) \subset E(h)$ .

BEZIEHUNGSRAUM – TRANSZENDENTALE BEDINGUNGEN

18.

Fortsetzung folgt

QUELLEN

  • Avicenna, ‚Avicennas Treatise on Logic‘. Part One of ‚Danesh-Name Alai‘ (A Concise Philosophical Encyclopedia) and Autobiography, edited and translated by Farang Zabeeh, The Hague (Netherlands): Martinus Nijhoff, 1971. Diese Übersetzung basiert auf dem Buch ‚Treatise of Logic‘, veröffentlicht von der Gesellschaft für Nationale Monumente, Serie12, Teheran, 1952, herausgegeben von M.Moien. Diese Ausgabe wiederum geht zurück auf eine frühere Ausgabe, herausgegeben von Khurasani.
  • Digital Averroes Research Environment
  • Nicholas Rescher (1928 – ),The Development of Arabic Logic. University of Pittsburgh Press, 1964
  • Hans-Jörg Sandkühler (Hg.) unter Mitwirkung von Dagmar Borchers, Arnim Regenbogen, Volker Schürmann und Pirmin Stekeler-Weithofer, ‚Enzyklopädie Philosophie‘, 3 Bd., Hamburg: FELIX MEINER VERLAG, 2010 (mit CD-ROM)
  • Stanford Encyclopedia of Philosophy, Aristotle’s Logic
  • Whitehead, Alfred North, and Bertrand Russell, Principia Mathematica, 3 vols, Cambridge University Press, 1910, 1912, and 1913; Second edition, 1925 (Vol. 1), 1927 (Vols 2, 3). Abridged as Principia Mathematica to *56, Cambridge University Press, 1962.
  • Alfred North Whitehead; Bertrand Russell (February 2009). Principia Mathematica. Volume One. Merchant Books. ISBN 978-1-60386-182-3.
  • Alfred North Whitehead; Bertrand Russell (February 2009). Principia Mathematica. Volume Two. Merchant Books. ISBN 978-1-60386-183-0.
  • Alfred North Whitehead; Bertrand Russell (February 2009). Principia Mathematica. Volume Three. Merchant Books. ISBN 978-1-60386-184-7

Eine Übersicht über alle bisherigen Blogeinträge nach Titeln findet sich HIER